
[image: Cover Image]

版权信息

	COPYRIGHT

	书名：深入理解FFmpeg

	作者：刘歧；赵军；杜金房；赵文杰；宋韶颍

	出版社：人民邮电出版社

	出版时间：2023年11月

	ISBN：9787115621368

	字数：620千字

	本书由人民邮电出版社有限公司授权得到APP电子版制作与发行

	版权所有·侵权必究

内容提要

	本书详细介绍了开源音视频处理软件FFmpeg的使用，按照所讲述的内容及读者的不同层次，本书划分为上下两篇。上篇为基础与参数详解，介绍了FFmpeg的基本组成部分、工具使用，以及封装、转码、流媒体、滤镜和设备操作。下篇为API使用及开发，介绍了FFmpeg封装、编解码和滤镜部分的API使用操作，相关操作均以实例方式进行说明，包括新旧API的操作方法和异同，并给出了大量的API使用、自定义功能模块、基于FFmpeg的API开发自己的播放器的示例，以及其在实际开源软件中的应用等。

	本书不仅适合音视频流媒体处理的研发人员、对音视频技术应用和实时音视频通信感兴趣的技术人员，还适合高等院校计算机相关专业的学生阅读。

推荐语

	FFmpeg是当今仍在开发的最复杂的开源软件之一，其中许多贡献者都是志愿者。虽然这在开源运动之初很常见，但对今天为大多数互联网视频基础设施提供支持的软件来说，这种情况是相当不寻常的。多年来，围绕 FFmpeg 出现了一个非常强大的中国社区，这实在令人耳目一新。事实上，当今一些最活跃的FFmpeg开发人员都来自中国，本书的一些作者也是活跃的FFmpeg开发人员。

	我真心希望这本书能够为中国的FFmpeg用户更好地理解如何使用、增强、掌握和扩展FFmpeg提供帮助，并为中国和世界带来更多的开源应用案例。

	——Jean-Baptiste Kempf，FFmpeg社区委员会成员，VideoLAN主席，VLC开发者

	FFmpeg功能强大，是音视频领域最具影响力的开源项目之一。刘歧可谓是FFmpeg中国社区的领军人物，自《FFmpeg从入门到精通》出版五年之后，他再次推出力作《深入理解FFmpeg》，继续带领大家体会FFmpeg的博大精深。

	——马思伟，北京大学教授

	我在大学教授“多媒体通信系统”课程多年，课程的实践环节也是以FFmpeg为主要工具。刘歧之前写的书一直是我推荐的主要工具书之一，方便同学们在实操中随时参考。时隔多年，刘歧与多位技术专家联合出版了这本《深入理解FFmpeg》。本书内容更加丰富，技术覆盖更加全面，且实践性强，详细介绍了FFmpeg的方方面面，从基本知识到工具使用，再到SDK接口的调用、与第三方工具的集成，以及自定义模块的开发等，是学习FFmpeg的不二之选。

	刘歧与本书其他作者有十多年的多媒体技术研发经验，研发过多个短视频和直播产品，并应用于国内主流短视频平台。刘歧也是国内最早成为FFmpeg官方代码的维护者之一，技术过硬，为人谦和，乐于助人，被大家亲切地称为“大师兄（悟空）”。相信通过阅读本书，你也能在“大师兄”的加持下获益匪浅。

	——宋利，上海交通大学教授，“媒矿工厂”负责人

	我与作者刘歧已经是相识十一年的老朋友了。这十多年，他一直活跃在FFmpeg社区并持续做出积极的贡献，是FFmpeg社区的核心维护者之一，与其他核心维护者建立了密切的关系。

	编写一本书绝非易事，与读书笔记有很大不同，前者需要时间沉淀。尽管现在关于FFmpeg的文档和图书已经相当丰富，但毫无疑问，市面上仍然缺乏更权威和更准确的相关书籍。我认为书籍内容的准确性至关重要，一个细微的错误观念可能导致开发者产生理解上的巨大偏差。因此，当进入一个新领域时，我会阅读对该领域有深刻理解的人所写的图书，这是因为他们作品内容的准确性更高，能够帮助我更高效地进入这个领域。而《深入理解FFmpeg》正是这样一本好书，值得向大家推荐。

	——杨成立，开源项目SRS（Simple Realtime Server）创始人、技术委员会成员

	2017年，我在LiveVideoStack成立不久就认识了“大师兄”（刘歧），他向我介绍了多媒体技术与行业的背景信息，并给我推荐了许多关键的技术人，这为我们第一次举行LiveVideoStackCon提供了关键支撑。多年来，他一直有求必应，总是充满热情，这种热情也感染着身边的朋友和同事。

	参与开源项目需要牺牲大量个人时间，能坚持多年更属不易。如今《深入理解 FFmpeg》终于出版了，通过阅读本书，相信大家可以了解关于FFmpeg的最新功能与使用方法，从源头理解FFmpeg背后的设计逻辑与考量。希望大家借助FFmpeg，让自己和团队更上一层楼。

	——包研，LiveVideoStack联合创始人

	能为读者推荐刘歧的新书，我感到非常荣幸。在与他相识的将近20年里，我很钦佩他作为一位技术专家、架构师的卓越能力，以及他对FFmpeg的深刻理解。

	刘歧在转向流媒体技术领域之前，曾在安全、Linux内核与嵌入式系统研发领域长期工作。扎实的技术基础使他在解决问题时总能够追根溯源，严谨求实。他积极投身于音视频转码框架的开发，其框架在商业环境中经受住了考验，稳定运行。正是凭借丰富的实战经验，他决定撰写这本针对FFmpeg的著作。书稿历经长时间打磨，反映在他对每行代码、每项指令的认真审查，这种严谨的态度获得了音视频行业同仁的高度认可。

	经过多年沉淀，刘歧与几位同行合作完成了《深入理解FFmpeg》这本书。在这段时间里，他对FFmpeg进行了更为深入的研究，拓展了自己的视野。期间，他不仅成功创办了自己的企业，还成为FFmpeg的全球资深维护者。特别值得一提的是，赵文杰和宋韶颍的加入为该书增色不少。赵文杰作为资深音视频专家，长期致力于直播技术的研发；宋韶颍则是音视频工程落地领域的资深专家。这本书对技术人员而言无疑是一份宝贵的学习资料。

	我对刘歧以及参与编著本书的几位朋友充满信心，相信他们会持续保持对技术的热情，为中国的音视频技术社区注入更多活力。本书也将成为指导、启发众多技术从业者的重要资源，帮助他们更好地应对技术挑战，实现创新突破！

	——刘帅，好未来教研云负责人

序

	缘起

	随着移动互联网的发展和网络基础设施的逐步升级，我们经历了从UGC到PGC、从PC端到移动端、从图片到视频、从点播到直播的巨大变迁。如今，各种音视频应用逐渐成为主流，而它们大多是基于FFmpeg实现的。可以说，FFmpeg就是音视频界的“瑞士军刀”，让高级而神秘的技术在不知不觉中飞入寻常百姓家，极大地促进了互联网的繁荣。如今这把军刀的功能越发丰富，不仅能解决各种实际问题，还成了一本多媒体百科全书。工作之余，每次翻阅其文档代码，都会有新的惊喜。

	我自2007年接触FFmpeg，不知不觉已经16年有余。FFmpeg在这些年间经历了多次巨大的架构变化，功能也愈发强大。最初，我们只是将它用作MPlayer的解码库之一，但它逐渐支持的Codec、Format和Protocol已经超越了MPlayer，甚至还支持了MPlayer的Filter。因此，无论是在播放端、服务器端、制作端还是推流端，几乎所有需求都可以通过FFmpeg实现。近几年FFmpeg的架构经过了跳跃式调整，加入了大量的音视频处理滤镜，并集成了神经网络框架，原有的Format如今也被拆分成了Muxer和Demuxer两个大的模块，编解码接口从原有的单一操作接口变成了模块定制者高可选性接口，无论是从使用者还是开发者的角度看，都更加灵活了。因为该项目的活跃度比较高，项目发布的品控也越来越好，已经逐渐发展成为音视频领域广为应用的基础组件。回顾这些年接触过的开发者，国内有很多人从事相关应用开发，但真正贡献了核心代码的却寥寥无几。

	初识

	2016年，在Maintainer页面上突然出现了一个中国人的名字——Steven Liu，这是令人惊讶的，也让我对他颇感好奇，并期待认识。后来听说了一个叫做OnVideo的创业项目，我才了解他本人与我有着二度联系，不禁感叹世界之小。我与他一见如故，之后交集颇多，这更加让我相信在这个世界上，有缘的人终会相识相聚。这位化名为“大师兄”（悟空）的刘歧，有着非常感染我的性格——东北人与生俱来的乐观与风趣，以及他对技术真挚的热爱。尽管工作繁忙，他仍然对开源社区倾注了大量心血，无论是解答问题还是推进开发，他总是慷慨奉献、一丝不苟。他身上所散发的是一种无问西东的信念，在当今时代，修建大教堂已逐渐成为一种奢侈，相比之下，他选择砌墙，这让我们相形见绌。我很期望有机会为他和社区做点什么，给优秀的人和有意义的事寻求更大的平台。

	共事

	2019年，偶然的合作机会促使“大师兄”加入了快手，参与了快手音视频技术架构的研发与升级。凭借丰富的音视频基础架构设计经验，“大师兄”帮助我们实现了音视频基础组件的优化，并且成功上线了先进的图片格式，帮助业务节省了不少成本。当我得知“大师兄”正在撰写本书时，十分认同这件事的价值，遂为本书撰写了序言，希望能尽绵薄之力，促进行业发展。

	榜样

	在我看来，作为程序员，参与知名开源项目是对个人技能发展的高级追求。为什么这么说呢？成功的开源项目并不多，通常它们都能很好地解决某个基础性需求，是众多优秀程序员智慧的结晶。对于有技术追求的开发者来说，深入掌握FFmpeg的架构思想、开发协作流程以及解决问题的方法，对提升其自身的软件开发能力会有很大帮助。在公司写代码时，通常只有一两个人进行代码审查，但在社区中，可能会有几十甚至几百人对你的代码进行审查，其中包括世界级专家。要成为这种项目的Maintainer，需要付出大量努力，真正为项目贡献智慧并赢得社区的信任，这样你也有可能成为那个世界级专家。在过去十年中，“大师兄”通过卓越的贡献赢得了尊重，成为难得一见的Maintainer，并且在快手内部，他也在积极帮助对音视频技术感兴趣的同事加深对FFmpeg社区与音视频技术的了解，确实是我们学习的楷模。

	推荐理由

	“大师兄”对FFmpeg的理解之深入，决定了本书在内容的全面性、理论与实践的结合方面都是令人期待的。

	许多热爱多媒体应用的开发者在实践中会遇到很多问题，尽管偶尔可以通过高手的指点解决一些临时问题，但仍然会频繁遇到新的困难。为什么会这样呢？往往是因为缺乏系统化的知识体系，无法真正入门，就更不用说深入学习了。因此，对于那些希望入门、入行音视频的读者，本书系统地梳理了从FFmpeg基本命令行到高级应用的各个方面，能够带你走入多媒体技术的殿堂。

	此外，对那些具有一定多媒体专业背景知识但不知如何实践的读者来说，认真阅读本书可以对理论如何结合实践有一个全新的认识。音视频算法再也不是抽象枯燥的公式和标准，而是在鲜活的应用场景中解决实际问题的利器。对那些已经熟悉多媒体开发的读者来说，本书是一本全面的手册和工具，可以帮助你查漏补缺，阅读完后必定会有所收获。

	最后，对那些希望深入学习多媒体架构知识，甚至像“大师兄”一样成为社区贡献者、成为Committer的程序员们来说，本书也是一本很好的指南。以Linux操作系统学习为例，从基本使用开始，一步步向搭建互联网服务器、深入调优、进行内核开发、构建大型系统演进，这是一个逐渐深入的过程。学习 FFmpeg 也是如此，开发者从使用各种命令行处理、阅读代码以了解背后的原理，到使用FFmpeg解决实际问题、完成模块级别的开发、参与架构改进，再到融会贯通并为社区做贡献，这也是学习必经之路径。FFmpeg的分层模块化架构思想与Linux内核类似，十分简洁优美，其中还包含丰富的图像与视频基础库和网络协议实现、底层汇编优化等。建议大家站在前辈巨人的肩膀上，学习他们所写架构的精髓，从实践的角度构建你的程序员世界观，从而完成从小工到大师的成长过程。

	本书由浅入深，是一个值得探索的宝库，希望每个热爱技术的同学都能像“大师兄”一样，不断学习、不断实践、不断进步，让我们一起推动中国开源技术的发展，成为全球开发者的引领者。相信在“大师兄”的指导下，本书一定会成为你技术之路上的良师益友。让我们一同期待这本书的面世，为FFmpeg和音视频行业的发展贡献一份力量！

	祝愿本书能够成为经典，为众多技术爱好者带来更多的启发和收获！

	祝愿开源社区蓬勃发展，推动中国技术的崛起！

	于冰

	快手高级副总裁、研发线负责人

	2023年7月5日于北京

前言

	为什么要写这本书

	在过去几年中，人们的日常生活、工作方式发生了巨大变化，短视频、互动直播、在线教育、云上会议等音视频使用场景深入各行各业，井喷式的需求使得音视频技术也发生了许多改变。

	回顾音视频技术的整体发展，可以将其粗略地分为3个阶段。第一阶段，音视频的传输方式“简单粗暴”，仅能通过模拟信号进行传输；第二阶段，音视频数据开始数字化，诞生了如DVD、DVB等一系列数字存储、传输技术，同时开始延展出更多针对网络的编解码技术、流媒体传输和存储等细分技术；第三阶段，随着终端硬件能力的提升和移动互联网的发展，音视频技术进一步细分，编解码技术持续演进，流媒体传输协议也开始面向特定场景演化，派生出点播、超低延时直播、互动直播、短视频、在线会议、在线视频编辑、VR/AR/MR等不同形态。

	整个音视频领域正朝着超高清、低延时、强互动等方向演进，音视频相关的应用在人们日常生活中的使用频次也越来越高。同时，网络、计算机设备、移动终端、高性能计算等相关技术也快速迭代，再加上大模型技术的爆火和AIGC技术的加持，演化出更多的场景，其中所涉及的音视频处理技术也被越来越多的技术人员所需要。与此同时，开源项目已经成为行业的基石之一，FFmpeg也成为音视频处理技术不可或缺的套件，深刻理解和灵活使用FFmpeg已经成为一项基础技能。作为一个持续了20多年的开源项目，随着时间的发展，FFmpeg也与这个令人兴奋的时代一起不断更新迭代。

	通过与众多从业人员进行FFmpeg相关的开发讨论与交流，笔者了解到，很多公司尤其是云服务相关的公司对FFmpeg的使用各有不同，主要分为两类：基于命令行和使用其API。所以本书也分为上下篇进行介绍，上篇以FFmpeg命令行使用的介绍为主，下篇以FFmpeg API的介绍为主。当然，因为FFmpeg社区的蓬勃发展，演化迅速，所以本书讲解的内容将会尽力跟随其最新版本。另外，笔者将会持续与广大读者沟通交流FFmpeg相关技术，希望能够为同行或者对FFmpeg感兴趣的读者提供参考，也希望本书能够帮助大家提高工作效率，解决工作和学习中的实际问题。

	这些年来，FFmpeg 相关的中文内容越来越多，但细读下来，内容或多或少会随着FFmpeg的更新迭代而过时。所以，本书在讲解FFmpeg的知识的同时，也会尽量带上其设计的背后原因或背景，以及音视频的基础知识，以期让读者能够“知其然知其所以然”，尽量把“魔术师背后的箱子”一并打开。

	笔者之前编写的《FFmpeg 从入门到精通》（以下简称《入门》）一书出版后，得到许多读者的各种反馈，主要包括以下几点：

	・命令行部分的内容偏多。

	・API使用部分的内容偏少。

	・希望能了解命令行参数和实际代码的对应关系。

	・需要多举一些代码例子。

	・需要对音视频基础知识做一些铺垫性介绍。

	有几点需要说明，《入门》一书没有加入大量的代码举例，首先是因为雷霄骅博士的博客内容已经可以覆盖FFmpeg的大部分使用场景，所以没有在书中重复编写；其次是FFmpeg官方代码用例目录也涉及大量场景和使用案例。但是在该书出版之后，还是会接收到一些读者对于在书中加入代码、使用用例及背景知识的期望。另外，近几年低延迟直播、超低延迟直播、视频会议及实时互动也有了迅猛的发展和实质的进步，FFmpeg也应用于很多RTC（Real-Time Communication，实时通信）场景。因此，本书着重增加了以下内容：

	・音视频基础知识讲解。

	・以性能为目标的硬件加速的编解码。

	・更多的容器封装细节讲解，特别是FLV、MP4、MPEG-TS等格式。

	・详细的API使用说明和指导。

	・API使用的具体举例。

	・自定义FFmpeg模块的方法（主要是针对刚涉足FFmpeg模块的开发者）。

	・在云剪辑中常用的音视频处理技术。

	・在RTC场景下对FFmpeg的使用。

	除了以上列出的，读者在阅读本书时会发现更多有趣的内容。本书偏重于实战，其目标是希望读者通过阅读本书，解决或解答在使用FFmpeg处理音视频时遇到的大多数问题和疑虑。虽然本书总体上比较专业且有深度，但第1章加入的音视频知识降低了学习门槛，可以让刚涉足音视频领域的读者轻松入门。

	FFmpeg是音视频处理的“瑞士军刀”，几乎任何与音视频相关的软件中都会出现FFmpeg的身影。让不了解音视频的读者快速了解音视频和FFmpeg，让已经对FFmpeg有所了解的读者尝试理解FFmpeg的方方面面，便是作者写作本书的初衷。

	此外，本书作者群的庞大也使得我们可以取不同领域作者之长项，让本书内容更加丰富，也更有深度。在作者之中，除赵文杰是《入门》的作者外，杜金房、宋韶颍和赵军是新加入的作者，他们既是FFmpeg的开发者，也是重度用户，在音视频领域都有很深的技术功底和丰富的工作经验，在相关开源软件中也多有贡献。他们对本书内容的掌控，以及对文字细节的精益求精也让本书更上一层楼。

	读者对象

	・音视频技术应用相关人员

	・音视频流媒体技术的研发人员

	・对音视频流媒体处理开发感兴趣的技术人员

	・对实时音视频通信技术感兴趣的人员

	・高等院校计算机相关专业师生

	如何阅读本书

	本书包含17章。按照所讲述的内容及读者的不同层次，可以划分为以下两篇。

	上篇为基础与参数详解。包括第1～9章，介绍了FFmpeg的基本组成、工具使用、封装操作、转码操作、流媒体操作、滤镜操作和设备操作。

	下篇为API使用及开发。包括第10～17章，介绍了FFmpeg封装、编解码和滤镜部分的API使用操作，相关操作均以实例方式进行说明，包括新API及旧API的操作方法和异同，及其在实际的开源软件中的应用等。

	如果你已经能够通过源代码独立安装FFmpeg，那么可以跳过第1、2章，直接从第3章开始阅读；如果你对参数解读和举例没有兴趣，或者只希望使用FFmpeg的API进行开发，那么可以跳过前9章，直接从第10章开始阅读。笔者建议最好从第1章开始阅读，因为前9章中参数详解和FFmpeg工具举例有助于读者更流畅地使用API操作FFmpeg的内部和各功能模块。另外，前面章节也加入了FFmpeg作为开源项目的发展历程等有趣的内容。

	勘误和支持

	由于笔者的水平有限，加之在编写的同时各位作者还承担着繁重的开发工作，书中难免会出现一些错误或者不准确的地方，恳请读者批评指正。如果读者有任何宝贵意见，可以发送邮件到lq@chinaffmpeg.org。真诚期待您的反馈。

	另外，本书代码相关举例部分可以在FFmpeg源代码的doc/examples目录下获得，还可以通过FFmpeg官方网站的文档获得：https://ffmpeg.org/doxygen/trunk/examples.html。

	FFmpeg发展了至少22年，积累了极其丰富的资料。本书篇幅有限，不能涵盖所有的内容，很多其他社区的资源同样值得参考，这些地方也是各位作者获取信息的来源，一并推荐给读者。

	官方文档资料网址如下：

	・FFmpeg官方文档：http://ffmpeg.org/documentation.html

	・FFmpeg官方wiki：https://trac.ffmpeg.org

	中文经典资料网址如下：

	・雷霄骅博士总结的资料：http://blog.csdn.net/leixiaohua1020

	・ChinaFFmpeg：http://bbs.chinaffmpeg.com

	除了以上这些信息，读者还可以通过Google、百度等搜索引擎获得大量相关资料。FFmpeg本身也提供了命令参数的详细说明，读者可以查看FFmpeg的帮助信息，后面的章节将会对此进行详细介绍。另外，作为开源项目的另一个好处就是：源码面前，了无秘密。读者可以直接基于FFmpeg的开源代码学习，这也是几位作者真实的学习经历。

	致谢

	感谢本书的联合作者杜金房、宋韶颍、赵文杰、赵军对本书的辛勤付出，他们在繁忙的工作中抽出时间完成书稿的编写，其过程非常艰苦。

	感谢快手音视频技术部的汪亚强、林德才对本书大量技术内容提出准确的修改建议，他们的努力使得本书中的技术内容更精准。

	感谢FFmpeg社区的朋友们对本书提供的大力支持，感谢蓝汛、高升、金山云、学而思网校、烟台小樱桃、腾讯云与快手的伙伴们长期的支持与贡献，没有他们也就不会有这本书的问世。

	感谢人民邮电出版社的佘洁老师与其他编辑老师们，感谢他们的耐心指导与帮助，引导本书作者顺利地完成了全部书稿。

	感谢FFmpeg社区、LiveVideoStack社区提供了很好的技术沟通与交流的平台，帮助作者们更好地成长。

	感谢我的爱人和孩子一直以来对我的工作和写作的支持与理解，正是他们的默默支持，才使得我有更多的时间和精力投入工作及写作中。

	谨以此书献给我最亲爱的家人、朋友、同事，以及众多为互联网、流媒体添砖加瓦的从业者们。

	刘歧

	2023年8月于快手总部

服务与支持

	提交勘误

	作者和编辑尽最大努力来确保书中内容的准确性，但难免会存在疏漏。欢迎您将发现的问题反馈给我们，帮助我们提升图书的质量。

	当您发现错误时，请登录异步社区（https://www.epubit.com），按书名搜索，进入本书页面，单击“发表勘误”，输入勘误信息，单击“提交勘误”按钮即可（见下图）。本书的作者和编辑会对您提交的相关信息进行审核，确认并接受后，您将获赠异步社区的100积分。积分可用于在异步社区兑换优惠券、样书或奖品。

	[image:]

	与我们联系

	我们的联系邮箱是contact@epubit.com.cn。

	如果您对本书有任何疑问或建议，请您发邮件给我们，并请在邮件标题中注明本书书名，以便我们更高效地做出反馈。

	如果您有兴趣出版图书、录制教学视频，或者参与图书翻译、技术审校等工作，可以发邮件给我们。

	如果您所在的学校、培训机构或企业，想批量购买本书或异步社区出版的其他图书，也可以发邮件给我们。

	如果您在网上发现有针对异步社区出品图书的各种形式的盗版行为，包括对图书全部或部分内容的非授权传播，请您将怀疑有侵权行为的链接发邮件给我们。您的这一举动是对作者权益的保护，也是我们持续为您提供有价值的内容的动力之源。

	关于异步社区和异步图书

	“异步社区”是人民邮电出版社旗下IT专业图书社区，致力于出版精品IT图书和相关学习产品，为作译者提供优质出版服务。异步社区创办于2015年8月，提供大量精品IT图书和电子书，以及高品质技术文章和视频课程。更多详情请访问异步社区官网https://www.epubit.com。

	“异步图书”是由异步社区编辑团队策划出版的精品IT专业图书的品牌，依托于人民邮电出版社的计算机图书出版积累和专业编辑团队，相关图书在封面上印有异步图书的LOGO。异步图书的出版领域包括软件开发、大数据、人工智能、测试、前端、网络技术等。

	[image:]

	▲异步社区

	[image:]

	▲微信服务号

上篇

基础与参数详解

	在本篇中我们会假设读者已经具备基本的shell命令行执行或者编程相关经验，但并不需要拥有视频、音频、流媒体相关知识，也不会假定读者已经熟悉FFmpeg命令行工具的方方面面。本篇会针对音视频技术应用时常遇到的概念或者问题，讲解其基础原理、常用的FFmpeg命令行；从安装、编译、定制FFmpeg开始，用FFmpeg命令行工具完成最常见的音视频任务，同时详细讲解FFmpeg的各类参数，还有示例说明。本篇囊括了对最常用容器格式标准的解读，包括FLV、MP4、MPEG-TS等；描述了FFmpeg社区在不同时期的重要发展历程。另外，我们也讲解了硬件加速方案，它是FFmpeg社区在面临性能挑战问题时的应对方法之一。

	世界一直在变化，且速度似乎在不断加快。我们必须应对更多新的编程语言、新的工具、新的系统、新的知识，当然还有对旧的、不合理地方的改变。但是，一些不变的东西、一些稳定的点或者知识、过去的教训及其造就的洞察力可以助力我们未来的工作。本书的基本主题就是基于这些持久的概念，在变与不变中交织前进。

第1章

多媒体基础

	欢迎来到弦歌缭绕、五彩斑斓的数字世界。FFmpeg 就像数字世界的魔法师，它可以随意改变声音和色彩，尽情装点这个世界；也可以扭曲这里的时间和空间，打造通向元宇宙的时空隧道。

	本书将带你认识和掌控FFmpeg，在学习各种“魔法”的同时深入理解其背后的原理。在深入了解FFmpeg之前，我们先来学习多媒体基础知识，以便大家能顺利踏上FFmpeg的探索之旅，在后面的道路上能顺利通关，以不变应万变。这些基础知识无须死记硬背，在后面的章节中，我们还会反复看到它们。如果你已经准备好了，那我们就启程吧！

1.1 从现实世界到数字世界

	现实世界是丰富多彩的，人类的老祖宗早就发明了文字和绘画，记录了波澜壮阔的历史和文化，但对于历史世界的感知，人们还要依靠脑海中的想象。19世纪，随着磁带、留声机和胶片等分别被发明出来，人们才可以通过声光真正地感受到曾经发生的故事。而随后的电影、电视和计算机更是可以把现实世界无微不至地描述和记录下来。

	随着数学和科学技术的发展，人们不仅可以用抽象的数字与符号来描述和解释世界的规律，而且还能将它们应用到日常生活中。如今，计算机和手机已成为人们生活中不可缺少的一部分。

	时间在现实生活中是线性、连续的，而在数字世界中是离散的。连续的量是无限的，而离散的量是有限的。数学的神奇之处就是可以在连续和离散、无限和有限之间自由转换。比如人们在现实生活中感受到的温度、声音、颜色等，都是连续的量。通过一定的技术转换，可以将这些连续的信息以不连续的0和1这样的二进制数保存到计算机中，需要的时候再反向转换出来，通过传感器、扬声器、显示器等全方位刺激人的神经和各种感觉，还原当时的场景，并让人身临其境般感受到。这就是科技的魔法和魅力。

1.1.1 颜色和图像

	我们先从颜色说起。自然界的颜色来自于太阳光，太阳光是白光，在三棱镜下可以分解为七色光，也就是人们常说的“红橙黄绿蓝靛紫”；反过来，七色光也可以合成白光。后来人们发现，只需要三色光就可以合成白光。人们把这3种颜色命名为三原色，即红、绿、蓝，通常以英文字母R（Red）、G（Green）、B（Blue）表示。像太阳、显示器、灯泡之类的发光体是可以直接发光的，这也是人们可以直接看到的光。

	有些材料是可以透光的。比如我们常见的各种霓虹灯，其实里面的灯泡发的是白光（当然，实际上是各种颜色的光组成了白光），而通过在灯泡外面罩上不同颜色的单色透光材料（比如塑料片或玻璃），把其他颜色的光都吸收掉，便可以显示出不同颜色的单色光。不同颜色的灯光变幻闪烁，便有了五彩斑斓的效果。

	我们日常所见的不发光体，比如桌子、书本等，它们需要靠反光才能被我们的眼睛看到。反光的原理也很容易理解——它们吸收了其他颜色的光，未被吸收的光被反射出来，我们就看到了它们的颜色。比如红旗只反射红光，而白纸则反射一切颜色的光（当然它也吸收一些光，要不然就成镜子了），黑纸则吸收一切颜色的光。也可以这样理解，一切不发光体其实没有颜色，只是吸收和反射光的颜色的程度不同。这也就是为什么用红光照射白纸，看到的是红色，因为在这种情况下没有其他颜色的光供它反射；而不管用什么颜色的光照射黑色的物体仍是黑色，因为它们本来就不反射光。

	所以，不发光体的颜色是由组成它的材料的吸光性决定的，而这些材料的“颜色”与我们眼睛看到的实际颜色是“相反”的。但按人们的习惯，我们也以实际看到的颜色为它们命名，这里有3种主要的颜色，称为三基色，分别是红、黄、蓝。理论上，把具有这3种颜色的物质（颜料，可以想象为很细的粉末或油墨）按不同的比例混合起来，就能得到我们想要的任何颜色。但很不幸，在自然界中，要找到纯净的单色色素是很难的，为了让我们制造出来的东西或印刷出来的作品的颜色与我们的期望无限接近，在大多数时候需要在颜料中掺入黑色。也正是因为这个原因，印刷业常用颜料的颜色通常是青（Cyan）、品红（Magenta，又称洋红）、黄（Yellow）和黑（blacK），简称CMYK。在计算机领域中，这被称为CMYK色彩空间。如果你用过PhotoShop，就一定对这种色彩空间很熟悉，因为很多人用它来制作印刷品和海报。

	在本书中，我们很少用到CMYK色彩空间，因为FFmpeg主要用于音视频的处理，而音视频一般在计算机或电视屏幕上播放，屏幕属于“发光体”。因此，在数字显示世界中，一般都使用RGB色彩空间。

	一幅图像往往是一个二维的矩形块，有宽度和高度。在计算机中，图像的存储一般使用位图（Bitmap），也就是使用一个一个的点来表示，这个点称为像素（Pixel）。比如宽和高分别为352和288的图像，即横向有352像素，纵向有288像素，一共有101 376像素。如果是RGB色彩的图像，则每个颜色分量称为一个通道（Channel），通常每个像素的每种颜色用1字节（8位）表示，3种颜色就需要3字节，共24位，因而这种颜色表示也称为24位真彩色。这种8位的RGB色彩空间可以表示16 777 216（224）种不同的颜色。

	为了描述“透明”的图像，在每个像素上增加一个表示透明度的分量，称为Alpha通道，占1字节，可以表示256（28）种不同的透明度。这种色彩空间称为RGBA，这样一个像素就占4字节。由于4字节正好是一个32位整数，而计算机对整数的计算比一个一个字节计算高效，因此通常用整数来对图像进行计算。但这样就带来一个问题，那就是不同计算机的体系结构是不一样的，主要表现在字节序上。也就是说，一个32位的整数需要占4字节，而在CPU和内存中，地址的实际排列可能是低字节在前，也可能是高字节在前，分别称为小端序和大端序（来源于剥鸡蛋先从小头开始剥还是从大头开始剥）。但在不同体系结构的计算机中存储的图像需要互通，因此就出现了很多不同的存储方式，如RGBA、ABGR、BGRA、ARGB等。

	在早期，人们还无法制作彩色的胶片和照片，普遍使用的是灰度图像，如我们常见的黑白照片。在计算机中存储时灰度图像的每像素只需要1字节，可以表示256种灰度。一般用全0表示黑，全1（即255）表示白，中间就是各种灰度。因此，灰度图像比彩色图像占用更少的存储空间。

	此外还有一种单色图像，即每像素只需要用1位表示，非黑即白。因此1字节可以表示8像素，这大大节省了空间，但图像的表现力更差。单色图像的一个典型应用场景就是条型码或二维码。不过有时候为了好看，二维码也用灰度或彩色表示，甚至在中间覆盖一些装饰性的彩色图标等。

1.1.2 电影、电视和视频

视觉暂留现象又称“余晖效应”，即人眼在观察景物时，光信号传入大脑神经需经过一段短暂的时间，而光的作用结束后视觉形象并不立即消失，这种残留的视觉称为“后像”，视觉的这一现象则被称为“视觉暂留”。简单来讲就是人眼的错觉，本来不动的物体看起来像是在动。
	在电影发明之前，最接近电影的艺术莫过于我国的皮影戏了。然而皮影戏只能现场演出，不能存储播放。普遍认为，电影的发明是源于人们发现了视觉暂留现象
	 [image: 视觉暂留现象又称“余晖效应”，即人眼在观察景物时，光信号传入大脑神经需经过一段短暂的时间，而光的作用结束后视觉形象并不立即消失，这种残留的视觉称为“后像”，视觉的这一现象则被称为“视觉暂留”。]。后来，人们又发现用“似动现象”
	 [image: 简单来讲就是人眼的错觉，本来不动的物体看起来像是在动。]来解释电影原理似乎更为合理。如图1-1所示，所有交叉点的小圆点都是白色的，但看起来像是有些小黑点在动。不管怎么说，电影画面其实就是在人眼前闪过的一帧一帧图像，如果快到一定程度（每秒24帧以上），人眼就误以为这些图像是连续的，如果每帧图像间都有微小的差异，则经过一段时间累积后人眼就看到图像在运动了。

	[image:]

	图1-1 似动现象

	所以，人们看到的电影其实是快速闪过的、一帧一帧的不连续的图像，每秒闪过的帧数就称为帧率（FPS，Frames Per Second）。后来，电视被发明出来。早期的电视使用阴极射线管（CRT，Cathode Ray Tube）显示器（早期的计算机显示器也是这种），原理是利用阴极电子枪发射电子，在阳极高压的作用下射向荧光屏，使荧光粉发光，同时电子束在偏转磁场的作用下做上、下、左、右的移动来进行扫描。电子束是一行一行扫描的，从上到下扫描完一遍后即能显示一幅图像，称为一“场”。由于荧光粉发光非常短暂，因此电子枪需要不断地扫描才能保持画面的亮度。早期显示器的场频通常与电网频率一致，即50Hz或60Hz。受当时的电源及滤波技术限制，可能会因滤波不良造成非同步干扰。这种干扰表现为在屏幕上出现滚动的黑色横条，其滚动频率为电网频率与场频之间的差拍。现在这个问题已经解决，场频不必与电网频率同步，一般取60～70Hz，高的可达100Hz，85Hz是VESA标准的刷新速率，用85Hz以上的刷新率显示图像才无闪烁感。早期由于受技术条件的限制，电子束并不是一行挨着一行扫描的，而是一场扫描奇数行，下一场扫描偶数行，称为隔行扫描，又叫交错扫描。在后面我们可以看到，很多技术、标准和术语都是在实际应用中受各种技术限制及应对技术限制而制定和发明出来的。
显示器大多数是横屏的，也就是宽度大于高度，但也有人把显示器竖着放。而现在的手机大部分是竖屏，但习惯上还是把分辨率称为1080p。
	现在，液晶显示器（LCD，Liquid Crystal Display）代替CRT显示器成为主流显示设备。液晶显示器的基本显示单元也是像素，同样需要一行一行地刷新显示，常见的液晶显示器刷新频率有60Hz和75Hz等。显示器上横向和纵向像素的数量就称为显示器的分辨率，一般以“宽×高”表示，如常见的1080p（1920×1080）、720p（1280×720）。其中，p指逐行扫描，如果是1080i，则指隔行扫描。所以，完整扫完1帧（一场）图像，主要是由图像的高度（行数）决定的，这也是为什么我们常说1080p，而不说1920p
	 [image: 显示器大多数是横屏的，也就是宽度大于高度，但也有人把显示器竖着放。而现在的手机大部分是竖屏，但习惯上还是把分辨率称为1080p。]。
没有对比就没有伤害。当你将视线从普通显示器转到视网膜显示器时，可能只是感觉看得更清晰了些，好像没有质的变化；但当你再将视线转回普通显示器时，就会发现后者的颗粒感相当明显。
	液晶本身是不发光的，需要使用背光源。而更新的OLED（Organic Light-Emitting Diode，有机发光二极管）显示器则不需要背光源，因为它自己就可以发光。这些都是显示技术。除了图像本身外，图像的靓丽程度跟显示技术也息息相关。苹果公司的设备都使用了很高端的显示屏，Pro版的iPhone支持120Hz的刷新频率，iPhone和计算机的视网膜屏（Retina）更是可以提供超过平常分辨率一倍的分辨率
	 [image: 没有对比就没有伤害。当你将视线从普通显示器转到视网膜显示器时，可能只是感觉看得更清晰了些，好像没有质的变化；但当你再将视线转回普通显示器时，就会发现后者的颗粒感相当明显。]。

	一块屏的分辨率达到300ppi以上，我们就叫它视网膜屏。ppi（Pixels Per Inch，每英寸的像素数，也称dpi，Dots Per Inch）是描述最高分辨能力的单位。视力为1.0的人观看离双眼10～12英寸（约25～30厘米）的手机屏时，最高能分辨300ppi。只有当图像与显示器的分辨率匹配时，才能达到最好的显示效果。

	图像一帧一帧地快速切换，就形成了视频。fps描述的是1秒内闪过的帧数，目前常见的视频都是25fps以上的。1帧1080p的图像有2 073 600像素，如果按8位色深的RGB格式存储，需要约6MB的存储空间，按25fps计算，1秒钟就需要150MB，典型的1.5小时的电影需要约800GB的存储空间。如果从网上实时观看视频，视频传输速率一般以bit/s（即Bit Per Second）计算，根据上面的计算结果，需要1200Mbit/s的带宽，超过一个千兆以太网的带宽。

	为了降低存储空间和传输带宽的占用，可以使用视频压缩技术，视频压缩也称为“视频编码”。常用的视频压缩技术的原理是运动估计和运动补偿。简单来说，就是两点：其一，人眼并不是对所有颜色都敏感，因而可以去掉一些颜色，对图像进行压缩，这称为有损压缩，也是一些典型图像如JPEG的主要压缩原理；其二，一般来说，两帧图像间的差异其实不大，可以根据这个特性，只存储或传输图像间的差异信息，而不是整帧图像。常见的视频编码如H.264(AVC)、H.265(HEVC)、VP8、AV1等都是基于这些原理压缩的。图像压缩后可以大大降低存储空间和带宽的占用，比如常见的1080p@25fps视频，只需要2Mbit/s～4Mbit/s的传输带宽就够了。值得一提的是，实际占用的带宽与视频的复杂度（画面细节、运动快慢程度等）和帧率、分辨率都是正相关的，比如同样分辨率和帧率的视频，一部动作片肯定比课堂上老师讲课的视频要占用更多的带宽（因为前者帧间变化更多、差异更大），提高分辨率和帧率也会相应提高所需带宽。

	在音视频应用中，视频在传输到对端后要进行“解码”，即将压缩过的视频再转换成一帧一帧的图像，才能送到显示器上显示。整个过程合起来称为“编解码”。

	需要编解码的视频图像一般不使用RGB色彩空间，而是使用一种称为YUV的色彩空间。两者之间有直接的对应关系，但由于转换过程涉及浮点运算，转换是有损的，但对人眼来说几乎无法分辨，因而是完全可以接受的。YUV也是一种颜色编码方法，“Y”表示明亮度，“U”和“V”则分别表示色度和浓度。不同于RGB图像一般按像素存储（如RGBRGBRGBRGB），YUV图像一般按平面存储，即将所有的Y放到一起，所有的U放到一起，所有的V放在一起（如YYYYUUUUVVVV），其中每一部分称为一个平面。这种存储方式的一个好处就是，在广播电视中，当接收到一帧图像时，黑白电视机只需要播放Y平面（黑白图像），而忽略代表颜色的U和V平面。当然，彩色电视机则需要播放所有平面的数据。
即Key Frame，在H.264中一般为IDR（Instantaneous Decoding Refresh）帧，IDR帧又称为立即刷新图像。在实际应用中，还有普通的I帧（Intra-coded picture）。I帧和IDR帧还是有区别的，所有IDR帧都是I帧，但不是所有I帧都是IDR帧。简单来说，每个GoP里的第1个I帧是IDR帧，后续的I帧虽然能独立解码，但它前/后面的P帧（或B帧）可能会参考I帧后/前面的帧，但GoP内的帧参考不会跨越IDR帧。当然，在H.265或其他编解码中，对IDR帧和I帧的定义还是有更细微区别的，但总的来说关键帧就是为了刷新图像的。在此为简洁起见，并未特别区分I帧和IDR帧。
	在这种编码算法下，如果编码后一帧的数据丢失，则会影响后面的解码，如果强行解码，就会出现花屏等现象（因为部分图像间的差异信息找不到了）。因而，在实际的编码器上，一般会对图像分组，分组后的图像称为GoP（Group of Pictures）。每隔一定数量（比如100帧）的图像，就对一帧完整的图像进行编码，其编码过程不依赖于它前后的图像，这里主要是不依赖图像间的差异编码。这种不依赖前后图像、可单独编解码的图像一般被称为I帧，因此整个GoP序列的第1帧也被称为关键帧
	 [image: 即Key Frame，在H.264中一般为IDR（Instantaneous Decoding Refresh）帧，IDR帧又称为立即刷新图像。在实际应用中，还有普通的I帧（Intra-coded picture）。I帧和IDR帧还是有区别的，所有IDR帧都是I帧，但不是所有I帧都是IDR帧。简单来说，每个GoP里的第1个I帧是IDR帧，后续的I帧虽然能独立解码，但它前/后面的P帧（或B帧）可能会参考I帧后/前面的帧，但GoP内的帧参考不会跨越IDR帧。当然，在H.265或其他编解码中，对IDR帧和I帧的定义还是有更细微区别的，但总的来说关键帧就是为了刷新图像的。在此为简洁起见，并未特别区分I帧和IDR帧。]。这样，即使前面丢了很多数据，只要一个新的关键帧到来，就能继续正确地解码。GoP可以是固定的，也可以是按需的（比如没有数据丢失就不用生成关键帧，或者丢失比较严重时就多生成几个关键帧）。有些编码器有场景检测功能，即在场景切换时，两帧间差异太大，以至于共同信息较少或者根本没有共同的信息，这时候就直接生成一个关键帧。

	在视频编码中，除前面介绍的I帧外，还有P帧（前向预测编码图像帧），它会参考前面的图像，仅对差异部分编码；以及B帧（双向预测编码图像帧），它不仅参考前面的帧，还参考后面的帧，压缩率更高，可以节省更多带宽和存储空间，常用于视频文件的存储。由于B帧需要参考后面的帧，收到B帧后不能立即解码，在实时音视频应用中会带来延迟，因而在实时通信中一般不使用B帧。3种帧的关系如图1-2所示（视频帧产生顺序为从左到右，箭头为帧的参考方向）。

	[image:]

	图1-2 I帧、P帧、B帧示意图

1.1.3 音频

	前面我们讲了视频，下面再来说说音频。声音是由振动引起的。为了将现实世界中的音频（连续的）放到数字世界（离散的）中，需要执行一个模数转换（Analog-Digital Conversion，ADC），通过传声器的炭精薄片振动调制电流，变成数字信号。模数转换的逆运算称为数模转换（DAC），根据数字信号驱动扬声器振动发声。

	为了理解振动，我们先来看看正弦曲线和正弦波。正弦曲线跟圆有关。我们用圆规匀速旋转，就可以在纸上画一个圆；但如果在画圆的同时有人匀速地拖动下面的纸，就可以画出一个正弦曲线，它是一个振幅随时间变化的曲线。振动规律符合正弦曲线的波就称为正弦波。正弦波是完美的波，正如圆是完美的图形一样。圆每转一圈，就对应正弦波的一个周期，如果不停地转下去，就会出现一个连续的周期性的正弦波。单位时间内圆能转多少次，就是圆旋转的频率，也对应正弦波的频率。圆的半径决定了正弦波振动的高度，即振幅。圆规从圆周哪个位置开始画决定正弦波的相位（简单起见，我们在此忽略对相位的讨论）。圆与正弦波的关系如图1-3所示。

	[image:]

	图1-3 圆与正弦波

	但世界是不完美的。世界上有各种美妙的声音，也有各种噪声。不过，不完美的世界也有完美的数学——借助傅里叶变换，任何声音的波形都可以分解为有限个或无限个完美的正弦波，也可以理解为分解为很多个有着不同转速、不同半径的圆。圆的半径决定声音的大小（响度、音量），转速决定频率。振幅越大，声音就越大；频率越大，声音就越“尖”（比如通常来说女声比男声尖，那是因为女性声带振动得快，即在单位时间内振动的次数比男性多）。如图1-4所示是几种不同频率的正弦波及它们的叠加波形图。

	[image:]

	图1-4 正弦波及叠加波形示意图
严格来讲，为了能让三维视图看起来更直观，图中的图像同时也以y轴为中心适当地旋转，只是正文中为了描述方便及突出重点，只提到了z轴。
	傅里叶变换的原理如图1-5所示。时域中的音频波形如图1-5a所示，它的振幅（z轴）是随时间（x轴）变化的，可以分解为多个不同振幅（z轴，振幅分别为1.5、0.8、1.2）、不同频率（1/2π、1/π、3/2π）的正弦波，如图1-5b所示。这些正弦波在频域的投影如图1-5c所示。也就是说，在频域中，只能看到不同频率对应的振幅。如果想检测某一频率是否存在，或者想消除某些频率的波，在频域中处理起来就非常简单。图1-5b中的图像看起来有些乱，把它以z轴为中心顺时针旋转，让不同频率的波在y轴延伸，可以更加直观地看到频率（频谱）分布。其中图1-5d、e、f分别是旋转45°、60°及80°的三维视图
	 [image: 严格来讲，为了能让三维视图看起来更直观，图中的图像同时也以y轴为中心适当地旋转，只是正文中为了描述方便及突出重点，只提到了z轴。]。当旋转角度变成90°的时候，就又回到了图1-5c，不同频率的波变成了以振幅为高度的竖线，这就是原始音频波形的频谱图。总之，xz平面是时域图像，yz平面是频域图像，时域和频域表示的其实是同一个信号，只是看问题的角度不同。

	[image:]

	图1-5 傅里叶变换示意图

	有趣的是，声音的大小变化并不是线性的，即声音的刺激与人真正听到的感觉不是线性的，而是呈对数关系。一个对数曲线示意图如图1-6所示，x轴为声音的刺激量，y轴为人的感觉量，即声音的响度（音量），声音的响度以分贝（dB）表示。关于分贝大小与一般人听觉感受的对应关系，读者可以自行查阅了解。

	[image:]

	图1-6 对数曲线示意图

	响度大小决定是否能听见（听清），而频率大小决定听到的内容。人耳对响度和频率的敏感度如图1-7所示（注意，横轴的刻度不是线性的）。

	[image:]

	图1-7 人耳对声音的敏感度
又称采样定理或奈奎斯特·香农定理。
	通过采样、量化和编码3个步骤，可以将模拟信号转换为数字信号。采样又称为抽样，它是在时域中按一定的时间间隔（T）对模拟信号进行抽样（如图1-8所示），得出一些离散值，然后通过量化和编码过程将这些离散值变成数字信号。单位时间内抽样的次数称为抽样频率，又称采样率。从图1-8中可以看出，抽样频率越高，也就是在单位时间内的采样点越密，离散时间信号与原信号就越接近。但抽样频率不能无限高，那究竟应该多高才能与原信号足够接近呢？根据抽样定理
	 [image: 又称采样定理或奈奎斯特·香农定理。]，当抽样频率是模拟信号频率带宽（最高频率与最低频率的差值）的两倍时，就能够完全还原原来的模拟信号。

s

	[image:]

	图1-8 抽样示意图

	模数转换通常使用PCM（Pulse Code Modulation，脉冲编码调制）方法，它是一种通用的将模拟信号转换成以0和1表示的数字信号的方法。就普通的电话业务来讲，一般来说，人的声音频率范围为300～3400Hz，通过滤波器过滤超过4000Hz的频率，便得到4000Hz以内的模拟信号。然后根据抽样定理，使用2倍于带宽的抽样频率（即8000Hz）进行抽样，便得到离散的数字信号。使用PCM方法得到的数字信号就称为PCM信号，一般一次抽样得到的值（称为Sample）用2字节（16位）来表示。
PCM的两种压缩方式（实际为压扩法，因为有的部分是压缩，有的是扩张。目的是给小信号更多的位数以提高语音质量）。北美洲使用μ律，我国和欧洲使用A律。这两种压缩方法很相似，都采用8位的编码并获得12~13位的语音质量。但在低信噪比的情况下，μ律比A律略好。A律也用于国际通信，因此，凡是涉及A律和μ律转换的情况，都由使用μ律的国家负责。
	与视频类似，音频信号也可以进行压缩。在传统电话业务中，一般使用A律和μ律
	 [image: PCM的两种压缩方式（实际为压扩法，因为有的部分是压缩，有的是扩张。目的是给小信号更多的位数以提高语音质量）。北美洲使用μ律，我国和欧洲使用A律。这两种压缩方法很相似，都采用8位的编码并获得12~13位的语音质量。但在低信噪比的情况下，μ律比A律略好。A律也用于国际通信，因此，凡是涉及A律和μ律转换的情况，都由使用μ律的国家负责。]进行压缩，它们可以将每一个抽样值从16位压缩到8位，这样每秒钟就得到64000（8×8000）位的信号，通常简称为64kbit/s，这也是一路传统电话通信所需的带宽。

	电话业务一般只适用于传播人的声音，对于一些高清音乐则会失真严重。为了达到更好的效果，就需要提高抽样频率。现代的4G VoLTE和5G NR通话可以使用16kHz的抽样频率，相比传统电话声音就更清晰，也称为高清（HD）语音。我们平常听的音乐都使用32kHz或更高的采样率，CD音质使用44.1kHz，一些高清音乐也使用48kHz甚至96kHz的采样率。

	有两个以上声道的音频称为立体声。最简单的立体声分为左、右两个声道，可以区分音源的远近和位置，听起来更真实。一般来说，双声道立体声的音频都会交错存储，如果以L代表左声道的一个采样点、R代表右声道的一个采样点，则采样数据在内存或文件中的存储方式类似“LRLRLRLR…”。有的音视频文件包含更多声道，称为环绕立体声，可以区分前后左右的声音，听起来更震撼，有身临其境的感觉。

1.1.4 音视频封装、传输和未来

	不知不觉，你已经从现实世界走到数字世界了，你还适应吗？

	将音频和视频组合在一起称为封装，有时是为了存储到文件，有时是为了实时传输。典型的文件封装方式如MP4，针对文件的元数据及音视频有很多不同的容器，音频和视频一般也是交错存储的，这主要是为了可以实时播放和同步。对于音视频网络传输，在广播电视领域一般使用TS（Transport Stream，传输流或者MPEG-TS）封装和传输，音频和视频也是交错发送的，主要是为了保证实时性。RTMP流一般用于CDN推拉流，也是音频和视频交错发送。SIP及WebRTC通信的实时性更好一些，使用RTP流传输，音频和视频使用不同的流（不同的端口号）发送，有时为了节省端口号也会合并到一个流上发送。

	前面讲了立体声，不管有几个声道，本质上还是2D的声场。如果再加上上、下声场，就称为3D音频、3D全景声或6DoF空间声场等。最近几年，AR（增强现实）、VR（虚拟现实）及元宇宙的概念非常火。3D音视频等都需要更多的声道和全景360°的图像及视频支持，而6DoF即6种自由度（Degrees of Freedom）。简单来讲，音视频到了3D以后，不仅需要更多的存储空间（如3D全息图像的点云存储需要海量的存储空间）来描述各声道、图像视角之间的关系，还要支持头部及肢体转动时的实时反馈，以便通过耳机、头显、传感器等设备还原出一个真实世界。

1.2 视频图像像素点的数据格式

	前面我们大体讲了一下颜色和图像的基本原理，并初步了解了几种不同的色彩空间。随着图像输出设备支持的规格不同，色彩空间也有所不同，不同的色彩空间能展现的色彩明暗程度、颜色范围等也不同。下面我们再进一步探讨这些色彩空间和像素点的数据格式。

1.2.1 图像的位深

	众所周知，一个二进制位可以表示0和1两种状态。在计算机中，1字节由8位组成，可以表示256（即28）种状态。也就是说1字节可以表示256种颜色。如果是灰度图像，则表示256种不同的灰度。表示颜色所使用的位数就称为颜色的位深。彩色图像通常以R、G、B三色表示，每个单色分别计算位深。我们常说的24位真彩色就是3种位深为8的R、G、B颜色的混合，可以表示16 777 216（即224）种颜色。

	如果需要表示更多颜色，就需要更多位。常见的有10位位深，表示一个RGB像素需要30位，将近4字节。随着4K、8K视频的出现，以及人们对图像质量越来越高的要求，也出现了12位、16位的位深格式。16位位深的RGB像素（每种颜色分量占2字节）需要6字节的存储空间。在下面的介绍中，为了便于计算，如果没有特别说明，都使用8位位深。

1.2.2 FourCC

全称是Four Character Code，即4个字符编码。
	世界上有如此多的色彩和图像格式，为了表示不同的图像类型和像素排列格式，人们发明了FourCC
	 [image: 全称是Four Character Code，即4个字符编码。]代码。FourCC代码是一个32位无符号整数，使用大端序编码4个ASCII字符序列。我们前面讲过的RGBA、ARGB等都是FourCC。与RGB色彩空间类似，YUV图像也有多种像素类型，如YUYV、YUY2、UYUV等，而且YUV图像也支持Alpha通道，如YUVA和AYUV等。
参见https://learn.microsoft.com/zh-cn/windows/win32/directshow/fourcc-codes和https://learn.microsoft.com/en-us/windows/win32/ medfound/ 10-bit-and-16-bit-yuv-video-formats。如MKTAG('y', 'u', 'v', '2')。
	苹果公司最早在Macintosh中使用了这种4字节表示法，后来在业界得到了广泛使用，便有了正式的名称——FourCC。微软在DirectX中也使用了FourCC
	 [image: 参见https://learn.microsoft.com/zh-cn/windows/win32/directshow/fourcc-codes和https://learn.microsoft.com/en-us/windows/win32/ medfound/ 10-bit-and-16-bit-yuv-video-formats。]。FFmpeg使用MKTAG宏定义了一些类似FourCC的代码
	 [image: 如MKTAG('y', 'u', 'v', '2')。]，不过没有完整的FourCC列表，FFmpeg内部也没有各种图像格式与FourCC的一一对应关系。但是，在音视频领域中，FourCC经常出现，理解它们有助于我们理解各种像素格式，以及不同系统中图像格式的对应关系。

	有一些FourCC代码比较直观，如RGBA，字母表示与内存中的排列顺序也相同；有的就稍差一点，如Y444，它表示YUV444格式；常用的YUVI420格式的图像的FourCC代码为YV12或NV12，就不那么直观了。后面还会详细解释一些FourCC。

1.2.3 灰度模式表示

	在20世纪八九十年代，国内大多数家庭看的还是黑白电视，黑白电视图像就是以灰度模式展现的图像。在数字时代，灰度图像也以数字形式存储。一般来说，使用8位位深（取值范围为0～255）表示像素的灰度，即像素的明暗程度。0为最黑暗的模式，255为最亮的模式。色彩表示范围如图1-9所示。

	[image:]

	图1-9 灰度图

	8位位深的一个像素点正好占用1字节。一张图像占用的存储空间大小计算方式也比较简单，即：占用空间 = 宽度(W) × 高度(H) × 1B。举个例子，一帧分辨率为352×288的灰度图像，占用的存储空间为352×288×1B，也就是101 376字节。

1.2.4 YUV色彩表示

	YUV诞生于黑白电视向彩色电视过渡的时期。黑白视频是只有Y（Luma或Luminance，即亮度）分量的视频，也就是灰阶值。在彩色电视中，除了Y以外，还使用U和V来表示图像的色度（Chrominance或Chroma，C）。U和V也分别称为Cb、Cr，分别代表蓝色通道和红色通道与亮度的差值。所以说，U和V其实是色差信号（这也是为什么模拟电视的信号连接线也叫色差线），它们告诉电视要偏移某像素的颜色，而不改变其亮度，或者说UV信号告诉显示器使得某个颜色亮度依某个基准偏移。UV的值越高，代表该像素会有更饱和的颜色。图1-10所示是YUV中UV分量数值分布的平面图，其中Y分量值为0.5。

	上面所说的C其实等于Cb+Cr，也就是U+V，YUV也就是YCbCr。有些人会说，Y′UV、YUV、YCbCr、YPbPr等专有名词实际上有些差异，但我们并不想把事情弄得如此复杂，所以本书中我们把这些统称为YUV。Y′UV、YUV、YCbCr、YPbPr在实际使用时也常有混淆或重叠的情况。

	从历史的演变来说，YUV和Y′UV通常用来编码电视的模拟信号，Y′的上标符号一般表征经过了伽玛校正；而 YCbCr 则用来描述数字影像信号，适合数字化的视频与图片压缩及传输，如MPEG、JPEG。现今数字化的YUV使用得更为广泛。

	术语YUV本身在技术和科学文献中没有精确的定义。为了避免歧义，最好的方法是参考国际标准文件中各种YUV色彩空间变体的描述。我们说的YUV很多时候是指YCbCr。

	原图与YUV的Y通道、U通道和V通道的图像示例如图1-11所示。

	[image:]
图片来自维基百科。
	▲图1-10 YUV中UV分量数值分布平面图
	 [image: 图片来自维基百科。]

	[image:]
图片来自维基百科。
	▲图1-11 YUV通道原图与各分量图像示例
	 [image: 图片来自维基百科。]

	YUV图像可以由RGB图像转换而来，对应的计算公式如下：

	[image:]
伽玛（Gamma）校正是一种针对图像或视频帧的预失真校正。CRT显示器所产生的信号强度不是输入电压的线性函数，相反，它与信号幅度的功率成正比，也简称为伽玛。另外，人眼对光的强度的感知程度也不是光的强度的线性函数，人眼在黑暗环境下的辨识能力要强于明亮环境，因此也需要对颜色进行校正。注意，数字视频中的YUV值通常不是全值域的，即一般每个分量的取值范围为16～235，而不是0～255。如在FFmpeg中，YUV420P像素格式就不是全值域的，而YUVJ420P则是。在后面还有更多关于图像值域的解释。
	其中，RGB图像是经伽玛预校正后
	 [image: 伽玛（Gamma）校正是一种针对图像或视频帧的预失真校正。CRT显示器所产生的信号强度不是输入电压的线性函数，相反，它与信号幅度的功率成正比，也简称为伽玛。另外，人眼对光的强度的感知程度也不是光的强度的线性函数，人眼在黑暗环境下的辨识能力要强于明亮环境，因此也需要对颜色进行校正。]的。从公式中可以看出，黑色图像的RGB值为(0, 0, 0)，YUV值为(0, 128, 128)。有时候在使用YUV色彩空间时会看到亮绿色的纯色图像，那可能是由某些错误导致所有像素的YUV值为(0, 0, 0)引起的
	 [image: 注意，数字视频中的YUV值通常不是全值域的，即一般每个分量的取值范围为16～235，而不是0～255。如在FFmpeg中，YUV420P像素格式就不是全值域的，而YUVJ420P则是。在后面还有更多关于图像值域的解释。]。

	相对于Y来说，人眼对UV不大敏感，因此，可以在图像存储时降低UV分量的分辨率（采样率），以节省存储空间，而这种降采样后的图像看起来与原图像没有多大差别。YUV的像素存储格式一般采用“A:B:C”表示法，根据采样和降采样的程度不同，以及像素排列格式的不同，有很多不同的表示。为了便于理解，下面以352×288和2×2的图像大小为例，分别详细介绍各采样格式的区别。其中，2×2图像的4个像素编号如图1-12所示。

	[image:]

	图1-12 4像素图像示意图

	1. YUV444格式

	YUV444表示4:4:4的YUV取样，水平每4像素中YUV各取4个，即每像素中YUV各取1个。所以每1×1像素Y占1字节，U占1字节，V占1字节，YUV444格式下平均每像素占(1+1+1)× 8bit/1pix = 24bpp（bpp为Bit Per Pixel，即每像素位数），即3字节。那么352×288分辨率的一帧图像占用的存储空间为352×288×24/8 = 304 128 (字节)。这种格式实际上是一种全采样格式，它与RGB格式的图像占用相同的存储空间。

	YUV444格式的图像可以有两种存储格式：按像素存储和按平面存储。以2×2的图像为例，像素存储格式为Y1U1V1 Y2U2V2 Y3U3V3 Y4U4V4，平面存储格式为Y1Y2Y3Y4 U1U2U3U4 V1V2V3V4。

	2. YUV422格式

	YUV422表示4:2:2的YUV取样，水平每2像素（即2×1的2像素）中Y取样2个，U取样1个，V取样1个，所以每2×1像素Y占2字节，U占1字节，V占1字节，YUV422格式下平均每像素占(2+1+1)×8bit/2pix = 16bpp。那么352×288分辨率的一帧图像占用的存储空间为352×288× 16/8 = 202 752 (字节)。

	该格式对应的FourCC代码有YUYV、YVYU、UYVY、VYUY等，表示U、V的不同取样点和YUV分量的不同排列顺序。其中YUYV与YUY2的实际存储格式相同，对于2×2的图像，像素存储格式为Y1U1Y2V2Y3U3Y4V4。可以看到，与YUV444的图像格式相比，由于省略了V1、U2、V3、U4，从而节省了4字节的存储空间。在实际显示时，缺少的U和V使用相邻像素的U和V补充回来即可，反正人眼也看不出多大差别。

	3. YUV411格式

	YUV411表示4:1:1的YUV取样，水平每4像素（即4×1的4像素）中Y取样4个，U取样1个，V取样1个，所以每4×1像素Y占4字节，U占1字节，V占1字节，YUV411格式下平均每像素占(4+1+1)×8bit/4pix = 12bpp。那么 352×288 分辨率的一帧图像占用的存储空间为352×288× 12/8 = 152 064 (字节)。对应的FourCC代码为Y411，像素存储格式在此略过。

	4. YUV420格式

	YUV420表示4:2:0的YUV取样，水平每2像素与垂直每2像素（即2×2的2像素）中Y取样4个，U取样1个，V取样1个，所以每2×2像素Y占4字节，U占1字节，V占1字节，YUV420格式下平均每像素占(4+1+1) × 8bit/4pix = 12bpp。那么 352×288 分辨率的一帧图像占用的存储空间为352×288×12/8 = 152 064 (字节)，相比YUV444格式正好节约一半的空间。

	以上是标准的解释，但似乎还是无法解释4:2:0中“0”的含义。确实，这个表示法就是比较令人费解。其实可以换一种方法理解：对于水平每4像素，Y取4个，U取2个，V取0个，这便是4:2:0的含义。但是，这个解释并不完整。在下一行取样时，应该是Y取4个，U取0个，V取2个，即4:0:2。所以说，这里的4:2:0其实是代表了4:2:0和4:0:2两种情况，它们在奇偶行交错出现。

	这种图像格式又称为YUVI420，其实就是把邻近的4像素（2×2，即当前像素、右、下、右下）都用同一个U和V，而原先的Y不变。正是基于这个原因，一般的编码器都要求原始图像的宽和高是偶数。除此之外，编码器一般会将图像划分成 2×2、4×4、8×8、16×16 等块进行各种预测和比较。常见的H.264、H.265、VP8、AV1等都是以它为基础进行编解码的。

	这种图像格式使用得非常广泛。为便于理解，我们以一幅4×4的图像进行拆解，如图1-13所示。它表示YUV444格式的图像，其中每个像素分量的下标以(i,j)表示，分别表示第i行第j列。

	[image:]

	图1-13 YUV444像素格式

	把它转换成以平面形式存储的格式，即Y、U、V平面分别连续存储，如图1-14所示。

	[image:]

	图1-14 YUV平面存储格式

	把3个平面分开来看会更直观，如图1-15所示。

	[image:]

	图1-15 YUV 3个平面的示意图

	对2×2区域的4个U和V像素进行下采样，只保留一个U和V，如图1-16所示。

	[image:]

	图1-16 U、V下采样示意图

	把有效采样的YUV数据连续排列，便得到最终数据，如图1-17所示。

	[image:]

	图1-17 YUVI420像素格式

	在上述下采样的过程中，我们使用了2×2图像区域中最左上角的U和V值，实际上，可以使用4个值中的任意一个，甚至也可以使用它们的平均值。但由于这4个值其实非常接近，并且人眼对它们也不敏感，因而在实际使用时一般都是用最简单的方法来随便选取一个。

	上述格式对应的FourCC代码为I420或IYUV。此外，还有一种YV12格式，与I420的区别是U和V平面的顺序相反，如图1-18所示。在安卓系统中，普遍使用NV12的像素格式，它与I420格式相比，Y平面没有区别，但U和V平面像素是交错存储的，是一种“半平面半交错”的存储方式，如图1-19所示。

	[image:]

	▲图1-18 YV12像素格式

	[image:]

	▲图1-19 NV12像素格式

1.2.5 RGB色彩表示

	三原色光模式又称RGB颜色模型或红绿蓝颜色模型，是一种加色模型，将红（Red）、绿（Green）、蓝（Blue）三原色的色光以不同的比例相加，便合成各种色彩的光。如图1-20所示是一个光的合成示意图。

	[image:]

	图1-20 三原色合成示意图

	RGB颜色模型的主要用途是在电子系统中检测、表示和显示图像，其原理是利用大脑强制视觉生理模糊化（失焦），将红、绿、蓝三原色子像素合成一个色彩像素，产生感知色彩（其实此真彩色并非加色法所产生的合成色彩，因为该三原色光从来没有重叠在一起，只是人类为了“想”看到色彩，大脑强制眼睛失焦而形成的）。RGB颜色模型在传统摄影中也有应用，在电子时代之前，基于人类对颜色的感知，RGB颜色模型已经有了坚实的理论支撑。

	RGB是一种依赖于设备的颜色空间，不同设备对特定RGB值的检测和展现不一样。颜色物质（荧光剂或者染料）和它们对红、绿和蓝的单独展现情况随制造商的不同而不同，甚至同样设备在不同时间的展现情况也不同。在彩色CRT显示器中，各种颜色荧光粉的排列如图1-21所示。其中R、G、B三个荧光点代表一个像素，由于这些荧光点离得非常近，人眼看起来就像是光被混合在一起了一样。不同显示器的荧光点的排列也不一样。图1-22展示了一些不同显示设备的荧光点（或发光点）排列方式。

	[image:]

	▲图1-21 CRT显示器颜色排列

	[image:]
图片来源：https://github.com/leandromoreira/digital_video_introduction。
	▲图1-22 不同显示器的荧光点排列方式
	 [image: 图片来源：https://github.com/leandromoreira/digital_video_introduction。]

	三原色的原理不是由物理原因，而是由生理原因造成的。人的眼睛内有3种辨别颜色（黄绿、绿和蓝紫）的锥形感光细胞，如果辨别黄绿色的细胞受到的刺激略高于辨别绿色的细胞，人的感觉是黄色；若受到的刺激大大高于辨别绿色的细胞，人的感觉是红色。虽然这3种细胞并不是分别对红色、绿色和蓝色最敏感，但这3种颜色的光可以分别对3种锥形细胞产生刺激。

	不同生物眼中辨别颜色的细胞并不相同，例如鸟类眼中有4种分别对不同波长光线敏感的细胞，而一般哺乳动物只有两种，所以对它们来说只有两种原色光。

	既然“三原色的原理不是由物理原因，而是由生理原因造成的”，那么前面所说的“用三种原色的光以不同的比例加到一起，形成各种颜色的光”显然就不大合适了。使用三原色并不足以重现所有的色彩，准确的说法应该是“将三原色光以不同的比例复合后，对人的眼睛可以形成与各种频率的可见光等效的色觉”。只有那些在三原色的色度所定义的颜色三角内的颜色，才可以利用三原色的光以非负量相加混合得到。例如，红光与绿光按某种比例复合，对3种锥形细胞刺激后产生的色觉可与眼睛对单纯的黄光的色觉等效。但绝不能认为红光与绿光按某种比例复合后生成黄光，或黄光是由红光和绿光复合而成的。

	使用8位位深对RGB像素进行编码，每像素需要24位，这是当前主流的标准表示方法，用于真彩色与JPEG或者TIFF等图像文件格式里的通用颜色交换。它可以产生1600多万种颜色组合，对人类的眼睛来说，其中有许多颜色是无法确切分辨的。上述定义使用名为“全值域RGB”的约定。颜色值也经常被映射到0.0到1.0之间，这样可以方便地映射到其他数字编码上。
因为0表示没有色彩值，所以这里的色彩值是255个级别。
	使用每原色8位的全值域RGB可以有256个级别的“白-灰-黑”深浅变化，255
	 [image: 因为0表示没有色彩值，所以这里的色彩值是255个级别。]个级别的红色、绿色和蓝色（及它们的等量混合）的深浅变化，但是其他色相的深浅变化要少一些。由于伽玛校正（非线性）的影响，256个级别不表示同等间隔的强度。

	在典型使用上，数字视频的RGB不是全值域的。视频RGB使用有比例和偏移量的约定，即（16，16，16）是黑色，（235，235，235）是白色。例如，这种比例和偏移量用在了CCIR 601的数字RGB定义中。

	RGB常见的展现方式分16位模式和32位模式。16位模式通常由RGB565、BGR565、ARGB1555、ABGR1555等不同的模式表示，其中的数字表示色彩对应的位数。一般每种原色各为5位，多出的1位分给绿色，因此绿色变为6位，这主要是因为人眼对绿色更敏感。但某些情况下每种原色各占5位，余下的1位不使用。

	32位模式（也称为ARGB8888）实际就是24位模式，余下的8位不用于表示颜色，这种模式是为了提高数据处理的速度（每像素正好对应一个32位整数）。同样在一些特殊情况下，如DirectX、OpenGL等环境，余下的8位用来表示像素的透明度（Alpha）。如图1-23所示是RGB色彩分布直方图。

	[image:]
图片来自维基百科。
	图1-23 RGB色彩分布直方图
	 [image: 图片来自维基百科。]

	一般来说，我们理解的RGB都是线性的。但在CRT显示器中，色彩的亮度跟输入电压的关系不是线性的，而是呈指数关系，这个指数就称为伽玛（γ）。伽玛是一个经验值，而不是用数学公式计算出来的，而且，不同的设备（包括但不限于CRT显示器）的伽玛值也不一样，一般伽玛取值为2.5。考虑到人眼对光线的反应也不是线性的，需要对伽玛曲线小区间的线性关系做一定的修正，业界一般使用2.2作为修正后的伽玛值。从图1-24a可以看出，伽玛曲线在线性曲线的下方，这样显示器显示出来的图像会比实际图像暗一些。为了看到正常的图像，就需要对显示设备进行校正，但是校正显示设备太复杂，更经济的做法是修改图像本身。如图 1-24b 所示，如果将原来的线性曲线校正成向上突起的曲线，那么原来的伽玛曲线就会变成线性的。这个校正的伽玛值为2.2的倒数，约等于0.45。

	[image:]

	图1-24 伽玛校正示意图

	照相机的感光器件是线性的，得到的是线性的RGB图像。而经过伽玛校正后的图像所使用的RGB空间是非线性的，称为sRGB（Standard RGB），它是由微软公司和惠普公司在1996年一起开发的一种色彩空间标准，这种标准得到业界许多厂商的支持。sRGB对应的就是伽玛0.45所在的色彩空间，校正公式为：校正后的值 = 校正前的值0.45。一般来说，实际的图像都是使用非线性的sRGB空间（包括使用调色板选择颜色时），而在做图像计算和处理（比如将亮度加倍）时，则使用线性RGB空间更方便。

	现在，LCD和OLED显示器成为显示设备的主流产品，理论上它们不存在CRT显示器的非线性问题，但为了能正常显示已经成为标准的sRGB图像，这些显示器也参照CRT显示器做了伽玛校正。

1.2.6 HSL与HSV色彩表示

	虽然视频的采集和最终终端播放采用的都是RGB色彩空间，但是对人眼而言，RGB其实并不直观，比如我们很难马上反应得出粉红色的RGB色值。为了能够更直观地表示颜色，HSL和HSV色彩模型被引入，它们是通过将RGB色彩空间中的点映射到圆柱坐标系中实现的，这两种表示方法都试图做到比基于笛卡儿直角坐标系的几何结构RGB更加直观。比如，想从黄色过渡到红色，只需要调整色相即可，而饱和度和亮度可以保持不变。因此，HSL和HSV一般更适合人的色彩感知，而RGB更适合应用于显示领域。

	HSL即色相（Hue）、饱和度（Saturation）、亮度（Lightness），HSV即色相（Hue）、饱和度（Saturation）、明度（Value），又称HSB，其中B即英语Brightness的首字母。色相（H）是色彩的基本属性，就是平常所说的颜色名称，如红色、黄色等。饱和度（S）是指色彩的纯度，越高则色彩越纯，越低则逐渐变灰，取值范围为0～100%。明度（V）、亮度（L）的取值范围为0～100%。

	HSL和HSV二者都把颜色描述为圆柱坐标系内的点，这个圆柱的中心轴取值范围为自底部的黑色到顶部的白色，而在它们中间的是灰色，绕这个轴的角度对应“色相”，到这个轴的距离对应“饱和度”，而沿着这个轴的高度对应“亮度”“色调”或“明度”。

	这两种表示的目的类似，但在方法上有所区别。二者在数学上都是圆柱，但HSV在概念上可以被认为是颜色的倒圆锥体（黑色在下顶点，白色在上底面圆心）；而HSL在概念上表示一个双圆锥体和圆球体（白色在上顶点，黑色在下顶点，最大横切面的圆心是灰色）。注意，尽管在HSL和HSV中“色相”指相同的性质，但它们的“饱和度”的定义是明显不同的。

	因为HSL和HSV是依赖设备的RGB的简单变换，（h, s, l）或（h, s, v）三元组定义的颜色依赖于所使用的特定红色、绿色和蓝色（加法原色），每个独特的RGB设备都伴随一个独特的HSL和HSV空间，但是（h, s, l）或（h, s, v）三元组在被约束于特定RGB空间（比如sRGB）时就更明确了。

	HSV模型在1978年由埃尔维·雷·史密斯创建，它是三原色光模式的一种非线性变换，如果说RGB加色法是三维直角坐标系，那么HSV模型就是球面坐标系。HSV模型通常用于计算机图形应用中。HSV模型在日常图像处理场景中应用得更普遍一些，其中色相表示为圆环，可以使用一个独立的三角形来表示饱和度和明度。在这种方式下，选择颜色可以首先在圆环中选择色相，再从三角形中选择想要的饱和度和明度。

	HSV模型的另一种可视方法是圆锥体。在这种表示中，色相被表示为绕圆锥中心轴的角度，饱和度被表示为从圆锥的横截面的圆心到这个点的距离，明度被表示为从圆锥的横截面的圆心到顶点的距离。某些表示使用了六棱锥体，这种方法更适合在一个单一物体中展示这个HSV色彩空间。但是由于它的三维本质，它不适合在二维计算机界面中选择颜色。

	HSV色彩空间还可以表示为类似于上述圆锥体的圆柱体，色相沿着圆柱体的外圆周变化，饱和度沿着距离横截面的圆心的远近变化，明度沿着横截面到底面和顶面的距离变化。这种表示可能被认为是HSV色彩空间更精确的数学模型，但是在实际中可区分出的饱和度和色相的级别数目随着明度接近黑色而减少。此外计算机使用有限精度范围来存储RGB值，这约束了精度，再加上人类颜色感知的限制，使得圆锥体表示在多数情况下更实用，如图1-25所示。

	[image:]
图片来自维基百科。
	图1-25 HSV圆锥图
	 [image: 图片来自维基百科。]

	HSL类似于HSV。对于一些人来说，HSL更好地反映了“饱和度”和“亮度”作为两个独立参数的直觉观念，但是对于另一些人来说，它的饱和度定义是错误的，因为非常柔和的几乎白色的颜色在HSL中可以被定义为是完全饱和的。对于HSV和HSL哪个更适合于作为人类用户界面是有争议的。

	W3C的CSS3规定声称“HSL的优点是它对称于亮与暗（HSV就不是这样）”，这意味着，在HSL中，饱和度分量总是从完全饱和色变化到等价的灰色（在HSV中，在极大值V的时候，饱和度从全饱和色变化到白色，这可以被认为是反直觉的）；在HSL中，亮度跨越从黑色经过选择的色相到白色的完整范围（在HSV中，V分量只走一半行程，从黑色到选择的色相）。

	在软件中，通常以一个线性或圆形色相选择器，以及在其中为选定的色相选取饱和度和明度或亮度的一个二维区域（通常为方形或三角形）形式，给用户提供基于色相的颜色模型（HSV或HSL）。在这种表示下，HSV和HSL之间的区别就无关紧要了。但是很多程序还允许用户通过线性滑块或数值录入框来选择颜色的明度或亮度，而对于这些控件通常要么使用HSL，要么使用HSV（而非二者），但传统上HSV更常用。

1.3 视频逐行和隔行扫描、NTSC与PAL制式

	本节将要介绍的这些术语都来自电视和CRT显示器，它们的产生都有相关的历史原因。有些术语和技术随着时代的发展已经不再使用了，而有一些则深深影响了现代音视频技术，并以某种形式继续发挥着作用。

1.3.1 逐行与隔行扫描

	隔行扫描（Interlaced）是一种将图像显示在扫描式显示设备上的方法，如阴极射线管（CRT）。相比逐行扫描，隔行扫描设备交替扫描偶数行和奇数行，占用带宽比较小。在PAL制式和NTSC制式中，都是先扫描奇数行，即奇数场，再扫描偶数行。隔行扫描效果如图1-26所示。

	[image:]

	图1-26 隔行扫描效果图

	非隔行扫描（即逐行扫描）通常从上到下扫描每帧图像。这个过程消耗的时间比较长，阴极射线的荧光衰减将造成人眼视觉的闪烁感觉。当频宽受限时，使用逐行扫描可能无法达到人眼感觉没有闪烁的效应，因此通常采用一种折衷的办法，即每次只传输和显示一半的扫描线，即一场只包含偶数行（即偶场）或者奇数行（即奇场）扫描线。由于视觉暂留效应，人眼不会注意到每场只有一半的扫描行，而会认为看到的是一帧完整的图像。

	假设使用CRT显示器，那么如果不使用隔行扫描，就需要采用下面的方式之一：

	・将传输频宽加倍，按帧而不是按场传输图像。这能够提高图像品质，提供的有效分辨率和闪烁速率是相同的。

	・使用相同的传输频宽，按帧传输分辨率为原来一半的图像。这时候图像细节少了，闪烁速率仍旧相同。

	・使用相同的传输频宽，按帧传输图像，但是帧率为隔行扫描场率的一半。这时闪烁速率降低一半，眼睛非常容易产生疲劳。

	・与上一个相同，但是使用一个数字缓存将同一帧显示两次。这时闪烁速率相同，但是显示器上的运动图像看起来不那么平滑，影响视觉质量。

	通常有一种误解是，偶场和奇场是由同一帧图像分拆得来的。实际上，摄像机采集的方式和隔行扫描显示的方式是完全相同的。当摄像机采集图像时，偶场和奇场不是同时采集的。例如在一个每秒50场的摄像机中，第122行和第124行的采集在采集第121行和第123行的大约1/50秒之后进行。所以如果把一个偶场和奇场简单拼合在一起，水平方向的运动会造成两场边界不能完美拼合。

	在现代显示器和电视中，由于非隔行扫描显示刷新率的提高，使用者已经不再会感觉到闪烁现象，因此，隔行扫描技术已经逐渐被取代。

1.3.2 NTSC制式

	NTSC制式又简称为N制，是1952年12月由美国国家电视系统委员会（National Television System Committee，NTSC）制定的彩色电视广播标准，两大主要分支是NTSC-J（日本标准）与NTSC-US（又名NTSC-U/C，美国、加拿大标准）。它们属于同制式，每秒60场，扫描线为525行，隔行扫描，水平分辨率相当于330，画面比例为4:3。

	NTSC制式的色度信号调制包括平衡调制和正交调制两种，解决了彩色、黑白电视广播兼容问题，但存在相位容易有损、色彩不太稳定的缺点，故有人戏称NTSC为“Never The Same Color”或“Never Twice the Same Color”（不会重现一样的色彩）。美国、加拿大、墨西哥等大部分美洲国家，以及日本、韩国、菲律宾等国均采用这种制式。

	美国国家电视系统委员会于1940年成立，隶属于美国联邦通信委员会（FCC），成立的目的是解决各公司不同的电视制式的分歧，从而统一全国电视发送制式。1941年3月，委员会根据无线电制造协会于1936年的建议，发布了关于黑白电视机技术的标准。该标准能提升更高的图像画质。NTSC制式使用525条扫描线，较RCA公司使用的441线更高（当时此标准已经在NBC网络使用）。而飞歌公司、DuMont公司有意将扫描线提升至605～800线之间。NTSC标准同时建议帧幅为每秒30帧，每帧由两场交错扫描线组成，每场由262.5条线组成，每秒约60场。委员会在最后建议使用4:3画面比例，并使用FM调制伴音（在当时是新技术）。

	1950年1月，委员会的职责改为为彩色电视制定标准化的标准。在1953年12月，崭新的电视制式名称直接使用该组织名称的简写，也就是今天所称的NTSC制式（后来又定义为RS-170A）。该彩色电视标准保留了与黑白电视机的兼容性。彩色信号加载在原黑白信号的副载波中，大约是3.58MHz（4.5×455/572MHz）。为了消除由彩色信号及伴音信号所产生的图像干扰，每秒帧幅由30帧稍微下调至29.97帧，同时线频由15 750Hz稍微下降至15 734.264Hz。

	在彩色电视标准还没有统一时，当时美国本土的电视台、电器公司都有各自的标准。其中一种为哥伦比亚广播公司使用的制式。这个标准不能与黑白电视兼容，它使用彩色旋转轮，因为技术所限，扫描线由官方标准525线下降至405线，但场频则由每秒60帧大幅提升至每秒144帧（恰巧为24帧等效倍数值）。1951年，美国国防动员办公室（ODM）限制广播，间接使得各家公司相继放弃自家制式，而归功于法律诉讼成功，RCA公司可以继续使用自家制式广播直至1951年6月。哥伦比亚广播公司自家制式亦在1953年3月废止，同年12月17日由联邦通信管理委员会的NTSC制式取代。

	NTSC彩色电视标准后来被其他国家采用，包括美洲国家及日本。在数字电视广播大行其道的今天，传统NTSC广播制式逐渐淡出历史。自2009年开始，美国电视已经完全实施数字化，再也没有电视节目使用NTSC制式播出了。

1.3.3 PAL制式

	PAL制式是电视广播中色彩调频的一种方法，全名为逐行倒相（Phase Alternating Line）。除了北美、东亚部分地区使用NTSC制式，中东、法国及东欧采用SECAM制式以外，世界上大部分地区都是采用PAL制式。PAL制式于1963年由德国人沃尔特·布鲁赫提出，当时他在Telefunken公司工作。

	20世纪50年代，西欧正计划推广彩色电视广播，不过当时NTSC制式本身已有不少缺陷，比如当接收条件差时容易发生色相转移现象。为了克服NTSC制式本身的缺点，欧洲开始自行研发适合欧洲本土的彩色电视制式，也就是后来的PAL制式和SECAM制式。两者图像频率同为50Hz，不同于NTSC的60Hz，更适合欧洲本身的50Hz交流电源频率。

	英国广播公司是最早使用PAL制式的电视台，于1964年在BBC2试播，1967年正式开始全彩广播；德国在1967年开始使用PAL制式广播；国际电信联盟于1998年在其出版物上将PAL制式正式定义为“Recommendation ITU-R BT.470-6, Conventional Television Systems”。

	PAL发明的原意是要在兼容原有黑白电视广播格式的情况下加入彩色信号。PAL的原理与NTSC接近。“逐行倒相”的意思是每行扫描线的彩色信号会跟上一行倒相，作用是自动改正在传播中可能出现的错相。早期的PAL电视机没有特别的组件来改正错相，有时严重的错相仍然会被肉眼明显看到。近年的PAL电视机会把上一行的色彩信号跟下一行的色彩信号平均起来再显示，这样PAL的垂直色彩分辨率会低于NTSC；但人眼对色彩的敏感程度比对光的明暗要弱，因此影响不是很明显。

	NTSC电视机需要色彩控制来手动调节颜色，这也是NTSC的最大缺陷之一。

	PAL本身是指色彩系统，经常被配以625线、每秒25帧画面、隔行扫描的电视广播格式，如B、G、H、I、N。PAL也有配以其他分辨率的格式，如巴西使用的M广播格式为525线、29.97帧（与NTSC格式一样），用NTSC彩色副载波，但巴西是使用PAL彩色调频的。现在大部分的PAL电视机能收看以上所有不同系统格式。很多PAL电视机甚至能同时收看基带的NTSC-M，例如电视游戏机、录影机等的NTSC信号，但是它们不一定能接收NTSC广播。

	当影像信号是以基带发送时（例如电视游戏机、录影机等），便没有以上所说的各种以字母区分广播格式的区别了。在这种情况下，PAL的意思是指625条扫描线、每秒25帧画面、隔行扫描、PAL色彩调频。对于数字影像如DVD或数字广播，制式也没有区别，此时PAL是指625条扫描线、每秒25帧画面、隔行扫描，即与SECAM一模一样。

	英国、中国香港、中国澳门使用的是PAL-I，中国大陆使用的是PAL-D，新加坡使用的是PAL B/G或D/K。

1.4 帧率、PTS和DTS

当然也有例外，比如巴西就使用60Hz交流电，电视为PAL-M制式，但场频与NTSC制式的电视一样，也是60Hz，每秒29.97帧。
	由于技术条件的限制，早期电视的刷新频率是由交流电的频率决定的。一般来说，使用PAL制式的国家使用50Hz的交流电
	 [image: 当然也有例外，比如巴西就使用60Hz交流电，电视为PAL-M制式，但场频与NTSC制式的电视一样，也是60Hz，每秒29.97帧。]，而使用NTSC制式的国家大都使用60Hz的交流电。由于隔行扫描，实际的帧率减半，便有了25帧/秒和30帧/秒两种帧率。

	电影一般是以每秒24帧拍摄（这是保证人眼能看到连贯视频动作的最低帧数），在PAL制式的电视上播放电影时会以每秒25帧播放，播放的速度因而比电影院内或NTSC电视广播（NTSC由于差距太大会做相应调整）加快了4%。这种差别不太明显，但电影内的音乐会因而变得高了一个半音（有人说是0.7个半音）。如果电视台在广播时没有加以调校补偿，观众仔细聆听便会发现音高的区别。

	NTSC制式的帧率本应该是30帧/秒，但为了解决由彩色信号及伴音信号所产生的图像干扰问题，调至29.97帧/秒。实际上29.97是个近似值，它本是一个无限循环小数，转换成分数形式便是30000/1001，也就是说，在30帧/秒的帧率下，本来1000秒可以播放3万帧，调慢后需要1001秒才可以播放3万帧。

	29.97与30实际上没多大区别，以30帧/秒录制的视频可以直接在NTSC制式的电视上播出，但需要注意调整音视频同步。如果不加调整，对于一部2小时的电影，播放到最后，音视频大约会相差7秒（(30−29.97)(帧/秒) ×3600(秒) ×2/30(帧/秒)）。

	现在的数字视频和数字显示器已没有这些问题，但为了兼容这些不同帧率的视频源还需要做各种适配和转换。上面描述了帧率24与25、30与29.97间的转换方法。如果帧率差距比较大，就需要均匀地丢帧或插帧，并适当融合插帧处前后两帧的内容以便过渡得更平滑。

	上面讲的都是固定帧率的视频。在互联网上的实时音视频应用中，当网络条件不好时（拥塞、丢包），通信双方会协商降低码率，相应地可能会降低分辨率和帧率，降低分辨率会导致模糊，降低帧率会导致画面跳跃（卡顿），但总比花屏或长时间卡住要好。这种非恒定的码率和帧率就称为可变码率（Variable Bit Rate，VBR）和可变帧率（Variable Frame Rate，VFR）。

	在视频编码时，每帧被编码的图像都有一个时间戳，以便在播放时能正确地显示时间。时间戳可以是真正的钟表时间（一般使用相对时间），在帧率恒定的情况下也可以直接使用1、2、3、4……这样的连续时间戳，这个时间戳就称为PTS（Presentation Time Stamp），即播放时间。

	有些视频编码（如H.264和H.265）中有B帧。解码器在收到B帧后不能直接解码，而是要等到收到它后面的与之相关的P、B帧后才能解码，也就是说，如果解码器收到帧的顺序是IBBP，实际的解码顺序是IPBB，但播放顺序仍是IBBP，这就是播放时间和解码时间不一致的现象。每帧图像也有一个独立的解码时间戳，即DTS（Decode Time Stamp）。在没有B帧的情况下，PTS和DTS可以是相同的。

1.5 图像分辨率与宽高比

	当人们谈论流畅、标清、高清、超高清等清晰度指标的时候，其实主要想表达的是分辨率。但除了分辨率之外还需要结合视频的类型、场景等设置合适的码率，随着视频平台竞争越来越激烈，网络与存储的开销越来越高，有了各种定制的编码及图像处理算法，以便在相同分辨率的情况下做出更多的优化，比如极速高清、极致高清、窄带高清等。但是人们常规对流畅、标清、高清、超高清等清晰度的理解，普遍还是以分辨率为主导的理解。一般而言，分辨率越高代表影像质量越好，能表现出越多的细节；但同时因为记录的信息越多，文件也会越大。个人计算机里影像的分辨率主要由像素密度和像素总数组成，像素密度为单位长度内的像素数量除以单位长度，单位为ppi（Pixels Per Inch）。像素密度越高，说明像素越密集，如5ppi表示每英寸有5像素，500ppi表示每英寸有500像素，像素密度的数值高，图片和视频的清晰度就高。像素总数为图像、影像中单独一帧图所含像素的数量，单位为像素，计算方式为长边的像素数乘以短边的像素数。在提到显示分辨率的时候，人们常常会提到宽高比，即DAR（Display Aspect Ratio）。如图1-27所示为不同分辨率的图像。

	[image:]

	图1-27 不同分辨率的图像

	在日常应用中各家公司的分辨率档位定义不尽相同，但是在国际标准中还是有一个参考定义的，并且分辨率都有定义名称，读者可自行上网查看定义的规格。

1.6 图像的色彩空间

	当人们日常看电视和计算机屏幕中或打印机打印出来的视频图像的时候，同一张图像会有颜色差异，甚至不同的计算机屏幕、不同的电视看到的视频图像有时也会存在颜色差异。之所以会出现这样的差异，主要是受到了色彩空间参数的影响。这里说的色彩空间也叫色域，就是指某种表色模式所能表达的颜色的范围区域，也指具体设备，如显示器、打印机等印刷和复制所能表现的颜色范围。而不同的标准支持的范围不同，如图1-28～图1-30所示，它们分别为基于CIE模型表示BT601、BT709和BT2020的色彩范围。

	[image:]

	▲图1-28 BT601色彩范围

	[image:]

	▲图1-29 BT709色彩范围

	[image:]

	▲图1-30 BT2020色彩范围

	色彩空间除了BT601、BT709和BT2020以外，还有很多标准格式，具体的标准就不在本书一一列举了。在用到的时候，需要使用参考标准（如H.273）进行对比。当有人反馈偏色问题时，可以优先考虑是否是由色彩空间的问题导致的，一般需要确定的参数包括视频格式、色彩原色、转换特性和矩阵系数。

1.7 音频采样数据格式

	音频信号的关键指标声音是振动产生的声波，通过介质（气体、固体、液体）传播并能被人或动物的听觉器官所感知的波动现象。声音的频率一般以赫兹（Hz）表示，指每秒周期性振动的次数。而分贝是用来表示声音强度的单位，记为dB。当前我们在计算机、手机、MP3中所接触的音频更精准地说应该是数字音频，数字音频出现的目的在于能够有效地录音、制作和分发。现在音乐之所以能广泛地在网络及网络商店流传都仰赖数字音频及其编码方式，音频以文件的方式在网络上流传而不必依赖实体介质，这样就大幅度节省了生产与传播的成本。

	在模拟信号系统中，声音由空气中传递的声波通过转换器（如麦克风）转存为电流信号的电波。而重现声音则是相反的过程，即通过放大器将电子信号转成物理声波，再借由扩音器播放。经过转存、编码、复制及放大后或许会丧失声音的真实度，但仍然能够保持与其基音、声音特色相似的波形。模拟信号容易受到噪声及变形的影响，相关器材电路所产生的电流更是无可避免。在信号较为纯净的录音过程里仍然存在许多噪声及损耗。而当音频数字化后，损耗及噪声只在数字和模拟间转换时才会产生。

	数字音频通过从模拟信号中采样并转换成二进制（1/0）信号，并以二进制式电子、磁力或光学信号，而非连续性时间、连续电子或机电信号存储。这些信号之后会进一步被编码以便修正存储或传输时产生的错误，然而在数字化过程中，这个为了校正错误的编码步骤并不严谨。在广播或者所录制的数字系统中，以频道编码的处理方式来避免数字信号的流失是必要的一环。在信号出现错误时，离散的二进制信号中允许编码器拨出重建后的模拟信号。频道编码的其中一例就是CD所使用的八比十四调制。

	数字音频通过ADC（模数转换器）将模拟信号转换成数字信号，ADC对音频频率进行采样并转换成特定的位分辨率。例如，CD音频的采样率为44.1kHz（即每秒采样44 100次 ），每个声道都以16位解析。对双声道而言，它具有“左”和“右”两个声道。如果模拟信号的带宽未受限，那就必须在转换前使用降噪滤波器以避免声音产生损失。

	这样处理后的数字音频是可被存储和传输的。数字音频文件能够被存储在一片CD、数字音频播放器、硬盘、U盘或其他任何存储设备里。数字信号可以被处理数字信号的音频滤波器或音效所改变。MP3、AAC、Vorbis、FLAC等技术经常被用于压缩音频文件的大小，并且可以通过流媒体方式传输到各种设备上。

	最后，数字音频还能通过DAC转换回模拟信号。如同ADC技术一样，DAC会在特定的采样频率及采样比特下运作，但是经过了超采样、上下采样等过程，有时难以保证音频的采样频率能够与原始的采样频率相同。

	通过ADC将模拟信号转换成数字信号，或通过脉冲编码调制（Pulse Code Modulation，PCM）对连续变化的模拟信号进行采样、量化和编码，转换成离散的数字信号，这样就实现了音频信号的采集。我们常说的PCM文件就是未经封装的音频原始文件或者叫做音频“裸数据”。

1.7.1 声道

	声道（Sound Channel）是指声音在录制或播放时在不同空间位置采集或回放的相互独立的音频信号，声道数也就是声音录制时的音源数量或回放时相应的扬声器数量。为了加深对声道的理解，我们来看一下声道布局的示意图，如图1-31所示。

	[image:]

	图1-31 声道布局的示意图

	当我们坐在中间时，不同声道的声音让我们感觉它们来自不同的方向。这只是一个简单的示意图，常见的声道布局如表1-1所示。

	从表1-1的信息中可以看出，不同的场景使用不同的声道，效果也会不同；而为了尽量还原声音现场的体验，产生了这么多数量的声道。

	表1-1 声道布局

	[image:]

	[image:]

	[image:]

1.7.2 采样率

	采样率（也称为采样速度或者采样频率）定义了每秒从连续信号中提取并组成离散信号的采样个数，它用赫兹（Hz）表示。采样率的倒数称为采样周期或采样时间，它是采样的时间间隔。注意，不要将采样率与比特率（Bit Rate，也称码率）相混淆，后者是每秒产生的二进制位数。

	根据奈奎斯特采样定理，采样之后的数字信号能保留的原始信号的频宽基本上是采样率的一半。

	在数字音频领域，常用的采样率如下。

	・8000Hz：电话所用的采样率，对于人说话的声音已经足够。

	・11 025Hz：AM调幅广播所用的采样率。

	・22 050和24 000Hz：无线电广播（FM调频广播）所用的采样率。

	・32 000Hz：MiniDV数码视频Camcorder、DAT（LP模式）所用的采样率。

	・44 100Hz：音频CD所用的采样率，也常用于MPEG-1音频（VCD、SVCD、MP3）。

	・47 250Hz：Nippon Columbia（Denon）开发的世界上第一款商用PCM录音机所用的采样率。

	・48 000Hz：MiniDV、数字电视、DVD、DAT、电影和专业音频所用的数字声音采样率。

	・50 000Hz：20世纪70年代后期出现的由3M和Soundstream开发的第一款商用数字录音机所用的采样率。

	・50 400Hz：三菱X-80数字录音机所用的采样率。

	・96 000或192 000Hz：DVD-Audio、一些LPCM DVD音轨、蓝光光盘音轨和HD-DVD（高清晰度DVD）音轨所用的采样率。

	・2.8224MHz：SACD、索尼和飞利浦联合开发的，被称为Direct Stream Digital的1位Sigma-Delta调制过程所用的采样率。

	从上可以看出，从8000到32 000、48 000等都是倍数关系，比较容易理解，而且8000的由来我们在前面也讲过。而11 025、22 050、44 100等也是倍数关系，但它们都不是1000的整数倍，算起来会比较麻烦，且后面的“零头”为什么看起来那么奇怪呢？

	我们先从44 100说起，其实没有人知道它是怎么来的，因为CD的标准就是如此。有人说这个数字正好是最小的4个质数的平方的乘积，即22×32×52×72 = 44 100，这或许是一个巧合，或许真的是曾经有一个天才一拍脑袋想出这么一个频率，但更令人信服的来源是下面这种解释。

	人的听觉频率范围大约是20kHz，根据采样定理，使用40kHz的采样频率就够了，如果再加10%，也就是44kHz，而非44.1kHz。多出的100是从哪里来的呢？这要从数码录音说起。早期的数码录音就是一个PCM编码器加录像机，所以，数据音频信号是在录像机（录像带）中存储的。PAL制式的录像机每帧有625条扫描线，但实际可用的扫描线为588条，由于隔行扫描，扫描线减半，就成了294条。每条扫描线可以存储3个采样点的信息，场频为50Hz，因而采样点数量为294×50×3 = 44 100。同样，NTSC制式的设备有525条扫描线，实际可用的有490条，减半为245，场频为60Hz，因而为245×60×3 = 44 100。这是巧合吗？还是说这个数字竟然真的就是这么神奇？当然，如果按实际场频59.94Hz计算，NTSC制式实际能存储的采样点数量为245×59.94×3 = 44 056。实际上，早期日本的确有一些采用44.056kHz频率的数码录音，但后来都统一到44.1kHz了。至于22 050和11 025，应该都是由44 100下采样来的，这样可以节省存储空间和带宽。

1.7.3 采样位深

	采样位深就是每个采样点用多少位来表示，如位深是16就代表每个采样点需要16位来存储。从物理意义上来说，位深代表的是振动幅度所能表达的精确程度或者粒度。假设数字信号在-1～1的区间，如果位深为16位，那么第1位表示正负号，剩下的15位可表示范围为0～32 767，那么振幅就可以精确到1/32 768的粒度。

	我们一般在网络电话中用的就是16位位深，这样不太会影响听觉体验，并且存储和传输的耗费也不是很大。而在做音乐或者有更高保真度要求的场景中则可以使用32位甚至64位的位深来减少失真。而选择用8位位深时失真则比较严重，在计算机与互联网发展早期，受到音频技术与网络条件限制，很多音频都是8位的采样位深，声音会显得比较模糊，如今也只有一些电话和对讲机等设备还在使用8位位深。

1.7.4 带宽计算

	通过对音频部分的声道、采样率、采样位深的讲解，我们应该可以很方便地计算PCM音频文件使用的空间或者占用的带宽了。例如，一个双声道立体声、采样率是48 000、采样位深是16位、时长为1分钟的音频所占用的存储空间的计算公式如下：

	[image:]

	在媒体传输时占用的带宽如下：

	[image:]

	很显然，原始格式的音频采样需要的存储空间和传输带宽还是挺高的，使用MP3或AAC编码可以将音频压缩（有损）到大约原来的1/10大小，这样可以节省很多存储空间和带宽。但要注意，在一些人工智能应用中需要用到语音识别时，尽量不要重采样或使用有损压缩，那样会影响识别的准确率。

1.8 小结

	在本章，我们带大家了解了多媒体的基础知识。这些基础知识和基本概念在后面的章节中都会用到，对于理解和使用FFmpeg至关重要。

	首先，所有的概念和原理都来源于人们的生产和生活，而数字化则是对现实世界的抽象和映射。在从现实到抽象的过程中，不可避免地会“丢失”一些信息，但同时也给人们带来了标准化和规范化，以及更多的想象空间。通过数字世界的存储，人们可以“看”到历史上世界的样子；通过远程音视频的传输，人们可以实时地看到远处的世界，并可以与世界各个角落的人实时互动交流。打破时间和空间的限制，这就是音视频数字化最大的意义。

	本章还介绍了音视频数字化的相关背景和逻辑、技术以及相关限制等。与音频相关的重要概念有采样率、声道、采样位深等；与视频相关的主要就是分辨率、帧率、色彩空间和DTS及PTS等。将音频和视频结合，通过网络在时间线上“动”起来，就形成了音视频流媒体，而将音视频通过网络实时传输的技术就是实时音视频技术，又称RTC。

	不管是音视频处理还是RTC传输，FFmpeg都是很有用、很重要的工具。有了这些基础知识，从下一章起，我们就可以正式踏上FFmpeg探索之旅了。

第2章

FFmpeg简介

	FFmpeg一词在不同场景下表示的意思不尽相同。大致来说有两方面的意思，一方面指的是多媒体相关的工具集，包含ffmpeg、ffplay、ffprobe等，用于转码、播放、格式分析等；另一方面是指一组音视频编解码、媒体处理的开发套件，为开发者提供丰富的多媒体处理的API调用接口及相应的辅助工具库。

	FFmpeg提供了多种媒体格式的封装和解封装，以及编解码等，包括多种音视频编码、字幕、不同协议的流媒体、丰富的色彩格式转换、音频采样率转换等。FFmpeg的内部框架提供了丰富的API及可扩展的插件系统，既可以灵活地使用多种封装与解封装、编码与解码的插件，也可以灵活地基于其框架进一步扩展。另外，依据FFmpeg编译的选项不同，FFmpeg在LGPL-2.1（及之后）版本或GPL-2.0（及之后）版本下发布，具体使用哪个版本的协议实际上取决于在编译时选择了哪些编译选项。

	FFmpeg中的“FF”指的是“Fast Forward”。曾经有人在FFmpeg的邮件列表询问“FF”是不是代表“Fast Free”或者“Fast Fourier”，FFmpeg项目的创立者Fabrice Bellard回信说：“Just for the record, the original meaning of ‘FF’ in FFmpeg is‘Fast Forward’…”FFmpeg中的“mpeg”则是人们通常理解的Moving Picture Experts Group（动态图像专家组），其实也可以理解为Multimedia Processing EnGine。作为一个全面的多媒体处理套件，FFmpeg从2000年发展至今，其中的FF已经因为FFmpeg的强大，足以支撑这些不同的意义，所以不用以完美的心态纠结其完全准确的含义。

2.1 FFmpeg的发展历史

	“History is the memory of things said and done”（历史是说过和做过的事情的记忆），要想深入了解一个软件、一个系统，首先要了解其发展史。下面就来介绍一下FFmpeg的整体发展过程。
关于Fabrice Bellard的公开可见信息并不太多，但其成就非同一般。除FFmpeg外，他还编写了著名虚拟化模拟器QEMU、OpenGL实现、4GLTE和5GNR软基站、JavaScript引擎，让Windows 2000和Linux X Window从浏览器运行，甚至还创造了使用桌面计算机计算圆周率的世界纪录。更多信息可以从他的个人网站（https://bellard.org/）上窥其一二。他被称为天才程序员绝非夸赞，而是事实。Libav的官网为https://libav.org，但其开发基本已经停滞。
	FFmpeg起初是由法国天才程序员Fabrice Bellard
	 [image: 关于Fabrice Bellard的公开可见信息并不太多，但其成就非同一般。除FFmpeg外，他还编写了著名虚拟化模拟器QEMU、OpenGL实现、4GLTE和5GNR软基站、JavaScript引擎，让Windows 2000和Linux X Window从浏览器运行，甚至还创造了使用桌面计算机计算圆周率的世界纪录。更多信息可以从他的个人网站（https://bellard.org/）上窥其一二。他被称为天才程序员绝非夸赞，而是事实。]在2000年开发。后来发展到2003年，Fabrice Bellard找到了FFmpeg的接手人，这个人就是至今还在维护FFmpeg的Michael Niedermayer。Michael Niedermayer对FFmpeg的贡献非常大，他开发了FFmpeg内的libswresample、libswscale、H.264 Decoder等，并将libavfilter这个滤镜子系统加入FFmpeg项目，使得FFmpeg能够做的多媒体处理更加多样、更加方便。自FFmpeg发布了0.5版本之后，社区的开发进展缓慢，很长一段时间没有进行新版本发布，直到FFmpeg的版本控制系统被迁移到Git（作为版本控制服务器）并构建了相应的其他基础设施，FFmpeg的开发进展才又开始加快。当然那也是时隔多年之后了。2011年1月，FFmpeg项目中一些提交者对FFmpeg的项目管理方式不满意，分裂出了一个新的项目，命名为Libav
	 [image: Libav的官网为https://libav.org，但其开发基本已经停滞。]。随后，一些操作系统（如Debian）也开始使用Libav。需要说明的是，该项目目前基本处于停滞状态，大部分分裂出去的开发者已经重归FFmpeg社区（但确实还有少量核心开发者并未回归）。2015年8月，Michael Niedermayer主动辞去FFmpeg项目负责人职务。事情的起因是Michael Niedermayter从Libav中反向移植了大量代码和功能至FFmpeg中，这引起一些争议。而Michael Niedermayer辞职的主要目的是希望两个项目最终能够一起发展。

	依据时间顺序，我们对FFmpeg及其社区的大事件做一个简单的回顾。

	・2000年：Fabrice Bellard创立这个项目，最初的目的是实现MPEG编码/解码库。随后，这个库作为多媒体引擎被继承到播放器项目MPlayer中。时至今日，很多FFmpeg开发者或贡献者依然来自一些开源播放器项目，诸如VLC、MPV（它以MPlayer的继任者的姿态出现）。

	・2003年：Fabrice Bellard离开该项目，Michael Niedermayer作为项目的主要领导和维护者开始维护这个项目。FFmpeg原生的H.264解码器及对应的解复用在FFmpeg中出现（需要注意的是，H.264的相关标准此时实际上还只是一个草案状态，未正式成为标准）；开发人员开始尝试社区的无损压缩Codec FFV1。

	・2005年：Vorbis Decoder出现在FFmpeg中。

	・2006年：开发速度缓慢（大约每个月有100个提交），且开发者少于30人。

	・2009年3月：发布版本0.5，这是FFmpeg项目的第一个正式发布版本。

	・2010年：FFmpeg原生的VP8解码器远快于谷歌的libvpx中的VP8解码器。
参见https://lwn.net/Articles/423702。
	・2011年1月：FFmpeg社区爆发“骚乱”
	 [image: 参见https://lwn.net/Articles/423702。]，接着，Libav被创立，整个社区出现了严重的分裂。

	・2011～2014年：Michael开始把Libav的增强部分的Patch合并回FFmpeg，同时开始迅速修复FFmpeg安全方面的问题（这使得不同的Linux发行版本开始逐步从Libav切换回FFmpeg）。他一方面尝试让FFmpeg与Libav两者可以兼容，另一方面劝说Libav的开发者回归FFmpeg社区。

	・2014年：Michael Niedermayer在邮件列表中公开宣布辞去领导者的角色，不过他仍然保留了维护者的角色。

	・2015年：最初的决策委员被选举出来，基本依据其对FFmpeg的贡献程度，FFmpeg社区开始以决策委员会的方式运作。决策委员会人员主要可以参与表决和决定FFmpeg的功能发展方向，在与FFmpeg相关的重大事项上具有表决与建议权限，以引导FFmpeg社区更好地发展。

	・2019年：FFmpeg扩充决策委员，同年来自全球各地的FFmpeg开发者在日本东京聚会，参与VideoLan开发者大会，共同决策改组社区委员会和技术委员会，并确定每年至少召开一次碰头会，同步社区成员的想法与计划。

	作为一套开源的音视频编解码套件，FFmpeg可以通过互联网自由获取。FFmpeg的源码Git库提供了多站同步的获取方式，可以从以下地址获取FFmpeg的源代码：

	・https://git.ffmpeg.org/ffmpeg.git

	・http://git.videolan.org/?p=ffmpeg.git

	・https://github.com/FFmpeg/FFmpeg

	FFmpeg发展至今，已经被许多开源项目采用，比如ijkplayer、ffmpeg2theora、VLC、MPlayer、HandBrake、Blender、Google Chrome、FreeSWITCH等。DirectShow/VFW的ffdshow和QuickTime的Perian也采用了FFmpeg。由于FFmpeg是在LGPL/GPL协议下发布的，任何人都可以自由使用，但必须严格遵守LGPL/GPL协议。就像行业“黑话”一般，FFmpeg及音视频领域也有一些行话，下面简单介绍一些相关术语，第一次读可能有些困惑，但你在阅读了本书的其他部分之后再回顾，可能会有顿悟的感觉。所以若第一次不太明白，可以跳过这些。

	・容器（Container）格式：一种文件封装类型，里面主要包含了流，一般会使用一个特定的后缀名标识，例如.mov、.avi、.wav等。

	・流（Stream）：在容器中存储音频（Audio）或者视频（Video）、字幕（Subtitle）等数据。

	・元数据（Metadata）：一般位于容器之中，告诉我们一些额外的信息，一个常见的例子是MP3文件中的ID3 tag。

	・编解码器（Codec）：它实际上是enCOder与DECoder这两个词的混搭。大部分情况下我们指的是一种压缩标准，如我们说的AVC/H.264、HEVC/H.265、VVC/H.266、AV1等。

	如果在生活中找一个类比，容器格式与流和元数据的关系有点类似于电线的包装方式，我们用外包装材料，把单股的电线根据需要封装起来成为一个整体，容器格式好像整条电线，流好像电线内部的不同颜色的线缆，元数据则好像电线外面的标识，用于表示一些额外的信息，如图2-1所示。

	[image:]

	图2-1 容器与电线包装

2.2 FFmpeg的基本组成

	FFmpeg框架可以简单分为两层，上层是以ffmpeg、ffplay、ffprobe为代表的命令行工具；其底层支撑是一些基础库，包含AVFormat、AVCodec、AVFilter、AVDevices、AVUtils等模块库，细节结构如图2-2所示。下面就对这些底层支撑模块做一个大概的介绍。

	[image:]

	图2-2 FFmpeg基础模块

2.2.1 封装/解封装模块AVFormat

	AVFormat中实现了目前多媒体领域中的绝大多数媒体封装格式和流媒体协议，包括封装器（Muxer）和解封装器（Demuxer），包含如MP4、FLV、MKV、TS等文件格式的封装和解封装，以及RTMP、RTSP、MMS、HLS等网络流媒体协议的支持等。

	FFmpeg是否支持某种媒体封装格式，取决于编译时是否包括该格式的Demuxer和Muxer。另外，如果FFmpeg不支持某些新的容器格式，可以根据实际需求，进行媒体封装格式的扩展，增加相应的封装格式。其主要的工作是：在AVFormat中，按照FFmpeg内部框架的要求，增加自己的封装、解封装处理模块。这些会在后面部分讲解。

2.2.2 编/解码模块AVCodec

	AVCodec中实现了目前多媒体领域绝大多数常用的编解码格式，既支持编码，也支持解码。AVCodec除了以原生的方式（即FFmpeg不依赖其他第三方库，完全自己实现）支持H.264、AAC、MJPEG等媒体编解码格式外，也可以通过集成第三方库的方式来支持第三方编解码器。例如H.264（AVC）编码需要使用x264编码器；H.265（HEVC）编码需要使用x265编码器；MP3（mp3lame）编码需要使用libmp3lame编码器。如果希望增加新的编解码格式，或者支持硬件编解码加速，需要在AVCodec中增加相应的编/解码模块。关于更多AVCodec的使用信息以及如何扩展，我们将会在后面章节进行详细介绍。

2.2.3 滤镜模块AVFilter

	AVFilter库提供了一个通用的音频、视频、字幕等滤镜处理框架。在AVFilter中，滤镜框架可以有多个输入和多个输出。滤镜处理的例子如图2-3所示。

	[image:]

	图2-3 FFmpeg AVFilter示例

	这个例子将输入的视频切割成两部分流，一部分流抛给crop与vflip滤镜处理模块进行操作，另一部分保持原样；当crop与vflip滤镜处理操作完成后，将流合并到原有的overlay图层中，并显示在最上面一层，输出新的视频。对应的命令行如下：

	ffmpeg -i INPUT -vf "split [main][tmp]; [tmp] crop=iw:ih/2:0:0, vflip [flip]; [main][flip] overlay=0:H/2" OUTPUT

	原始视频如图 2-4 所示。以上命令执行完成之后，该命令将自动退出，生成的视频结果是保留视频的上半部分，同时上半部分会镜像到视频的下半部分，二者合成后作为输出视频，如图2-5所示。

	[image:]

	▲图2-4 运行前

	[image:]

	▲图2-5 运行后

	下面简单说明一下滤镜的构成规则：

	・相同滤镜的线性链用逗号分隔。

	・不同滤镜的线性链之间用分号分隔。

	有些过滤器的输入是一个参数列表，参数列表被指定在过滤器名称和一个等号之后，并且用冒号分开。也存在没有音频、视频输入的源过滤器（即source filter），以及不会有音频、视频输出的汇集过滤器（即sink filter）。在以上示例中，crop与vflip使用的是同一个滤镜处理的线性链，split滤镜和overlay滤镜使用的是另外一个线性链，一个线性链接入另一个线性链汇合处时是通过方括号括起来的标签进行标示的。在这个例子中，两个流处理后是通过[main]与[tmp]进行关联汇合的。split滤镜将分割后的视频流的第2部分打上标签[tmp]，将该部分流通过crop滤镜进行处理，然后进行纵坐标调换操作，打上标签[flip]，并将[main]标签与[flip]标签合并。[flip]标签的视频流从视频的左边最中间的位置开始显示，就出现了如图2-5所示的镜像效果。

2.2.4 设备模块AVDevice

	AVDevice提供了一些常用的输入输出设备的处理框架。比如在macOS和iOS上，一般使用AVFoundation调用底层的音视频及共享桌面输入。在Windows上，常用dshow（DirectShow）作为音视频输入。而在Linux上有更多的选择：音频输入输出设备有oss（Open Sound System）、alsa（Advanced Linux Sound Architecture）、fbdev（Frame Buffer）、openal（OpenAL）、pulse（Pulse Audio）等，视频设备有opengl（OpenGL）、video4linux2（Video for Linux）、x11grab（基于XCB的X11桌面捕获）等。sdl及sdl2（SDL，Simple Directmedia Layer）是一个跨平台的输出设备的不同版本，在大多数平台上都能用。

	除此之外值得一提的是，AVDevice还有一个名为lavfi的虚拟输入设备，它允许使用Libavfilter的滤镜链或表达式作为输入或输出设备。通过它，可以很方便地生成很多“假”的音频（如某一频率的声音或高斯白噪声）和视频流（如纯色或渐变的RGB图像序列等）。该设备在作为示例或测试时很常用，本书后面的很多例子也用到了它。

2.2.5 图像转换模块swscale

	swscale模块提供了底层的图像转换API接口，它允许进行图像缩放和像素格式转换。常用于将图像从1080p转换成720p或者480p等这样的缩放操作，或者将图像数据从YUV420P转换成YUYV，或YUV转换成RGB等操作。可见，libswscale库主要是执行高度优化的图像缩放和色彩空间及像素格式转换操作。经常会看到libswscale和libyuv的一个对照比较，但实际情况下需要评估缩放算法、支持的色彩空间、性能等以做出正确的选择。具体来说，这个库可以执行以下转换。

	・重新缩放：即改变视频尺寸的处理，其有几个重新缩放的选项和算法可用。与此同时，需要注意缩放通常是一个有损失的过程，缩放也需要在图像质量、缩放性能等限定条件下进行折中权衡。

	・像素格式转换：这是转换图像格式和图像色彩空间的过程，例如从平面格式的YUV420P到RGB24打包格式。它还处理打包转换，即从打包布局（所有属于不同平面的像素交错在同一个缓冲区，如RGB格式）转换为平面布局（所有属于同一平面的采样数据存储在一个专门的缓冲区或“平面”，如YUV420P）。如果源和目的色彩空间不同，这通常也是一个有损失的过程。

2.2.6 音频转换模块swresample

	swresample模块提供了音频重采样等。例如它允许操作音频采样、音频通道布局转换与布局调整，主要执行高度优化的音频重采样、Rematrixing和采样格式转换操作。具体来说，这个库可以执行以下转换。

	・重采样：执行改变音频采样率的处理，例如从44 100Hz的高采样率转换到8000Hz的低采样率。从高采样率到低采样率的音频转换是一个有损失的过程，该库有多个重采样选项和算法可用。

	・格式转换：执行采样类型的转换过程，例如从16位有符号采样格式转换为无符号8位或浮点类型的采样格式。它还处理打包转换，如从打包布局变换到平面布局。

	・Rematrixing：改变通道布局的过程，例如从立体声到单声道。当输入通道数量多于输出通道数量时，这个过程是有损失的，因为它涉及不同的增益因子和混合。

	其他各种音频转换（如拉伸和填充）需要通过专用选项启用。

2.2.7 编解码工具ffmpeg

	ffmpeg是FFmpeg源码编译后生成的一个可执行程序，可以作为命令行工具使用。ffmpeg最主要的流程从上层理解起来并不难，过程看似简单，但因为其重要性，我们会反复提及与回顾。

	・解封装（Demuxing），或称解复用

	・解码（Decoding）

	・编码（Encoding）

	・封装（Muxing），或称复用

	其中，整体处理的工作流程如图2-6所示。

	[image:]

	图2-6 ffmpeg整体处理工作流程

	首先ffmpeg读取输入源，然后通过Demuxer将音视频包进行解封装，这个动作通过调用libavformat中的接口即可实现；接下来通过Decoder解码，将音视频压缩数据通过Decoder解包成为YUV或者PCM这样的“裸”数据，Decoder通过libavcodec中的接口即可实现；然后将对应的数据通过Encoder编码，编码可以通过libavcodec中的接口实现；接下来将编码后的音视频数据包通过Muxer封装，Muxer封装通过libavformat中的接口即可实现；最后将输出内容写入指定的文件中。

2.2.8 播放器ffplay

	FFmpeg不但可以提供转码、转封装等功能，同时还可以提供简单的播放相关功能。使用FFmpeg的AVFormat与AVCodec可以播放各种媒体文件或者媒体流，也可以在命令选项中使用AVFilter相关功能来间接完成一些其他特殊功能。一般而言，我们选择ffplay这个简单的播放工具完成上述功能。如果想要使用ffplay，系统首先需要有SDL库来支持跨平台的渲染与显示。ffplay作为FFmpeg源码编译后生成的另一个可执行程序，与ffmpeg在FFmpeg项目中充当的角色不同，它的主要作用是作为播放测试工具使用，提供音视频显示和播放，也能用于显示音频的波形信息等。

	注意：有时通过源代码编译生成ffplay不一定能够成功，因为ffplay旧版本依赖SDL-1.2，而ffplay新版本依赖SDL-2.0，安装对应的SDL库才能编译生成ffplay。

2.2.9 多媒体分析器ffprobe

	ffprobe是FFmpeg源码编译后生成的另一个可执行程序。ffprobe是一个非常强大的多媒体分析工具，可以从媒体文件或者媒体流中获得用户想要了解的媒体信息，比如音频的格式、视频的宽高、媒体文件的时长等参数信息等。它除了用于分析媒体容器中音频的编码格式、采样率、通道数目，以及视频的编码格式、宽高等以外，还用于分析媒体文件中媒体的总时长、复合码率等信息。使用ffprobe还可以深入分析媒体文件中每个压缩媒体包的长度、包的类型、包对应的帧的信息等。第3章将会对ffprobe进行详细介绍。

2.3 不同平台下的编译

	FFmpeg官方网站提供了已经编译好的可执行文件，因为FFmpeg是开源的，所以也可以根据自己的需要进行手动编译。FFmpeg官方建议用户自己编译使用FFmpeg的最新稳定版本以应对安全问题，以及使用更新的特性。对于一些操作系统，比如Linux系统，无论是Ubuntu还是RedHat，如果使用系统提供的源来安装FFmpeg时会发现，其版本相对比较老旧，使用apt-get install ffmpeg或者yum install ffmpeg安装FFmpeg时，默认支持的版本较老，有些新的功能并不支持，如一些新的封装格式或者通信协议等。因此使用者或者开发者了解编译FFmpeg就至关重要了，而且这样也方便以后根据自己的需求进行功能的裁剪。

2.3.1 Windows平台编译FFmpeg

	在Windows平台中编译FFmpeg需要使用msys2，后者提供了一系列工具链，以辅助编译Windows的本地化程序。关于msys2的详细介绍和安装方法可以参照https://www.msys2.org。如果不希望使用msys2而使用Visual Studio的话，则需要消耗很多时间以支持Visual Studio平台。感兴趣的读者可以上网查找支持的方法。截至本书编写时，官方提供的Windows开发包还是使用msys2工具链编译的。msys是minimal system的缩写，主要完成的工作为UNIX on Windows的功能。显而易见，这是一个仿真UNIX环境的Windows工具集，在此，我们不会介绍msys2环境本身的安装配置过程，而着重于基于它在Windows上编译FFmpeg。msys环境准备好之后，我们就正式进入编译的环节。

	1）进入FFmpeg源码目录，执行./configure。如果一切正常，会看到如下信息：

	install prefix /usr/local

	source path .

	C compiler gcc

	C library mingw64

	... 此处省略大量输出内容

	makeinfo enabled yes

	makeinfo supports HTML no

	2）配置成功后执行make。在MinGW环境下编译FFmpeg是一个比较漫长的过程。

	3）执行make install。到此为止，FFmpeg在Windows上的编译完成，此时我们可以尝试使用FFmpeg命令行来验证我们的编译结果。执行./ffmpeg.exe–h：

	./ffmpeg.exe -h

	ffmpeg version n6.0 Copyright (c) 2000-2023 the FFmpeg developers

	 built with gcc 12.1.0 (crosstool-NG 1.25.0.55_3defb7b)

	 configuration: --enable-gpl

	 libavutil 58. 2.100 / 58. 2.100

	 libavcodec 60. 3.100 / 60. 3.100

	 libavformat 60. 3.100 / 60. 3.100

	 libavdevice 60. 1.100 / 60. 1.100

	 libavfilter 9. 3.100 / 9. 3.100

	 libswscale 7. 1.100 / 7. 1.100

	 libswresample 4. 10.100 / 4. 10.100

	 libpostproc 57. 1.100 / 57. 1.100

	Hyper fast Audio and Video encoder

	usage: ffmpeg [options] [[infile options] -i infile]... {[outfile options] outfile}...

	注意：举例的这个编译配置方式编译出来的仅仅为最简易的FFmpeg，并没有H.264、H.265等Codec的编码支持。如果需要支持更多的功能特性，还需要根据实际需要进行更加细致的定制，这部分会在后面详细介绍。

2.3.2 Linux平台编译FFmpeg

	前面介绍过，很多Linux的发行版本源中已经包含了FFmpeg，例如Ubuntu / Fedora的镜像源中包含了安装包，但是版本相对来说比较老，有些甚至不支持H.264、H.265编码，或者不支持RTMP等。为了支持这些协议格式和编码格式，需要自己手动编译FFmpeg。默认编译FFmpeg的时候，需要用到nasm汇编器对FFmpeg中的汇编部分进行编译。如果不用汇编部分的代码，可以不安装nasm汇编器，这种情况一般认为不大合适，除非我们并不在意性能。如果没有安装nasm，执行默认配置的时候，会出现以下错误提示：

	[lq@chinaffmpeg 6.0]$../ffmpeg/configure

	nasm/yasm not found or too old. Use --disable-x86asm for a crippled build.

	If you think configure made a mistake, make sure you are using the latest

	version from Git. If the latest version fails, report the problem to the

	ffmpeg-user@ffmpeg.org mailing list or IRC #ffmpeg on irc.libera.chat.

	Include the log file "ffbuild/config.log" produced by configure as this will help

	solve the problem.

	根据以上错误提示，可以使用--disable-x86asm来取消汇编优化编译配置。这么做的话就不会编译FFmpeg的汇编代码部分。但一般不应该取消汇编优化，除非是在调试C原型代码的时候。如果需要支持汇编优化，需要环境中有nasm或者可以通过安装nasm汇编器来解决。

	curl -O

	https://www.nasm.us/pub/nasm/releasebuilds/2.15.05/nasm-2.15.05.tar.gz

	命令行执行后将会下载nasm源代码包。

	 curl -O

	https://www.nasm.us/pub/nasm/releasebuilds/2.15.05/nasm-2.15.05.tar.gz

	 % Total % Received % Xferd Average Speed Time Time Time Current

	 Dload Upload Total Spent Left Speed

	 16 1591k 16 265k 0 0 52809 0 0:00:30 0:00:05 0:00:25 55226

	下载nasm汇编器并执行configure后，可以通过make编译，执行make install即可。然后再回到FFmpeg源代码目录中进行之前的configure操作，之前的错误提示就会消失。

	install prefix /usr/local

	source path src

	C compiler gcc

	C library

	... 此处省略大量输出内容

	makeinfo supports HTML no

	xmllint enabled yes

2.3.3 macOS平台编译FFmpeg

	有些开发者在macOS平台上使用FFmpeg进行一些音视频编转码或流媒体处理等操作，此时需要生成macOS平台相关的FFmpeg可执行程序。在macOS平台上编译FFmpeg前，首先需要安装所需要的编译环境，在macOS平台上使用的编译工具链为LLVM。

	Apple clang version 13.1.6 (clang-1316.0.21.2.5)

	Target: x86_64-apple-darwin21.4.0

	Thread model: posix

	InstalledDir:

	/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin

	另外，由于macOS的版本不同，如果是基于Intel的平台，依然需要安装nasm汇编编译工具，否则在生成Makefile时会报告未安装nasm工具的错误。

	在LLVM下使用源码编译安装FFmpeg的方法与Linux平台基本相同，因为它们同属于POSIX兼容的操作系统。将FFmpeg从git://source.ffmpeg.org/ffmpeg.git中下载下来。源代码下载成功后，可以进入编译阶段，通过类似之前的configure操作即可完成基本的编译工作。

	install prefix /usr/local/

	source path /Users/liuqi/multimedia/upstream_ffmpeg/ffmpeg

	... 此处省略大量输出内容

	makeinfo supports HTML no

	xmllint enabled yes

	接着只需要执行make与make install即可。

2.4 FFmpeg特性的选择与定制

	FFmpeg本身支持大量音视频编码格式、文件封装格式与流媒体传输协议，但是依然有可能不能满足特定的需求。FFmpeg所做的是提供一套基础的框架，所有的编码格式、文件封装格式与流媒体协议可以作为FFmpeg的模块挂载在FFmpeg框架中，这些模块可以以第三方外部库的方式提供支持，也可以选择直接与FFmpeg一体，成为FFmpeg原生实现的一部分。通过FFmpeg源码的configure命令，可以查看FFmpeg支持的音视频编码格式、文件封装格式与流媒体传输协议，对于FFmpeg不支持的格式，可以通过configure --help查看是否有第三方外部库支持，然后通过增加对应的编译参数选项进行支持。

	External library support:

	 Using any of the following switches will allow FFmpeg to link to the

	 corresponding external library. All the components depending on that library

	 will become enabled, if all their other dependencies are met and they are not

	 explicitly disabled. E.g. --enable-libopus will enable linking to

	 libopus and allow the libopus encoder to be built, unless it is

	 specifically disabled with --disable-encoder=libopus.

	 Note that only the system libraries are auto-detected. All the other external

	 libraries must be explicitly enabled.

	 Also note that the following help text describes the purpose of the libraries

	 themselves, not all their features will necessarily be usable by FFmpeg.

	 --disable-alsa disable ALSA support [autodetect]

	 --disable-appkit disable Apple AppKit framework [autodetect]

	 ... 大量输出内容省略

	 --enable-vapoursynth enable VapourSynth demuxer [no]

	 --disable-vulkan disable Vulkan code [autodetect]

	 --disable-xlib disable xlib [autodetect]

	 --disable-zlib disable zlib [autodetect]
参见https://ffmpeg.org/general.html#External-libraries。
	通过以上帮助信息的输出内容可以看到，FFmpeg支持的外部库比较多。需要注意的是，这些项目是独立于FFmpeg发展的，所以，需要根据实际情况来选择最新版本或者用户实际使用的版本。更多的外部第三方库可以参考FFmpeg官方文档的扩展库页面
	 [image: 参见https://ffmpeg.org/general.html#External-libraries。]。这些外部库可以通过configure进行定制，在编译好的FFmpeg可执行程序中也可以看到编译时定制的外部库。

	ffmpeg version n6.0 Copyright (c) 2000-2023 the FFmpeg developers

	 built with gcc 8 (GCC)

	 configuration: --enable-libxml2 --enable-libx264 --enable-libx265 --enable-gpl --disable -optimizations --disable-stripping --enable-vaapi --enable-hwaccel='h263_vaapi, av1_vaapi,h264_vaapi,hevc_vaapi,mjpeg_vaapi,mpeg2_vaapi,mpeg4_vaapi,vc1_vaapi,vp9_vaapi,wmv3_vaapi' --prefix=/usr/local/ffmpeg/ --enable-openssl --enable-nonfree

	 libavutil 58. 2.100 / 58. 2.100

	 libavcodec 60. 3.100 / 60. 3.100

	 libavformat 60. 3.100 / 60. 3.100

	 libavdevice 60. 1.100 / 60. 1.100

	 libavfilter 9. 3.100 / 9. 3.100

	 libswscale 7. 1.100 / 7. 1.100

	 libswresample 4. 10.100 / 4. 10.100

	 libpostproc 57. 1.100 / 57. 1.100

	假如需要自己配置FFmpeg支持哪些格式，如仅支持H.264视频与AAC音频编码，可以调整配置项简化如下：

	./configure --enable-libx264 --enable-libfdk-aac --enable-gpl --enable-nonfree

	如配置后输出的基本信息所示，如果要支持H.264与AAC，需要系统中包括libx264与libfdk-aac的第三方库，否则会出现错误提示。支持H.265编码与支持H.264基本类似，编译安装x265后，在执行FFmpeg的Configure命令时，只需要增加--enable-libx265即可。支持其他对应的编码与此类似。

	注意：从2016年年初起，FFmpeg自身的AAC编码器质量逐步好转，至2016年年底，libfaac已从FFmpeg源代码中剔除，但依然可以使用第三方libfdk-aac库来执行AAC的编解码支持。

	FFmpeg默认支持的音视频编码格式、文件封装格式与流媒体传输协议比较多，因此编译的FFmpeg文件较大。而在有些应用场景中并不需要FFmpeg支持如此多的编码、封装或者协议，为了减小最终编译出来的库的体积（如在手机端等须注意最终包大小的场景等），这时候可以通过configure --help查看一些有用的选项以用作后续的裁减。

	可以通过一些选项关闭不需要的编解码、封装/解封装与协议等模块，示例如下：

	./configure --disable-encoders --disable-decoders --disable-hwaccels --disable-muxers --disable-demuxers --disable-parsers --disable-bsfs --disable-protocols --disable-indevs --disable-devices --disable-filters

	关闭所有的模块后，可以看到FFmpeg的编译配置项输出信息几乎为空。此时可以根据定制需要，再加上自己所需要的模块，如希望编译时支持H.264视频编码和AAC音频编码、封装为MP4，则可以通过如下方式支持：

	./configure --disable-filters --disable-encoders --disable-decoders --disable- hwaccels --disable-muxers --disable-demuxers --disable-parsers --disable-bsfs --disable- protocols --disable-indevs --disable-devices --enable-libx264 --enable-libfdk-aac --enable- gpl --enable-nonfree --enable-muxer=mp4

	通过细致的编译选项的配置，最终编译生成的FFmpeg及库等的大小会比默认编译时小很多。

2.4.1 编码器支持

	FFmpeg源代码中可以包含的编码格式非常多，常见的和不常见的都可以在编译配置列表中见到。一般通过使用编译配置命令./configure --list-encoders参数来查看。

	a64multi h263 movtext eac3

	adpcm_g722 h264_videotoolbox rv10 libx264

	adpcm_g726le hevc_amf msmpeg4v3 zlib

	adpcm_ima_alp hevc_mf msvideo1 prores

	adpcm_ima_amv hevc_nvenc nellymoser mjpeg_qsv

	adpcm_ima_wav hevc_videotoolbox pcm_alaw gif

	adpcm_swf jpeg2000 pcm_dvd ssa

	... 省略大量输出信息

	dvbsub libwebp pcm_u24le wrapped_avframe

	png libxavs2 pgm g723_1

	flv mjpeg ppm

	从输出信息可以看出，FFmpeg支持的编码器非常全面，如AAC、AC3、H.264、H.265、MPEG4、MPEG2VIDEO、PCM、FLV1等格式的编码器。为了节省输出内容所占篇幅，以上输出内容做了大量精简，更详细的信息可在本地尝试操作后自行查看，获得的信息会更全面一些。另外，相对于其他模块，FFmpeg对编码器的支持所依赖的第三方库更多一些。

2.4.2 解码器支持

	FFmpeg源代码本身包含了很多解码格式。解码过程主要是将压缩过的编码内容进行解压缩。解码器的支持可以通过./configure–list-decoders命令进行查看。

	aac dsicinvideo motionpixels rscc

	aac_at dss_sp movtext rv10

	aac_fixed dst mp1 rv20

	aac_latm dvaudio mp1_at rv30

	aasc dvbsub mp1float rv40

	... 此处省略了大量输出内容

	dsd_lsbf mjpeg_qsv realtext yuv4

	dsd_lsbf_planar mjpegb rl2 zero12v

	dsd_msbf mlp roq zerocodec

	dsd_msbf_planar mmvideo roq_dpcm zlib

	dsicinaudio mobiclip rpza zmbv

	输出信息列出了FFmpeg所支持的解码器模块，包括MPEG4、H.264（AVC）、H.265（HEVC）、MP3等。

2.4.3 封装支持

	FFmpeg的封装（Muxing，也称为复用）即将压缩后的码流封装到一个容器格式中。如果要知道FFmpeg源代码支持哪些容器格式，可以用命令./configure --list-muxers查看。

	a64 filmstrip mp3 rawvideo

	ac3 fits mp4 rm

	adts flac mpeg1system roq

	adx flv mpeg1vcd rso

	aiff framecrc mpeg1video rtp

	alp framehash mpeg2dvd rtp_mpegts

	amr framemd5 mpeg2svcd rtsp

	amv g722 mpeg2video sap

	... 此处省略大量输出内容

	dts microdvd pcm_u24be webp

	dv mjpeg pcm_u24le webvtt

	eac3 mkvtimestamp_v2 pcm_u32be wsaud

	f4v mlp pcm_u32le wtv

	ffmetadata mmf pcm_u8 wv

	fifo mov pcm_vidc yuv4mpegpipe

	fifo_test mp2 psp

	从封装格式（Muxer，也称为复用格式）信息中可以看到，FFmpeg可以支持生成裸流文件，例如H.264、AAC、PCM，也支持一些常见的容器格式，例如MP3、MP4、FLV、M3U8、WEBM等。

2.4.4 解封装支持

	FFmpeg的解封装（Demuxing，也称为解复用）即将封装在容器里面压缩的音频流、视频流、字幕流、数据流等提取出来。如果要查看FFmpeg源代码支持哪些可以解封装的容器格式，可以通过命令./configure --list-demuxers进行查看。

	aa filmstrip libmodplug rm

	aac fits libopenmpt roq

	aax flac live_flv rpl

	ac3 flic lmlm4 rsd

	... 此处省略了大量输出内容

	ea jacosub r3d yop

	ea_cdata jv rawvideo yuv4mpegpipe

	eac3 kux realtext

	epaf kvag redspark

	ffmetadata libgme rl2

	从解封装格式（Demuxer，也称为解复用格式）信息中可以看到，FFmpeg源码中支持的Demuxer非常多，包含图片（image）、MP3、FLV、MP4、MOV、AVI等。另外，还有一些特定的功能也以解封装模块的方式实现，如上面的ffmetadata。

2.4.5 通信协议支持

	FFmpeg不仅支持本地的多媒体处理，还支持网络流媒体的处理。它支持的网络流媒体协议很全面，可以通过命令./configure --list-protocols进行查看。

	async hls librtmpte rtmpt

	bluray http libsmbclient rtmpte

	cache httpproxy libsrt rtmpts

	concat https libssh rtp

	concatf icecast libzmq sctp

	crypto ipfs md5 srtp

	data ipns mmsh subfile

	ffrtmpcrypt libamqp mmst tcp

	ffrtmphttp librist pipe tee

	file librtmp prompeg tls

	ftp librtmpe rtmp udp

	gopher librtmps rtmpe udplite

	gophers librtmpt rtmps unix

	从协议相关信息列表中可以看到，FFmpeg支持的流媒体协议较多，包括MMS、HTTP、HTTPS、RTMP、RTP，甚至支持TCP、UDP这些基础网络协议，还支持本地文件file协议，以及多个文件拼接串流的concat协议，以及区块链技术中的ipfs协议。关于流媒体的通信协议部分，后面的章节会有详细介绍。

2.5 小结

	本章重点介绍了FFmpeg的发展历程。对于一个发展了超过22年的项目，其背后是各种曲折的历史，更是大量社区成员努力的结果。随后介绍了FFmpeg源代码的获取、安装、编译等基本操作，对容器格式的封装与解封装、音视频编码与解码格式的支持，以及对流媒体传输协议的支持。总体而言，FFmpeg所支持的容器格式、编解码标准、流媒体协议都非常全面，是一款功能强大的多媒体处理工具和开发套件，因此它被称为多媒体领域的“瑞士军刀”也是名不虚传。

	从2020年开始，FFmpeg官方不继续提供开发者版本的调用库了，但是开发者中有热心的志愿者提供了对应的release版本的脚本代码库。如果有需要的话可以自行维护自己的一套代码库，毕竟FFmpeg本身是开源的，并且构建自己的发行版本的脚本代码库也是开源的。更多内容可以参考FFmpeg发行版本构建脚本的代码库：https://github.com/BtbN/FFmpeg-Builds。

第3章

FFmpeg工具使用基础

	FFmpeg工程中常用的工具是ffmpeg、ffprobe、ffplay，分别作为编解码工具、媒体内容分析工具和播放器使用。所谓“工欲善其事，必先利其器”，想要用好FFmpeg处理媒体相关事务，这3个工具则是重要的入口。本章将重点介绍这3个工具的常用命令，使我们对FFmpeg有一个基础但全面的了解。同时通过实践演练，让大家能更好地学会并应用这些命令，以更好地理解FFmpeg的相关知识。实践始终是本书所倡导的，毕竟“纸上得来终觉浅，绝知此事要躬行”。

3.1 ffmpeg常用命令

	ffmpeg在执行音视频编解码、转码等操作时非常便利，很多场景下转码直接使用ffmpeg即可。通过ffmpeg --help命令可以看到ffmpeg常见的命令，大概分为以下6个部分：

	・ffmpeg信息查询部分

	・公共操作参数部分

	・文件主要操作参数部分

	・视频操作参数部分

	・音频操作参数部分

	・字幕操作参数部分

	ffmpeg信息查询部分主要参数如下：

	usage: ffmpeg [options] [[infile options] -i infile]... {[outfile options] outfile}...

	Getting help:

	 -h -- print basic options

	 -h long -- print more options

	 -h full -- print all options (including all format and codec specific options, very long)

	 -h type=name -- print all options for the named decoder/encoder/demuxer/muxer/filter/bsf/protocol

	 See man ffmpeg for detailed description of the options.

	Print help / information / capabilities:

	-L show license

	-h topic show help

	-? topic show help

	-help topic show help

	--help topic show help

	-version show version

	-buildconf show build configuration

	-formats show available formats

	-muxers show available muxers

	-demuxers show available demuxers

	-devices show available devices

	-codecs show available codecs

	-decoders show available decoders

	-encoders show available encoders

	-bsfs show available bit stream filters

	-protocols show available protocols

	-filters show available filters

	-pix_fmts show available pixel formats

	-layouts show standard channel layouts

	-sample_fmts show available audio sample formats

	-dispositions show available stream dispositions

	-colors show available color names

	-sources device list sources of the input device

	-sinks device list sinks of the output device

	-hwaccels show available HW acceleration methods

	通过ffmpeg --help查看到的帮助信息是ffmpeg命令的基础信息。如果想查看高级参数部分，可以使用ffmpeg --help long参数；如果希望获得全部的帮助信息，可以使用ffmpeg --help full参数。使用-L参数，可以看到ffmpeg目前所支持的license协议；使用-version可以查看ffmpeg的版本，包括子模块的详细版本信息，如libavformat、libavcodec、libavutil、libavfilter、libswscale、libswresample等的版本信息。

	在使用ffmpeg转码或者转封装时，可能会遇到无法解析的媒体文件格式或者无法生成对应的媒体文件格式，而提示不支持生成对应的媒体文件格式的情况，这时候就需要查看当前使用的ffmpeg是否支持对应的容器文件格式，可以使用ffmpeg –formats参数来查看。

	此时输出的内容分为以下3个部分：

	・第 1 列是关于容器文件封装格式的 Demuxing 与 Muxing 支持情况，D表示支持解封装（Demuxing），E表示支持封装（Muxing）。

	・第2列是容器文件格式在FFmpeg中使用的简短名字。

	・第3列是容器文件格式的补充说明。

	同样，使用ffmpeg命令执行解码或者编码时，想查看ffmpeg是否支持相应编码或解码格式，可以使用ffmpeg -codecs查看全部信息，也可以使用ffmpeg -encoders查看ffmpeg是否支持对应的编码器，使用ffmpeg -decoders查看ffmpeg是否支持相应的解码器。

	执行ffmpeg -codecs命令后输出的信息中包含以下3部分内容：

	・第1列表征了该Codec是否支持解码（D为Decoding）和编码（E为Encoding），编码的音频、视频、字幕、数据等类型，或者只有I帧的编码压缩格式，以及有损和无损压缩类型。

	・第2列是Codec格式对应的名字。

	・第3列是Codec的详细说明，如果一个对应的Codec有多个实现可以支持，也会在小括号中显示出来。

	执行ffmpeg -encoders或ffmpeg -decoders命令后输出信息中同样包含3部分内容：

	・第1列表征了音频、视频、字幕的类型，帧级别和Slice级别的多线程支持，该编码器是否处于实验而非产品级别状态，是否支持draw_horiz_band和直接渲染模式。

	・第2列是编码器格式在FFmpeg中使用的名字。

	・第3列是编码格式的补充性说明。

	除了查看ffmpeg支持的封装与解封装格式、编码与解码类型以外，还可以查看ffmpeg支持哪些滤镜，使用的命令是ffmpeg -filters。输出信息包含以下4列内容：

	・第1列表征了时间轴支持信息、Slice线程支持信息、动态命令支持信息、音频IO、视频IO、动态输入输出、媒体源或者sink过滤器。

	・第2列是滤镜的名字。

	・第3列表征了输入输出格式，以及是否支持多输入、多输出等，例如音频转音频、视频转视频、创建音频、创建视频等操作。

	・第4列是滤镜的作用说明。

	使用ffmpeg --help full命令可以查看ffmpeg支持的所有封装格式、编解码器和滤镜处理器以及详细的选项信息，打印出来的信息超过1.5万行，使用起来不是特别便利。因此FFmpeg也支持单纯查询特定Demuxer或者Muxer选项的方式。如果要了解ffmpeg支持的具体某一种Demuxer、Muxer 类型，可以使用类似ffmpeg -h encoder/decoder/muxer/demuxer/ filter=xxx的命令来查看具体容器、编解码器、滤镜的详细参数。

	例如查看FLV封装器的参数支持，使用的命令是ffmpeg -h muxer=flv，输出的信息包含以下两部分：

	・第1部分为FLV封装的默认配置描述，如扩展名、MIME类型、默认的视频编码格式、默认的音频编码格式等。

	・第2部分为FLV封装时可以支持的配置参数及相关说明。

	同样，查看FLV解封装器的参数支持使用的是命令ffmpeg -h demuxer=flv。

	接着查看H.264编码器libx264在FFmpeg中支持的编码参数，使用命令ffmpeg -h encoder= h264。H.264（AVC）的编码参数信息包含以下两部分：

	・第1部分为H.264所支持的基本编码方式、支持的多线程编码方式（例如帧级别多线程编码或Slice级别多线程编码）、编码器所支持的像素的色彩格式。

	・第2部分为编码的具体配置参数及相关说明。

	而查看H.264（AVC）的解码参数支持的命令自然如法炮制，使用命令ffmpeg -h decoder= h264。除了编码器、解码器以外，也可以查看具体滤镜的参数支持情况。这里查看colorkey滤镜的命令为ffmpeg -h filter=colorkey。colorkey滤镜参数信息包含以下两部分：

	・第1部分为colorkey所支持的色彩格式信息、多线程处理方式，以及输入或输出支持。

	・第2部分为colorkey所支持的参数及说明。

	关于使用ffmpeg查询具体选项的介绍到此告一段落。下面详细介绍使用ffmpeg来执行封装转换、解码和编码，以及转码流程。

3.1.1 封装转换

	FFmpeg的封装转换（转封装）功能主要基于AVFormat模块，通过libavformat库进行Mux和Demux操作。我们知道，多媒体文件的格式多种多样，在FFmpeg的实现中，这些格式中很多操作参数是公用的，而其他特定参数使用上述命令即可查询。下面详细介绍一下这些与容器格式相关的公用参数。

	通过查看ffmpeg --help full信息，找到AVFormatContext参数部分，在这个参数下面的所有参数均为封装转换可使用的参数，如表3-1所示。

	表3-1 ffmpeg AVFormatContext主要参数帮助

	[image:]

	[image:]

	这些是通用的封装、解封装操作的参数，可以与后面章节中介绍的转封装操作、解封装操作对应的命令行参数搭配使用。另外，由于部分参数并未完整提及，读者可以使用上面的方式继续查看。

3.1.2 解码和编码

	FFmpeg编解码部分的功能主要通过AVCodec这个模块来完成，通过使用libavcodec库进行解码与编码操作。多媒体领域的编码格式种类很多，FFmpeg把这些操作分为通用操作和基于特定编解码器的操作，目前还是有很多基本的操作参数是通过通用设置来支持的。下面详细介绍这些通用的参数。

	使用命令ffmpeg --help full可以看到AVCodecContext参数列表信息，如表3-2所示。在这个选项下面的所有参数均为编解码可以使用的参数，但实际上需要注意，并不是每个编解码器都完全支持这些参数。

	ffmpeg编解码参数中还有一些更细化的参数在本小节中并未太多提及，可以根据本小节中提到的方法查看更多的内容。本小节重点介绍了常用的通用参数，在后面章节中介绍编码操作时可以配合对应的例子使用。

	表3-2 ffmpeg AVCodecContext主要参数

	[image:]

	[image:]

3.1.3 转码流程

	ffmpeg工具的主要用途为编码、解码、转码和媒体格式转换等，其中转码差不多覆盖了上面的所有操作，因此我们重点介绍一下转码（参考2.2.7节介绍的ffmpeg整体处理工作流程图）。

	前面已经介绍了可以设置转码的相关参数，而转码操作有时也会伴随着封装格式的改变。可以通过设置AVCodec与AVFormat的参数，改变封装格式与编码格式。下面举一个例子。

	ffmpeg -i ~/Movies/input1.rmvb -vcodec mpeg4 -b:v 200k -r 15 -an output.mp4

	命令执行后输出基本信息如下：

	Input #0, rm, from '/Users/liuqi/Movies/input1.rmvb':

	 Metadata:

	 Modification Date: 5/3/2008 11:15:56

	 Duration: 01:40:53.44, start: 0.000000, bitrate: 408 kb/s

	 Stream #0:0: Audio: cook (cook / 0x6B6F6F63), 22050 Hz, stereo, fltp, 20 kb/s

	 Stream #0:1: Video: rv40 (RV40 / 0x30345652), yuv420p, 608x320, 377 kb/s, 23.98 fps, 23.98 tbr, 1k tbn, 1k tbc

	Stream mapping:

	 Stream #0:1 -> #0:0 (rv40 (native) -> mpeg4 (native))

	Press [q] to stop, [?] for help

	Output #0, mp4, to 'output.mp4':

	 Metadata:

	 encoder : Lavf57.71.100

	 Stream #0:0: Video: mpeg4 ([0][0][0] / 0x0020), yuv420p, 608x320, q=2-31, 200 kb/s, 15 fps, 15360 tbn, 15 tbc

	 Metadata:

	 encoder : Lavc57.89.100 mpeg4

	 Side data:

	 cpb: bitrate max/min/avg: 0/0/200000 buffer size: 0 vbv_delay: -1

	frame= 376 fps=0.0 q=7.0 Lsize=822kB time=00:00:25.00 bitrate= 269.3kbits/s speed=64.3x

	从输出信息中可以看到，以上输出的参数中使用了前面介绍过的参数：

	・转封装格式从RMVB格式转为MP4

	・视频编码从RV40转为MPEG4

	・视频码率从原来的377 kbit/s转为200 kbit/s

	・视频帧率从原来的23.98 fps转为15 fps

	・转码后的文件中不包括音频（-an参数）

	这个例子的流程与前面提到的流程相同：首先解封装，需要解封装的格式为RMVB；然后解码，其中视频格式为RV40，音频格式为COOK，找到它们对应的解码器执行解码操作；解码后的视频会被编码为MPEG4，而音频被丢弃了；随后封装为一个没有音频的MP4文件。

3.2 ffprobe常用命令

	在FFmpeg工具套件中，除了作为多媒体处理工具的ffmpeg以外，还有作为多媒体信息分析查看工具的ffprobe。ffprobe主要用来查看和分析多媒体文件。下面看一下ffprobe中常用的基本命令。

3.2.1 ffprobe常用参数

	ffprobe有许多选项（参数），可以用来指定输出的格式、查看的信息等。下面是一些常用的选项：

	・-v：指定输出的详细程度。0为较少的信息，9为更多的信息。

	・-show_format：查看媒体文件的容器信息，包括格式、时长、码率等。

	・-show_streams：查看媒体文件的流信息，包括编码格式、帧率、分辨率等。

	・-show_chapters：查看媒体文件的章节信息。

	・-of：指定输出的格式，支持的格式包括JSON、XML等。

	下面是一个使用这些选项的例子，它查看名为video.mp4的媒体文件的详细信息，并以JSON格式输出。

	ffprobe -v 9 -show_format -show_streams -show_chapters -of json video.mp4

	其中，-v 9选项指定输出的日志级别，其中9是最高级别。-show_format选项表示要显示媒体文件的基本格式信息。-show_streams选项表示要显示媒体文件中的视频、音频和字幕流的信息。-show_chapters选项表示要显示媒体文件中的章节信息。-of json选项表示以JSON格式输出信息。最后，video.mp4是媒体文件的名称。ffprobe的参数比较多，可以用命令ffprobe --help来查看详细的帮助信息。

	Simple multimedia streams analyzer

	usage: ffprobe [OPTIONS] INPUT_FILE

	Main options:

	-L show license

	-h topic show help

	-? topic show help

	-help topic show help

	--help topic show help

	-version show version

	-buildconf show build configuration

	-formats show available formats

	-muxers show available muxers

	-demuxers show available demuxers

	-devices show available devices

	-codecs show available codecs

	-decoders show available decoders

	-encoders show available encoders

	-bsfs show available bit stream filters

	-protocols show available protocols

	-filters show available filters

	-pix_fmts show available pixel formats

	-layouts show standard channel layouts

	-sample_fmts show available audio sample formats

	-dispositions show available stream dispositions

	-colors show available color names

	-loglevel loglevel set logging level

	-v loglevel set logging level

	-report generate a report

	-max_alloc bytes set maximum size of a single allocated block

	-cpuflags flags force specific cpu flags

	-cpucount count force specific cpu count

	-hide_banner hide_banner do not show program banner

	-sources device list sources of the input device

	-sinks device list sinks of the output device

	-f format force format

	-unit show unit of the displayed values

	-prefix use SI prefixes for the displayed values

	-byte_binary_prefix use binary prefixes for byte units

	-sexagesimal use sexagesimal format HOURS:MM:SS.MICROSECONDS for time units

	-pretty prettify the format of displayed values, make it more human readable

	-print_format format set the output printing format (available formats are: default, compact, csv, flat, ini, json, xml)

	-of format alias for -print_format

	-select_streams stream_specifier select the specified streams

	-sections print sections structure and section information, and exit

	-show_data show packets data

	-show_data_hash show packets data hash

	-show_error show probing error

	-show_format show format/container info

	-show_frames show frames info

	-show_entries entry_list show a set of specified entries

	-show_log show log

	-show_packets show packets info

	-show_programs show programs info

	-show_streams show streams info

	-show_chapters show chapters info

	-count_frames count the number of frames per stream

	-count_packets count the number of packets per stream

	-show_program_version show ffprobe version

	-show_library_versions show library versions

	-show_versions show program and library versions

	-show_pixel_formats show pixel format descriptions

	-show_optional_fields show optional fields

	-show_private_data show private data

	-private same as show_private_data

	-bitexact force bitexact output

	-read_intervals read_intervals set read intervals

	-i input_file read specified file

	-o output_file write to specified output

	-print_filename print_file override the printed input filename

	-find_stream_info read and decode the streams to fill missing information with heuristics

	上面信息为ffprobe常用的操作参数，也是ffprobe的基础参数，例如查看log、每一个音频或者视频数据包信息、节目信息、流信息、每一个流有多少帧、每一个流有多少个音视频包、视频像素点的格式等。有了这些基本参数，下面通过示例加深理解。

3.2.2 ffprobe使用示例

	下面使用ffprobe来实际分析一些媒体文件，以获得更充分的认识。

	1）使用ffprobe -show_packets input.flv查看多媒体数据包信息。show_packets查看的多媒体包信息使用[PACKET]标签，其中包含的字段信息如表3-3所示。

	表3-3 packet字段说明

	[image:]

	[image:]

	除了以上字段和信息外，还可以通过ffprobe -show_data -show_packets input.flv组合参数来查看包中的具体数据。

	[PACKET]

	codec_type=video

	stream_index=0

	pts=120

	pts_time=0.120000

	dts=120

	dts_time=0.120000

	duration=40

	duration_time=0.040000

	size=263

	pos=20994

	flags=_ _

	data=

	00000000: 0000 0103 019e 6174 4107 ac85 be46 3d0a atA....F=.

	00000010: 6c38 18c7 dd94 d449 0abf 97d3 0ed8 6f4c l8.....I......oL

	00000020: 199b 08e3 69cc 09bc 502a 3709 c5a8 797a i...P*7...yz

	……因篇幅太长省略

	000000c0: 2d67 5f15 6d82 a411 ce0f 23db 3c83 c3bc -g_.m.....#.<...

	000000f0: 75b9 472a 0f61 8312 de06 4516 1e17 09af u.G*.a....E.....

	00000100: 43da 5200 bf1a f9 C.R....

	[/PACKET]

	在输出的内容中看到了多媒体包中包含的数据，初始信息为0000 0103 019e 6174，那么可以根据输出中的pos，也就是文件偏移位置查看。此时pos的值为20994，将其转换为十六进制，得知位置为0x00005202，加上FLVTAG（参考4.2节的表4-25）头部分的数据之后的偏移位置与data的数据是可以对应的。可以使用Linux下的xxd input.flv命令查看。

	00005200: 171a 0900 010c 0000 7800 0000 0027 0100 x....'..

	00005210: 0000 0000 0103 019e 6174 4107 ac85 be46 atA....F

	00005220: 3d0a 6c38 18c7 dd94 d449 0abf 97d3 0ed8 =.l8.....I......

	00005230: 6f4c 199b 08e3 69cc 09bc 502a 3709 c5a8 oL....i...P*7...

	00005240: 797a dc01 40b1 4b6b ccd8 e9a1 7ea4 0340 yz..@.Kk....~..@

	00005250: 70dc 2fce 861c 0168 c813 287c 0410 dfff p./....h..(|....

	00005260: ae0d 4f25 01d1 594b 96a6 79f4 0a1e 9ab4 ..O%..YK..y.....

	00005270: 6e1d 946f 494d f72c 86d1 03f1 a420 ef38 n..oIM.,..... .8

	00005280: d759 ce25 a113 db4a 79c1 a04b a91b 908e .Y.%...Jy..K....

	00005290: 063d cea8 383d b4f4 d190 be3a 6943 1698 .=..8=.....:iC..

	通过ffprobe读取packets来进行对应的数据分析，使用show_packets与show_data配合可以更加精确地分析。

	2）除了packets与data外，ffprobe还可以分析多媒体的封装格式，使用ffprobe -show_ format output.mp4命令即可。封装相关信息在输出中使用[FORMAT]标签。

	[FORMAT]

	filename=output.mp4

	nb_streams=1

	nb_programs=0

	format_name=mov,mp4,m4a,3gp,3g2,mj2

	format_long_name=QuickTime / MOV

	start_time=0.000000

	duration=10.080000

	size=212111

	bit_rate=168342

	probe_score=100

	[/FORMAT]

	对输出信息关键字段的说明如表3-4所示。

	表3-4 format关键字段说明

	[image:]

	参考表3-4中介绍的字段，可以看到上面这个视频文件只有1个流通道，起始时间是0.000000，总时间长度为10.080000，文件大小为212 111字节，码率为168 342 bit/s。这个文件的格式有可能是MOV、MP4、M4A、3GP、3G2或者MJ2，ffprobe之所以会这么输出，是因为这几种封装格式在ffmpeg中所识别的标签基本相同，所以会有多种显示方式，而其他封装格式不一定是这样的。下面我们再看一个WMV的封装格式。

	[FORMAT]

	filename=input.wmv

	nb_streams=1

	nb_programs=0

	format_name=asf

	format_long_name=ASF (Advanced / Active Streaming Format)

	start_time=0.000000

	duration=10.080000

	size=1306549

	bit_rate=1036943

	probe_score=100

	[/FORMAT]

	这个input.wmv文件中包含两个流通道，文件封装格式为ASF。

	3）使用ffprobe -show_frames input.flv命令可以查看视频文件中的帧信息，输出的帧信息使用[FRAME]标签。

	使用-show_frames参数可以查看每一帧的信息，其中一些重要字段如表3-5所示。

	表3-5 frame重要字段说明

	[image:]

	[image:]

	使用Elecard StreamEye工具打开并查看MP4时，会很直观地看到帧类型信息。用ffprobe的pict_type同样可以看到视频的帧是I帧、P帧还是B帧。每一帧的大小也同样可以通过ffprobe的pkt_size查看。

	通过-show_streams参数可以查看多媒体文件中的流信息。流信息使用[STREAMS]标签，其中重要字段说明如表3-6所示。

	表3-6 streams重要字段说明

	[image:]

	[image:]

	[image:]

	4）ffprobe使用前面的参数可以获得key-value格式的显示方式，有时需要计算机对输出信息进行处理，则可以定义输出的格式，我们使用ffprobe -print_format或者ffprobe -of参数来设定相应的输出格式，其支持的格式包括XML、INI、JSON、CSV、FLAT等。下面列举几个不同输出格式的例子。

	通过ffprobe -of xml -show_streams input.flv得到的XML输出格式如下：

	<?xml version="1.0" encoding="UTF-8"?>

	<ffprobe>

	 <streams>

	 <stream index="0" codec_name="h264" codec_long_name="H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10" profile="High" codec_type="video" codec_time_base="1/50" codec_tag_string="[0][0][0][0]" codec_tag="0x0000" width="1280" height="714" coded_width="1280" coded_height="714" has_b_frames="2" sample_aspect_ratio="1:1" display_aspect_ratio="640:357" pix_fmt="yuv420p" level="31" chroma_location="left" field_order="progressive" refs="1" is_avc="true" nal_length_size="4" r_frame_rate="25/1" avg_frame_rate="25/1" time_base="1/1000" start_pts="80" start_time="0.080000" bit_rate="200000" bits_per_raw_sample="8">

	 <disposition default="0" dub="0" original="0" comment="0" lyrics="0" karaoke="0" forced="0" hearing_impaired="0" visual_impaired="0" clean_effects="0" attached_pic="0" timed_thumbnails="0"/>

	 </stream>

	 </streams>

	</ffprobe>

	从输出内容可以看到，输出的内容格式为XML格式。如果原有的业务中本身可以解析XML格式，其实不需要更改解析引擎，直接将输出内容输出为XML格式即可，解析引擎解析Packet信息时会很方便。

	使用ffprobe -of ini -show_streams input.flv可得到INI格式输出，这种格式可以用于擅长INI解析的项目。

	[streams.stream.0]

	index=0

	codec_name=h264

	codec_long_name=H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10

	profile=High

	codec_type=video

	codec_time_base=1/50

	codec_tag_string=[0][0][0][0]

	codec_tag=0x0000

	width=1280

	height=714

	coded_width=1280

	coded_height=714

	has_b_frames=2

	使用ffprobe -of flat -show_streams input.flv可输出如下FLAT格式：

	streams.stream.0.index=0

	streams.stream.0.codec_name="h264"

	streams.stream.0.codec_long_name="H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"

	streams.stream.0.profile="High"

	streams.stream.0.codec_type="video"

	streams.stream.0.codec_time_base="1/50"

	streams.stream.0.codec_tag_string="[0][0][0][0]"

	streams.stream.0.codec_tag="0x0000"

	streams.stream.0.width=1280

	streams.stream.0.height=714

	直接可以获得Packet属于哪个Stream，从而获得Stream对应的Packet的信息。

	使用ffprobe -of json -show_packets input.flv可输出如下JSON格式：

	{

	 "packets": [

	 {

	 "codec_type": "video",

	 "stream_index": 0,

	 "pts": 80,

	 "pts_time": "0.080000",

	 "dts": 0,

	 "dts_time": "0.000000",

	 "size": "8341",

	 "pos": "344",

	 "flags": "K_"

	 },

	 {

	 "codec_type": "video",

	 "stream_index": 0,

	 "pts": 240,

	 "pts_time": "0.240000",

	 "dts": 40,

	 "dts_time": "0.040000",

	 "duration": 40,

	 "duration_time": "0.040000",

	 "size": "6351",

	 "pos": "8705",

	 "flags": "__"

	 },

	使用ffprobe -of csv -show_packets input.flv可输出如下CSV格式：

	packet,video,0,80,0.080000,0,0.000000,N/A,N/A,N/A,N/A,8341,344,K_

	packet,video,0,240,0.240000,40,0.040000,40,0.040000,N/A,N/A,6351,8705,__

	packet,video,0,160,0.160000,80,0.080000,40,0.040000,N/A,N/A,5898,15076,__

	packet,video,0,120,0.120000,120,0.120000,40,0.040000,N/A,N/A,263,20994,__

	packet,video,0,200,0.200000,160,0.160000,40,0.040000,N/A,N/A,4922,21277,__

	packet,video,0,280,0.280000,200,0.200000,40,0.040000,N/A,N/A,3746,26219,__

	packet,video,0,320,0.320000,240,0.240000,40,0.040000,N/A,N/A,2305,29985,__

	packet,video,0,360,0.360000,280,0.280000,40,0.040000,N/A,N/A,1767,32310,__

	packet,video,0,440,0.440000,320,0.320000,40,0.040000,N/A,N/A,1329,34097,__

	packet,video,0,400,0.400000,360,0.360000,40,0.040000,N/A,N/A,202,35446,__

	通过各种格式输出，可以使用对应的绘图方式绘制出可视化图形。例如输出CSV格式后使用Excel以表格形式打开，然后将表格中的数据以图形方式绘制出来，如图3-1和图3-2所示。

	[image:]

	▲图3-1 使用Excel查看以CSV格式输出的媒体信息

	[image:]

	▲图3-2 转换图形方式输出

	图形绘制出来后，可以看到对应的图形与StreamEye基本相同，如图3-3所示。

	[image:]

	图3-3 StreamEye中流媒体帧信息的可视化图

	5）使用select_streams可以查看音频（a）、视频（v）、字幕（s）的信息。例如配合show_frames查看视频的帧信息。

	ffprobe -show_frames -select_streams v -of xml input.mp4

	命令执行后可以看到输出的信息如下：

	<?xml version="1.0" encoding="UTF-8"?>

	<ffprobe>

	 <frames>

	 <frame media_type="video" stream_index="0" key_frame="1" pkt_pts="0" pkt_pts_time="0.000000" pkt_dts="0" pkt_dts_time="0.000000" best_effort_timestamp="0" best_effort_timestamp_time="0.000000" pkt_duration="640" pkt_duration_time="0.040000" pkt_pos="48" pkt_size="8341" width="1280" height="714" pix_fmt="yuv420p" sample_aspect_ratio="1:1" pict_type="I" coded_picture_number="0" display_picture_number="0" interlaced_frame="0" top_field_first="0" repeat_pict="0"/>

	 <frame media_type="video" stream_index="0" key_frame="0" pkt_pts="640" pkt_pts_time="0.040000" pkt_dts="640" pkt_dts_time="0.040000" best_effort_timestamp="640" best_effort_timestamp_time="0.040000" pkt_duration="640" pkt_duration_time="0.040000" pkt_pos="20638" pkt_size="263" width="1280" height="714" pix_fmt="yuv420p" sample_aspect_ratio="1:1" pict_type="B" coded_picture_number="3" display_picture_number="0" interlaced_frame="0" top_field_first="0" repeat_pict="0"/>

	 <frame media_type="video" stream_index="0" key_frame="0" pkt_pts="1280" pkt_pts_time="0.080000" pkt_dts="1280" pkt_dts_time="0.080000" best_effort_timestamp="1280" best_effort_timestamp_time="0.080000" pkt_duration="640" pkt_duration_time="0.040000" pkt_pos="14740" pkt_size="5898" width="1280" height="714" pix_fmt="yuv420p" sample_aspect_ratio="1:1" pict_type="B" coded_picture_number="2" display_picture_number="0" interlaced_frame="0" top_field_first="0" repeat_pict="0"/>

	 <frame media_type="video" stream_index="0" key_frame="0" pkt_pts="1920" pkt_ pts_time="0.120000" pkt_dts="1920" pkt_dts_time="0.120000" best_effort_timestamp="1920" best_effort_timestamp_time="0.120000" pkt_duration="640" pkt_duration_time="0.040000" pkt_pos="20901" pkt_size="4922" width="1280" height="714" pix_fmt="yuv420p" sample_aspect_ ratio="1:1" pict_type="B" coded_picture_number="4" display_picture_number="0" interlaced_ frame="0" top_field_first="0" repeat_pict="0"/>

	从上面内容可以看到，输出的frame信息全部为视频相关信息。在实际应用中如果不需要使用所有的字段信息，可以通过ffprobe的show_entries参数配合show_packets、show_ frames、show_format、show_streams、show_programs、show_chapters，指定对应的字段即可。show_entries参数后面的变量名为show_packets、show_frames、show_ format、show_streams、show_programs、show_chapters参数输出的标签，字段即标签开始到结束之间的字段，从而输出字段对应的值。例如在实际使用时需要得到视频文件中视频流所有关键帧的时间戳和对应的文件位置，那么可以按以下方式组合参数：

	ffprobe -of xml -select_streams v -show_packets -show_entries packet=codec_type,pts_ time,flags,pos input.mp4 | grep flags=\"K

	如果有多个视频流，则可以再通过stream_index过滤。

	ffprobe -of xml -select_streams v -show_packets -show_entries packet=stream_index, codec_type,pts_time,flags,pos input.mp4 | grep flags=\"K | grep stream_index=\"0

	以上参数输出的内容如下：

	<packet codec_type="video" stream_index="0" pts_time="0.000000" pos="36" flags="K_"/>

	<packet codec_type="video" stream_index="0" pts_time="0.750000" pos="23090" flags="K_"/>

	<packet codec_type="video" stream_index="0" pts_time="1.500000" pos="45428" flags="K_"/>

	<packet codec_type="video" stream_index="0" pts_time="2.250000" pos="79187" flags="K_"/>

	<packet codec_type="video" stream_index="0" pts_time="3.000000" pos="109510" flags="K_"/>

	<packet codec_type="video" stream_index="0" pts_time="3.750000" pos="139205" flags="K_"/>

	<packet codec_type="video" stream_index="0" pts_time="4.500000" pos="169374" flags="K_"/>

	<packet codec_type="video" stream_index="0" pts_time="5.250000" pos="192339" flags="K_"/>

	... 其余内容过多重复，这里省略 ...

	6）使用loglevel可查看MP4视频文件的moov位置。当在线视频播放服务中使用MP4视频时，要求MP4视频文件中moov box放在ftyp box之后、mdat box之前，否则一般会对moov box做二次处理，使其前移到文件的头部。在FFmpeg中，一般使用-movflags faststart参数将moov box前移，而确认moov box位置可以使用下面的命令：

	ffprobe -v trace input.mp4 2>&1|grep "parent:'root'"

	输出内容如下：

	[mov,mp4,m4a,3gp,3g2,mj2 @ 0x7ff9ba607d40] type:'ftyp' parent:'root' sz: 36 8 40044295

	[mov,mp4,m4a,3gp,3g2,mj2 @ 0x7ff9ba607d40] type:'free' parent:'root' sz: 8 44 40044295

	[mov,mp4,m4a,3gp,3g2,mj2 @ 0x7ff9ba607d40] type:'mdat' parent:'root' sz: 40019476 52 40044295

	[mov,mp4,m4a,3gp,3g2,mj2 @ 0x7ff9ba607d40] type:'moov' parent:'root' sz: 24775 40019528 40044295

	使用ffprobe还可以查看很多信息，如果需要进一步学习，可以根据本节介绍的方法查看详细选项。

3.3 ffplay常用命令

	在编译旧版本FFmpeg源代码时，如果系统中包含了SDL-1.2版本，会默认编译生成ffplay；如果不包含SDL-1.2或者版本不是SDL-1.2，则无法生成ffplay文件。所以如果想使用ffplay进行流媒体播放测试，需要安装SDL-1.2。而在新版本的FFmpeg源代码中，ffplay需要SDL-2.0之后的版本。ffplay使用SDL的原因主要是SDL是一个跨平台的多媒体开发库，屏蔽了不同平台诸如Windows、Linux、macOS相关的底层细节，使得ffplay可以很方便地同时支持多个平台。但随之也引入了一些限制，比如经常会被问到的ffplay是否支持硬解码与渲染一体加速的问题，ffplay实际上并未支持，究其原因，ffplay和其他FFmpeg工具集一样，它们最初是作为工具提供，并没有打算开发为一个完备可用的播放器方案。通常我们在FFmpeg中使用ffplay作为播放器，其实ffplay不但可以做播放器，还可以作为很多音视频数据的图形化分析工具，例如通过ffplay可以看到视频图像的运动估计方向、音频数据的波形等。

3.3.1 ffplay常用参数

	ffplay不仅是播放器，同时也是测试FFmpeg的Codec组件、Format组件以及Filter功能的可视化工具，并且可以做可视化的媒体参数分析。基本参数可以通过ffplay --help进行查看。大多数参数在前面已经介绍过，这里不再赘述。一些未介绍过的参数说明如表3-7所示。

	表3-7 ffplay基础帮助信息

	[image:]

	[image:]

	常见参数可以手动进行尝试。

	1）从视频的第30秒开始播放，播放10秒钟的文件，可以使用如下命令：

	ffplay -ss 30 -t 10 input.mp4

	2）播放视频时播放器的窗口显示为自定义标题，使用如下命令：

	ffplay -window_title "Hello World, This is a sample" output.mp4

	显示窗口如图3-4所示，增加了窗口标题。

	下面是另外一个使用ffplay打开网络直播流并带有播放窗口标题的例子，其使用以下命令：

	ffplay -window_title "播放测试" rtmp://up.v.test.com/live/stream

	命令执行后效果如图3-5所示。

	[image:]

	▲图3-4 ffplay设置播放器窗口标题

	[image:]

	▲图3-5 ffplay播放网络直播流并带有标题的窗口

	基本参数介绍完毕，下面进一步介绍ffplay的高级参数。

3.3.2 ffplay高级参数

	使用ffplay --help参数可以看到帮助信息比较多，其中包含了高级参数，如表3-8所示。

	表3-8 ffplay高级参数

	[image:]

	[image:]

	下面将这些参数与前面介绍过的一些参数进行组合使用。

	1）从20秒播放一个视频，播放时长为10秒，播放完成后自动退出ffplay，播放器的窗口标题为“Hello World”。为了确认播放时长正确，可以通过系统命令time查看命令运行时长。

	time ffplay -window_title "Hello World" -ss 20 -t 10 -autoexit output.mp4

	该命令执行完毕之后的输出如下：

	real 0m10.783s

	user 0m8.401s

	sys 0m0.915s

	从输出的内容分析来看，实际消耗时间为10.783秒，用户控件消耗8.401秒，情况基本相符。

	2）强制使用H.264解码器来解码MPEG4格式的视频，将会报错。

	ffplay -vcodec h264 output.mp4

	从输出的信息可以看到，使用H.264解码器来解码MPEG4时会得到“no frame”的错误，视频也解析不出来。

	3）在前面举过的例子中，比较多的是MPEG-TS单节目的流。下面举一个MPEG-TS多节目的流，这种单个文件中包含多个节目的场景常见于广电行业的视频中。

	Input #0, mpegts, from '/Users/liuqi/Movies/movie/ChinaTV-11.ts':

	 Duration: 00:01:50.84, start: 42860.475344, bitrate: 37840 kb/s

	 Program 12

	 Metadata:

	 service_name : BBB1

	 service_provider: BBB

	 Stream #0:0[0x3dc]: Video: mpeg2video (Main) ([2][0][0][0] / 0x0002), yuv420p(tv, top first), 544x480 [SAR 20:17 DAR 4:3], Closed Captions, 29.97 fps, 29.97 tbr, 90k tbn, 59.94 tbc

	 Stream #0:1[0x3dd](eng): Audio: mp2 ([4][0][0][0] / 0x0004), 48000 Hz, mono, s16p, 128 kb/s

	 Program 13

	 Metadata:

	 service_name : BBB 9

	 service_provider: BBB

	 Stream #0:4[0x3f0]: Video: mpeg2video (Main) ([2][0][0][0] / 0x0002), yuv420p(tv, top first), 544x480 [SAR 20:17 DAR 4:3], Closed Captions, 29.97 fps, 29.97 tbr, 90k tbn, 59.94 tbc

	 Stream #0:5[0x3f1](eng): Audio: mp2 ([4][0][0][0] / 0x0004), 48000 Hz, mono, s16p, 128 kb/s

	 Program 14

	 Metadata:

	 service_name : BBB12

	 service_provider: BBB

	 Stream #0:6[0x404]: Video: mpeg2video (Main) ([2][0][0][0] / 0x0002), yuv420p(tv, top first), 544x480 [SAR 20:17 DAR 4:3], Closed Captions, 29.97 fps, 29.97 tbr, 90k tbn, 59.94 tbc

	 Stream #0:7[0x405](eng): Audio: mp2 ([4][0][0][0] / 0x0004), 48000 Hz, mono, s16p, 128 kb/s

	 Program 15

	 Metadata:

	 service_name : BBB Low

	 service_provider: BBB

	 Stream #0:8[0x418]: Video: mpeg2video (Main) ([2][0][0][0] / 0x0002), yuv420p(tv, top first), 544x480 [SAR 20:17 DAR 4:3], Closed Captions, 29.97 fps, 29.97 tbr, 90k tbn, 59.94 tbc

	 Stream #0:9[0x419](eng): Audio: mp2 ([4][0][0][0] / 0x0004), 48000 Hz, mono, s16p, 128 kb/s

	当视频流中出现多个Program时，与常规的播放方式稍有所不同，需要指定对应的流，这可以通过vst、ast、sst参数指定。例如希望播放Program 13中的音视频流，视频流编号为4，音频流编号为5，则通过如下命令行指定：

	ffplay -vst 4 -ast 5 ~/Movies/movie/ChinaTV-11.ts

	播放效果如图3-6所示。

	通过Program 13中的信息可以看到，该流名称为service_name，对应的值是BBB 9，而指定音视频流播放之后播放出来的图像也能够与之对应。

	[image:]

	图3-6 ffplay选择跨Program的流播放

	4）如果使用ffplay播放视频时希望加载字幕文件，则可以通过加载ASS或者SRT字幕文件来解决。下面举一个加载SRT字幕的例子，首先编辑SRT字幕文件，字幕文件的内容如下，且命名为input.srt。

1

	00:00:01.000 --> 00:00:30.000

	Test Subtitle by Steven Liu

2

	00:00:30.001 --> 00:00:60.000

	Hello Test Subtitle

3

	00:01:01.000 --> 00:01:10.000

	Test Subtitle2 by Steven Liu

4

	00:01:11.000 --> 00:01:30.000

	Test Subtitle3 by Steven Liu

	然后通过filter将字幕文件加载到播放数据中。使用如下命令：

	ffplay -window_title "Test Movie" -vf "subtitles=input.srt" output.mp4

	通过这条命令看到播放的效果如图3-7所示。可以看到，SRT格式的文字字幕已经加入视频中并展现了出来。

	[image:]

	图3-7 ffplay播放视频并加载字幕流

3.3.3 ffplay的数据可视化分析应用

	除了可以播放视频流媒体文件，ffplay还可以作为简化版本的可视化的视频流媒体分析工具。例如当播放音频文件时，若需要判断文件声音是否正常、分析噪声数据等，可以直接使用ffplay播放音频文件，并在播放的时候将解码后的音频数据以音频波形的形式显示出来，如图3-8所示。

	ffplay -showmode 1 output.mp3

	[image:]

	图3-8 ffplay播放音频波形显示

	可以看到，音频播放时的波形可以通过振幅显示出来，可以用来查看音频的播放情况。

	例如，当播放视频时体验解码器是如何解码每个宏块的，可以使用以下命令：

	ffplay -debug vis_mb_type -window_title "show vis_mb_type" -ss 20 -t 10 -autoexit output.mp4

	显示窗口内容如图3-9所示。

	[image:]

	图3-9 ffplay播放视频显示宏块

	在输出的视频信息中可以看到不同颜色的方块，这些颜色代表的信息如表3-9所示。

	表3-9 宏块显示颜色说明

	[image:]

	[1] 宏块颜色为彩图，可通过配套资源获取。

	例如，通过ffplay查看B帧预测与P帧预测信息，将信息在窗口中显示出来，可使用以下命令：

	ffplay -vismv pf output.mp4

	显示效果如图3-10所示。

	[image:]

	图3-10 ffplay播放视频显示预测信息

	通过图3-10中的箭头可以看到P帧预测的信息。而vismv参数则是用来显示图像解码时的运动向量信息的，可以设置3种类型的运动向量显示参数，如表3-10所示。

	表3-10 运动向量显示参数

	[image:]

	这个vismv参数将会在未来被替换，而更多的是使用codecview这个filter来进行设置。如上面的图像也可以通过下面这条命令完成：

	ffplay -flags2 +export_mvs -ss 40 output.mp4 -vf codecview=mv=pf+bf+bb

3.3.4 ffplay快捷键

	虽然ffplay在播放时不带控制UI，但是支持了常用的快捷键来控制播放，如表3-11所示。测试快捷键功能时，建议切换到英文输入法，以减少一些不必要的按键失误。

	表3-11 ffplay常用快捷键列表

	[image:]

	[image:]

3.4 小结

	本章对FFmpeg中的ffmpeg、ffprobe、ffplay做了相应的介绍，读者可以实操运行这些命令，以获得一些感性认识。

	・ffmpeg主要用于音视频编解码，作为一个高性能的视频和音频转换器，它既可以从本地文件或网络流读取媒体数据，也可以从现场的音频/视频源抓取数据，还可以在任意的采样率之间进行转换，并通过高质量的滤镜在运行时调整视频的大小等。

	・ffprobe主要用于音视频内容分析，从多媒体流中收集信息并以易读的方式打印出来以供分析等。

	・ffplay主要用于音视频播放、可视化分析，是个简单且支持各个平台的媒体播放器，使用FFmpeg库和SDL库，主要被用作各种FFmpeg API的测试。
玻尔的原文是：An expert is someone who has made all the mistakes that can be made in a very narrow field.
	通过对3个应用程序的介绍，相信大家已经学会使用FFmpeg的相关工具集来分析、转换、播放媒体文件，以及执行基本的操作并掌握一定的使用规则了。不过FFmpeg命令行所支持的参数非常庞大，唯有先掌握好这些基础操作，才能在碰到实际问题的时候，使用更有创造性的方式来解决。不要害怕动手与出错，大胆实验，小心求证，正如物理学家、诺贝尔奖得主玻尔说的：“所谓专家，就是在极小领域内犯过所能犯的全部错误的人。”
	 [image: 玻尔的原文是：An expert is someone who has made all the mistakes that can be made in a very narrow field.]

第4章

封装与解封装

	本章将重点介绍如何使用FFmpeg进行媒体格式的封装与解封装。前面已经介绍过FFmpeg支持的容器格式（也可以称为媒体封装格式）的多样性与全面性，本章不会完全列举所有容器格式或者流媒体协议，而是着重介绍常见的容器格式和流媒体协议。

	在进入正题前，先简单回顾一下封装格式的作用。容器格式是一种允许将单个或多个音频、视频、字幕等数据流存入单个文件的文件格式，通常伴随着用于识别和进一步详细说明这些数据流的元数据，元数据一般被存储在文件的头部，有时候也被称为音视频关键数据索引。典型的音视频多媒体容器格式如FLV、MP4、MPEG-TS、RMVB和AVI等。较简单的容器格式可以包含不同类型的音频、视频流，而更高级的容器格式可以支持多个音频和视频流、字幕、章节信息、元数据（或称为标签），以及播放各种类型的流所需的同步信息。同时，容器格式需要解决如图 4-1 所示的这些问题。

	[image:]

	图4-1 容器格式要解决的问题

	从图4-1可以看到，容器格式的设计至少需要考虑如下这些需求：

	・捕获视频图像、音频信号。

	・文件的交换与下载，包括增量下载与播放。

	・本地播放。

	・编辑、组合、快速定位与搜索等。

	・流式播放及拉流录制。

	容器格式的设计和使用需要考虑逻辑、时序和物理结构。本章主要介绍多媒体领域最常见的容器格式，一方面熟悉容器格式的设计细节，另一方面也介绍与FFmpeg相关的操作。

4.1 视频文件转MP4

MSE规范定义了基于ISO BMFF的媒体源扩展字节流格式规范，最新的规范参考https://w3c.github.io/mse-byte-stream-format- isobmff。AVC/H.264、HEVC/H.265、VVC/H.266的基本视频流包含一个特定的比特模式0x000001或者0x00000001（被称为起始码），这些模式主要用于划分NALU（例如帧或片）的边界。
	在互联网常见的格式中，跨平台最好的应该是MP4文件。MP4文件既可以在PC平台播放，也可以在Android、iOS等移动平台中播放，而且使用系统默认的播放器即可播放。同时它也被MSE（Media Source Extensions）
	 [image: MSE规范定义了基于ISO BMFF的媒体源扩展字节流格式规范，最新的规范参考https://w3c.github.io/mse-byte-stream-format- isobmff。]所支持，这意味着浏览器的生态也支持它。MP4文件包含视频和音频基本流，以及正确播放和编辑所需的上下文信息（通常称为元数据）。粗略地说，MP4文件分为两个主要部分：元数据（moov）和音视频数据（mdat）。其中，元数据moov包含通用信息，如每个音频、视频帧的时间信息和偏移量等；mdat包含视频和音频帧，通常以交错顺序（尽管也支持所谓的平面顺序，实际上MP4也支持把音频和视频放在两个不同的文件中）存放。请注意，MP4中的视频帧没有以起始码
	 [image: AVC/H.264、HEVC/H.265、VVC/H.266的基本视频流包含一个特定的比特模式0x000001或者0x00000001（被称为起始码），这些模式主要用于划分NALU（例如帧或片）的边界。]作为前缀，而是使用长度；然而，我们可以通过元数据中相应表里的偏移量轻松地访问任何音频、视频帧。

	MP4文件格式的基础是ISO BMFF（ISO Base Media File Format），最初源自苹果的QuickTime文件格式，然后由MPEG（ISO/IEC JTC1/SC29/WG11）进行了开发和标准化定制。第1版MP4文件格式规范是在2001年发布的，在QuickTime格式规范基础上创建，被称为MPEG-4文件格式“版本1”，作为ISO/IEC 14496-1:2001发布，属于MPEG-4“第1部分：系统的修订”。2003年，MP4文件格式第1版被修订，并被MPEG-4“第14部分：MP4文件格式”（ISO/IEC 14496-14:2003）取代，通常被称为MPEG-4文件格式“版本2”。ISO BMFF（ISO/IEC 14496-12:2004或ISO/IEC 15444-12:2004）主要是为基于时间的媒体文件定义一个一般性的结构。

	另外，因为ISO标准在ISO BMFF/MP4中使用“box”这个词，而苹果的QuickTime文档使用“atom”这个词，二者可以视为相同，所以本书也混用了box和atom这两个词，但含意是一样的。

	MP4文件格式中包含多个子容器，每个子容器在标准中都称为box或atom，在交流时通常不翻译成容器、盒子、箱子，因为容易给对方造成理解上的困扰。前面讲过的moov及mdat等，都是box。

	ISO BMFF文件格式包含结构和媒体数据信息，主要用于媒体数据的时序化展示，如音频、视频等；也支持非时序化的数据，如元数据。通过以不同的方式构建文件，在同一个基本规范下其产生的文件可用于完成以下任务：

	・捕获、采集音视频裸数据。

	・交换和下载，包括增量下载和播放。

	・本地播放。

	・编辑、合成。

	・从流媒体服务器传输流媒体，以及将流媒体捕获到文件。

	在了解这些背景后，接下来首先重点介绍MP4封装的基本格式。

4.1.1 MP4格式标准介绍

	MP4格式标准其实来自于一系列标准，比较重要的如下：

	・ISO-14496 Part 12，定义了一个通用可扩展的基本框架和一些通用的box，该标准被简称为ISO BMFF。

	・ISO-14496 Part 14，定义了MP4文件格式，派生于ISO BMFF，即ISO-14496 Part 12。

	・ISO-14496 Part 15，是在ISO-14496 Part 12基础上定义如何封装AVC、HEVC（最近的版本扩展了VVC等）的NALU。

	这些标准的内容分散在不同的文档中，它们的关系如图4-2所示。

	[image:]

	图4-2 MP4标准之间的关系

	下面介绍一些重要的信息。如果要了解MP4的格式信息，首先要弄清楚以下几个概念：

	・MP4文件由许多个box与FullBox组成，无一例外，如图4-3和图4-4所示。

	[image:]

	图4-3 MP4 box基本结构

	・每个box由header和data两部分组成。

	・FullBox则是box的扩展，以box结构为基础，在header中增加8位的version标志和24位的flags标志。增加version标志意味着这个box有了灵活扩展的可能，而flags标志则是在特定FullBox中定义的。

	・header包含了整个box的长度大小（size）和类型（type），类型是一个典型的4字符的标签，一般被称为FourCC。当size等于0时，代表这个box是文件的最后一个box；当size等于1时，说明box长度需要更多的位来描述，在后面会定义一个64位的largesize来描述box的长度，如图4-4所示。当type为uuid时，说明这个box中的数据是用户自定义扩展类型。

	随着4K视频和高帧率视频等高比特率视频的出现，越来越多超过4GB的视频正在被录制。视频数据被写入名为“mdat”的box中，但如果box的大小为32位，当文件大小超过4GB时就不够了，为此，需要提供一个扩展的尺寸，即将box头部的size设置为1，而largesize作为一个64位无符号整数用来记录大于4GB的box的长度。

	这也意味着一个大小为1的box是不存在的，box的“大小+类型”必须至少有8字节。

	另外，固定的4字节的大小（size）也使得解析一个box或者跳过一个box变得非常便利。

	・data为box的实际数据，可以是纯媒体数据，也可以是更多的子box。这意味着box是分层嵌套的，即一个box里可以有多个box，并可以多层嵌套，如图4-5所示。

	・当一个box中data是一系列的子box时，这个box又可以称为Container（容器）box。

	[image:]

	▲图4-4 MP4扩展box

	[image:]

	▲图4-5 MP4 box嵌套box

	box和FullBox的准确定义如下：

	aligned(8) class Box (unsigned int(32) boxtype,

	 optional unsigned int(8)[16] extended_type) {

	 unsigned int(32) size;

	 unsigned int(32) type = boxtype;

	 if (size == 1) {

	 unsigned int(64) largesize;

	 } else if (size == 0) {

	 // box extends to end of file

	 }

	 if (boxtype == 'uuid') {

	 unsigned int(8)[16] usertype = extended_type;

	 }

	}

	aligned(8) class FullBox(unsigned int(32) boxtype, unsigned int(8) v, bit(24) f)

	 extends Box(boxtype) {

	 unsigned int(8) version = v;

	 bit(24) flags = f;

	}

	表4-1中列出了MP4文件中常用的box类型和组成方式，其中标记“√”的为必要的box，否则为可选的box。

	表4-1 MP4参考box列表

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	在MP4文件中，box的基本层次排列与表4-1的描述没有太大差别，但顺序上可能有所变化。当然，因为MP4标准中描述的moov与mdat的存放位置前后并没有强制要求，所以有时moov被存放在mdat的后面，有时moov被存放在mdat的前面。在互联网的视频点播中，如果希望MP4文件被快速打开，则需要将moov存放在mdat的前面，如果放在后面，需要将MP4文件下载完成后才可以进行播放。从实践的角度看，moov放在文件头部更为合适一些。当然，在实际生成MP4文件时，由于moov中的一些信息事先无法预测，需要在文件即将结束时才能获取到，所以一般都是在生成完毕后再移动到文件头部的。

	解析MP4多媒体文件时，需要一些关键的信息，下面介绍一些box的重要相关信息。

	1. moov解析

	前面已经介绍过，moov定义了MP4文件的元数据信息，在MP4文件中有且仅有一个，moov里面包含的子box作为描述媒体数据的信息的容器。这些元数据信息被存储在不同类型的子box中。一般来说，元数据被存储在moov box中，而多媒体的实际数据，如音频或视频数据，则在moov box中被引用，但不包含在其中。

	moov至少包含以下3种box中的一种。

	・mvhd：Movie Header box，存放多媒体信息头的容器，这是最常见的形式。

	・cmov：Compressed Movie box，压缩过的电影信息容器。

	・rmra：Reference Movie box，参考电影信息容器。

	它也可以包含其他容器，例如影片剪辑信息Clipping box（clip）、一个或几个trak box、一个Color Table box（ctab），以及一个User Data box（udta）。

	moov本质上是其他box的一个容器，这些box组合在一起描述了多媒体的内容。从高层结构看，moov通常包含trak box，而trak box又包含mdia box。最低层的子box则包含非box格式的数据，通常以表格或一组数据元素的形式出现。例如，一个trak box包含一个edts box，而edts box又包含一个elst box，这个子box包含以编辑列表形式存在的数据。如果读者现在并不太明白其细节，不用担心，所有这些box都将在后面详细讨论。

	moov中最为常见的是mvhd，它定义了整个多媒体文件的timescale、duration等显示特性。而trak中定义了多媒体文件中的一个track的信息，track指的是多媒体文件中可以独立操作的媒体单位，例如一个声道是一个track，一个视频流也是一个track。

	使用二进制查看工具打开一个MP4文件查看其内容，可以了解前面所讲的MP4文件容器信息。

	00000000: 0000 0020 6674 7970 6973 6f6d 0000 0200 ... ftypisom....

	00000010: 6973 6f6d 6973 6f32 6176 6331 6d70 3431 isomiso2avc1mp41

	00000020: 0000 22bb 6d6f 6f76 0000 006c 6d76 6864 ..".moov...lmvhd

	00000030: 0000 0000 0000 0000 0000 0000 0000 03e8

	00000040: 0000 2716 0001 0000 0100 0000 0000 0000 ..'.............

	00000050: 0000 0000 0001 0000 0000 0000 0000 0000

	00000060: 0000 0000 0001 0000 0000 0000 0000 0000

	读取这个moov的方式如表4-2所示。

	表4-2 moov参数

	[image:]

	根据解析的这个容器的字节长度可以看到，该容器共包含0x000022bb（8891）字节，类型为moov。下面继续在moov这个容器中往下解析，下一个容器大小为0x0000006c（108）字节，类型为mvhd。

	00000090: 0000 0003 0000 11de 7472 616b 0000 005c trak...\

	000000a0: 746b 6864 0000 0003 0000 0000 0000 0000 tkhd............

	000000b0: 0000 0001 0000 0000 0000 2710 0000 0000 '.....

	000000c0: 0000 0000 0000 0000 0000 0000 0001 0000

	000000d0: 0000 0000 0000 0000 0000 0000 0001 0000

	000000e0: 0000 0000 0000 0000 0000 0000 4000 0000 @...

	000000f0: 0500 0000 02ca 0000 0000 0030 6564 7473 0edts

	00000100: 0000 0028 656c 7374 0000 0000 0000 0002 ...(elst........

	00000110: 0000 0050 ffff ffff 0001 0000 0000 2710 ...P..........'.

	00000120: 0000 07d0 0001 0000 0000 114a 6d64 6961 Jmdia

	00000130: 0000 0020 6d64 6864 0000 0000 0000 0000 ... mdhd........

	00000140: 0000 0000 0000 61a8 0003 d090 55c4 0000 a.....U...

	00000150: 0000 002d 6864 6c72 0000 0000 0000 0000 ...-hdlr........

	00000160: 7669 6465 0000 0000 0000 0000 0000 0000 vide............

	00000170: 5669 6465 6f48 616e 646c 6572 0000 0010 VideoHandler....

	00000180: f56d 696e 6600 0000 1476 6d68 6400 0000 .minf....vmhd...

	分析完mvhd之后，moov中的下一个容器是trak，容器的大小是0x000011de（4574）字节，类型是trak。解析完这个trak之后，接下来又是一个trak，解析方式与之前trak的解析相同。可以看到，下面文件内容的trak的大小为0x00001007（4103）字节。另外，trak box有两种，分别为media track和hint track，前者用于保存media相关信息，后者包含用于流媒体的打包信息。

	00001270: 067f 0000 1007 7472 616b 0000 005c 746b trak...\tk

	00001280: 6864 0000 0003 0000 0000 0000 0000 0000 hd..............

	00001290: 0002 0000 0000 0000 2716 0000 0000 0000 '.......

	000012a0: 0000 0000 0001 0100 0000 0001 0000 0000

	000012b0: 0000 0000 0000 0000 0000 0001 0000 0000

	000012c0: 0000 0000 0000 0000 0000 4000 0000 0000 @.....

	000012d0: 0000 0000 0000 0000 0024 6564 7473 0000 $edts..

	000012e0: 001c 656c 7374 0000 0000 0000 0001 0000 ..elst..........

	000012f0: 2716 0000 0000 0001 0000 0000 0f7f 6d64 '.............md

	00001300: 6961 0000 0020 6d64 6864 0000 0000 0000 ia... mdhd......

	00001310: 0000 0000 0000 0000 bb80 0007 5400 55c4 T.U.

	00001320: 0000 0000 002d 6864 6c72 0000 0000 0000 -hdlr......

	00001330: 0000 736f 756e 0000 0000 0000 0000 0000 ..soun..........

	00001340: 0000 536f 756e 6448 616e 646c 6572 0000 ..SoundHandler..

	00001350: 000f 2a6d 696e 6600 0000 1073 6d68 6400 ..*minf....smhd.

	00001360: 0000 0000 0000 0000 0000 2464 696e 6600 $dinf.

	解析完这个音频的trak之后，接下来可以看到还有一个moov容器中的子容器，即udta容器。这个udta容器的解析方式与前面的方式基本相同。从下面的文件数据中可以看到，它的大小为0x00000062（98）字节。

	00002270: e600 2c03 d900 2c12 e000 0000 6275 6474 ..,...,.....budt

	00002280: 6100 0000 5a6d 6574 6100 0000 0000 0000 a...Zmeta.......

	00002290: 2168 646c 7200 0000 0000 0000 006d 6469 !hdlr........mdi

	000022a0: 7261 7070 6c00 0000 0000 0000 0000 0000 rappl...........

	000022b0: 002d 696c 7374 0000 0025 a974 6f6f 0000 .-ilst...%.too..

	000022c0: 001d 6461 7461 0000 0001 0000 0000 4c61 ..data........La

	000022d0: 7666 3537 2e36 362e 3130 3200 0000 0866 vf57.66.102....f

	000022e0: 7265 6500 2bf2 9e6d 6461 7400 0003 3d06 ree.+..mdat...=.

	根据前面描述的信息得知，udta+视频 trak+音频 trak+mvhd+moov 所有容器的总大小刚好为8891字节，与前面得出的moov的大小相等。

	前面描述了针对moov及下面的子容器的解析。接下来继续解析moov子容器中的子容器。

	2. mvhd解析

	mvhd box在moov box里面，包含了与整个播放展示相关的元数据。诸如文件的创建和修改时间等信息，它告诉我们视频播放器总时长、time scale、播放速度和初始音量。

	00000020: 0000 22bb 6d6f 6f76 0000 006c 6d76 6864 ..".moov...lmvhd

	00000030: 0000 0000 0000 0000 0000 0000 0000 03e8

	00000040: 0000 2716 0001 0000 0100 0000 0000 0000 ..'.............

	00000050: 0000 0000 0001 0000 0000 0000 0000 0000

	00000060: 0000 0000 0001 0000 0000 0000 0000 0000

	00000070: 0000 0000 4000 0000 0000 0000 0000 0000 @...........

	00000080: 0000 0000 0000 0000 0000 0000 0000 0000

	00000090: 0000 0003 0000 11de 7472 616b 0000 005c trak...\

	从文件内容中可以看到，mvhd的大小为0x0000006c字节，mvhd的解析方式如表4-3所示。

	表4-3 mvhd参数

	[image:]

	[image:]

	按照表4-3的方式对文件数据解析出来的mvhd内容对应的信息如表4-4所示。

	表4-4 mvhd参数值

	[image:]

	[image:]

	其中播放速度为16.16定点小数模式的表示方式。以上面的0x00010000为例。

	十六进制rate = 0x00010000，二进制rate = 0b00000000000000010000000000000000，转换为16.16的定点小数rate = 0b0000000000000001.0000000000000000，十进制rate = 1.0。

	解析mvhd之后，可以看到下一个trak ID为0x00000003。接下来就开始解析trak，解析出来的trak同样也包含了多个子容器。

	3. trak解析

	trak定义了媒体文件中一个track（轨道）的信息。一个媒体文件可以包含多个track，每个track都是独立的，有自己的时间和空间占用的信息。每个trak容器都有与它关联的媒体容器描述信息。使用trak的主要目的如下：

	・包含媒体数据的引用和描述（media track）。

	・包含modifier track信息。

	・包含流媒体协议的打包信息（hint track），hint track可以引用或者复制对应的媒体采样数据。

	hint track和modifier track必须保证完整性，与至少一个media track同时存在。一个trak中要求必须有一个Track Header box（tkhd）、一个Media box（mdia），其他的box都是可选的。例如：

	・Track剪辑容器：Track Clipping box（clip）

	・Track画板容器：Track Matte box（matt）

	・Edit容器：Edit box（edts）

	・Track参考容器：Track Reference box（tref）

	・Track配置加载容器：Track Load Settings box（load）

	・Track输出映射容器：Track Input Map box（imap）

	・用户数据容器：User Data box（udta）

	解析参数如表4-5所示。

	表4-5 trak数据通用参数表

	[image:]

	打开MP4文件查看文件中的二进制数据，如下：

	00000090: 0000 0003 0000 11de 7472 616b 0000 005c trak...\

	000000a0: 746b 6864 0000 0003 0000 0000 0000 0000 tkhd............

	000000b0: 0000 0001 0000 0000 0000 2710 0000 0000 '.....

	000000c0: 0000 0000 0000 0000 0000 0000 0001 0000

	000000d0: 0000 0000 0000 0000 0000 0000 0001 0000

	000000e0: 0000 0000 0000 0000 0000 0000 4000 0000 @...

	000000f0: 0500 0000 02ca 0000 0000 0030 6564 7473 0edts

	00000100: 0000 0028 656c 7374 0000 0000 0000 0002 ...(elst........

	00000110: 0000 0050 ffff ffff 0001 0000 0000 2710 ...P..........'.

	00000120: 0000 07d0 0001 0000 0000 114a 6d64 6961 Jmdia

	00000130: 0000 0020 6d64 6864 0000 0000 0000 0000 ... mdhd........

	00000140: 0000 0000 0000 61a8 0003 d090 55c4 0000 a.....U...

	00000150: 0000 002d 6864 6c72 0000 0000 0000 0000 ...-hdlr........

	00000160: 7669 6465 0000 0000 0000 0000 0000 0000 vide............

	从文件的数据内容中可以看到，这个trak的大小为0x000011de（4574）字节，下面的子容器的大小为0x0000005c（92）字节，子容器的类型为tkhd；跳过92字节后，接下来读到的trak的子容器的大小为0x00000030（48）字节，子容器的类型为edts；跳过48字节后，接下来读到的trak子容器的大小为0x0000114a（4426）字节，子容器的类型为mdia。可以分析得到，trak容器信息（8）+tkhd（92）+edts（48）+mdia（4426）子容器的大小刚好为4574字节。trak读取完毕。

	4. tkhd解析

	tkhd放在trak box里，每个track只能有一个tkhd。它是强制性的，包含描述单个轨道的特性的元数据。解析tkhd容器的方式如表4-6所示。

	表4-6 tkhd参数

	[image:]

	[image:]

	[image:]

	可以看到tkhd中的很多字段信息与mvhd有些类似，原因其实容易理解，mvhd描述整个文件的公共信息，而thkd描述整个文件中某个track的信息。下面具体看一个tkhd的内容，然后根据表4-6做一个信息的对应。这个tkhd对应的值如表4-7所示。

	表4-7 视频tkhd对应参数值

	[image:]

	[image:]

	[image:]

	以上为解析视频trak容器的tkhd。下面再分析一下音频的tkhd。

	00001270: 067f 0000 1007 7472 616b 0000 005c 746b trak...\tk

	00001280: 6864 0000 0003 0000 0000 0000 0000 0000 hd..............

	00001290: 0002 0000 0000 0000 2716 0000 0000 0000 '.......

	000012a0: 0000 0000 0001 0100 0000 0001 0000 0000

	000012b0: 0000 0000 0000 0000 0000 0001 0000 0000

	000012c0: 0000 0000 0000 0000 0000 4000 0000 0000 @.....

	000012d0: 0000 0000 0000 0000 0024 6564 7473 0000 $edts..

	000012e0: 001c 656c 7374 0000 0000 0000 0001 0000 ..elst..........

	000012f0: 2716 0000 0000 0001 0000 0000 0f7f 6d64 '.............md

	00001300: 6961 0000 0020 6d64 6864 0000 0000 0000 ia... mdhd......

	00001310: 0000 0000 0000 0000 bb80 0007 5400 55c4 T.U.

	00001320: 0000 0000 002d 6864 6c72 0000 0000 0000 -hdlr......

	00001330: 0000 736f 756e 0000 0000 0000 0000 0000 ..soun..........

	解析trak的基本方法前面已经讲过，现在重点解析音频的tkhd的内容，并用表格形式将数据表示出来，如表4-8所示。

	表4-8 音频tkhd参数值

	[image:]

	[image:]

	从上述两个例子中可以看出，音频与视频的trak的tkhd大小相同，但因为里面的内容描述的是音频轨道，所以其类型和取值有所不同。至此trak的tkhd解析完毕。

	5. mdia解析

	解析完tkhd之后，接下来分析一下trak的子容器。Media box的类型是mdia，是一个容器box，其必须包含如下容器：

	・媒体头容器：Media Header box（mdhd）

	・句柄参考容器：Handler Reference box（hdlr）

	・媒体信息容器：Media Information box（minf）

	・用户数据容器：User Data box（udta）

	这个容器的解析方式如表4-9所示。

	表4-9 mdia容器参数

	[image:]

	下面参考一下MP4文件的数据。

	00000120: 0000 07d0 0001 0000 0000 114a 6d64 6961 Jmdia

	00000130: 0000 0020 6d64 6864 0000 0000 0000 0000 ... mdhd........

	00000140: 0000 0000 0000 61a8 0003 d090 55c4 0000 a.....U...

	00000150: 0000 002d 6864 6c72 0000 0000 0000 0000 ...-hdlr........

	00000160: 7669 6465 0000 0000 0000 0000 0000 0000 vide............

	00000170: 5669 6465 6f48 616e 646c 6572 0000 0010 VideoHandler....

	00000180: f56d 696e 6600 0000 1476 6d68 6400 0000 .minf....vmhd...

	00000190: 0100 0000 0000 0000 0000 0000 2464 696e $din

	000001a0: 6600 0000 1c64 7265 6600 0000 0000 0000 f....dref.......

	000001b0: 0100 0000 0c75 726c 2000 0000 0100 0010 url

	000001c0: b573 7462 6c00 0000 a973 7473 6400 0000 .stbl....stsd...

	000001d0: 0000 0000 0100 0000 9961 7663 3100 0000 avc1...

	从文件的内容可以看到，这个mdia容器的大小为0x0000114a（4426）字节，mdia容器下面包含了三大子容器，分别为mdhd、hdlr和minf，其中mdhd大小为0x00000020（32）字节；hdlr大小为0x0000002d（45）字节；minf大小为0x000010f5（4341）字节；mdia容器信息（8）+mdhd（32）+hdlr（45）+minf（4341）容器大小刚好为4426字节。后面分别看看这3个子容器的内容。

	6. mdhd解析

	mdhd被包含在各个track中，描述Media的Header，包含的信息如表4-10所示。

	表4-10 mdhd容器参数

	[image:]

	根据ISO14496-Part-12标准中的描述可以知道，当版本字段为0时，解析与当版本字段为1时的解析稍有不同。这里介绍的为常见的解析方式，即使用4字节/32位的版本。下面根据表4-10的解析方式将对应的数据解析出来。

	00000120: 0000 07d0 0001 0000 0000 114a 6d64 6961 Jmdia

	00000130: 0000 0020 6d64 6864 0000 0000 0000 0000 ... mdhd........

	00000140: 0000 0000 0000 61a8 0003 d090 55c4 0000 a.....U...

	00000150: 0000 002d 6864 6c72 0000 0000 0000 0000 ...-hdlr........

	从打开的文件的内容中可以逐一解析，如表4-11所示。

	表4-11 mdhd参数对应值

	[image:]

	从表4-11可以看出，这个Media Header的大小是32字节，类型是mdhd，版本为0，生成时间与修订时间都为0，计算单位时间是25000，媒体时间戳长度为250000，语言编码是0x55C4（具体代表的语言可以参考标准ISO 639-2/T）。这样，mdhd的内容就解析完毕了。

	注意：音频时长可以根据duration / timescale的方式计算，根据本例中的数据可以计算出音频的时间长度为10秒。

	7. hdlr解析

	hdlr描述了媒体流的媒体类型，可以根据这个box的内容，确定对应track的具体类型是Video、Audio或者其他。该容器中包含的内容如表4-12所示。

	表4-12 hdlr容器参数

	[image:]

	根据表4-12的读取方式，读取示例文件中的内容数据如下：

	00000140: 0000 0000 0000 61a8 0003 d090 55c4 0000 a.....U...

	00000150: 0000 002d 6864 6c72 0000 0000 0000 0000 ...-hdlr........

	00000160: 7669 6465 0000 0000 0000 0000 0000 0000 vide............

	00000170: 5669 6465 6f48 616e 646c 6572 0000 0010 VideoHandler....

	00000180: f56d 696e 6600 0000 1476 6d68 6400 0000 .minf....vmhd...

	根据文件内容看到的信息，对应的值如表4-13所示。

	表4-13 hdlr参数对应值

	[image:]

	从表4-13中解析出来的对应的值可以看出，这是一个视频track对应的数据，对应组件的名称为VideoHandler，并以一个0x00结尾。hdlr容器解析完毕。

	8. minf解析

	minf包含了很多重要的子容器，例如与音视频采样等信息相关的容器。minf容器中的信息将作为音视频数据的映射存在，其内容信息如下。

	・视频信息头：Video Media Information Header（vmhd子容器）

	・音频信息头：Sound Media Information Header（smhd子容器）

	・数据信息：Data Information（dinf子容器）

	・采样表：Sample Table（stbl子容器，描述具体的数据与时间、位置等信息的对应关系）

	解析minf的方式在前面已经介绍过，下面详细介绍如何解析vmhd、smhd、dinf及stbl容器。

	9. vmhd解析

	vmhd box用于描述一些与视频track编码无关的通用信息，但目前看来用处并不大。vmhd容器内容的格式如表4-14所示。

	表4-14 vmhd参数

	[image:]

	读取容器中的内容，其数据如下：

	00000170: 5669 6465 6f48 616e 646c 6572 0000 0010 VideoHandler....

	00000180: f56d 696e 6600 0000 1476 6d68 6400 0000 .minf....vmhd...

	00000190: 0100 0000 0000 0000 0000 0000 2464 696e $din

	000001a0: 6600 0000 1c64 7265 6600 0000 0000 0000 f....dref.......

	根据文件中的内容将数据解析出来，对应值如表4-15所示。

	表4-15 vmhd参数对应值

	[image:]

	表4-15为视频Header的解析。下面看一下音频Header的解析。

	10. smhd解析

	smhd box与vmhd box类似，主要用在音频track上。smhd容器的格式如表4-16所示。

	表4-16 smhd参数

	[image:]

	文件中音频对应的数据如下：

	00001350: 000f 2a6d 696e 6600 0000 1073 6d68 6400 ..*minf....smhd.

	00001360: 0000 0000 0000 0000 0000 2464 696e 6600 $dinf.

	00001370: 0000 1c64 7265 6600 0000 0000 0000 0100 ...dref.........

	根据文件内容将数据解析出来后，对应的值如表4-17所示。

	表4-17 smhd参数对应值

	[image:]

	11. dinf解析

	dinf是一个描述数据信息的容器，定义了音视频数据的信息，它包含子容器dref。下面举一个解析dinf及其子容器dref的例子，dref解析方式如表4-18所示。

	表4-18 dref参数

	[image:]

	[image:]

	12. stbl解析

	stbl为采样列表容器（Sample Table box），该容器包含转化媒体时间到实际的sample（样本或者采样点）的信息，也表征了如何进一步解析sample的信息，例如，视频数据是否需要解压缩、解压缩采用的是什么编码算法等。它包含的子容器如下。

	・采样描述容器：Sample Description box（stsd）

	・采样时间容器：Time To Sample box（stts）

	・采样同步容器：Sync Sample box（stss）

	・Chunk采样容器：Sample To Chunk box（stsc）

	・采样大小容器：Sample Size box（stsz）

	・Chunk偏移容器：Chunk Offset box（stco）

	・Shadow同步容器：Shadow Sync box（stsh）

	stbl包含track中media sample的所有时间和数据索引，利用stbl，就可以定位sample到媒体时间、文件位置的映射关系，决定其类型、大小，以及如何在其他容器中找到紧邻的sample。如果它所在的track没有引用任何数据，那么它就不是一个有用的media track，不需要包含任何子box。如果它所在的track引用了数据，那么必须包含以下子box。

	・采样描述容器（stsd）：它主要包含解码器所需要的基本信息，里面的细节规定一般与特定的编码器相关。一般新的Codec需要注册一下，可以参考http://mp4ra.org/#/codecs，从中查到已经注册的Codec的描述信息及对应的标准。

	・采样大小容器（stsz）。

	・Chunk采样容器（stsc）。

	・Chunk偏移容器（stco）。

	所有的子表都有相同的sample数目。

	stbl是必不可少的一个box，而且必须包含至少一个条目，因为它包含了检索media sample的索引信息。没有sample description就不能计算出media sample存储的位置。采样同步容器（stss）是可选的，如果没有，规范上规定这表明所有的sample都是采样同步的。但是很可惜，很多MP4文件并未遵循这个规定，使得我们无法很好地使用stss，以及在没有这个box时认为所有sample都是可同步的。

	下面描述了媒体数据是如何使用一组交错布局的音视频数据的，以及stbl如何包含一组用来识别各个样本位置的表格。标准部分的文字其实写得非常清晰了，但通过实例分析，对理解不同box（stco、stsz、stsc等）中表格的定义之间的关系会有很大帮助。

	首先回顾一下标准中的一些定义。

	・track：轨道，表示一些sample的集合，对于媒体数据来说，表示一个视频或者音频序列。

	・chunk：块，一个track的几个连续sample组成的单元称为一个chunk，同一chunk内的sample是连续的，它是一个逻辑概念。在fMP4格式中，则使用run来表征类似的意思。

	・sample：采样，与一个时间戳相关的所有数据，一般对应视频中的一个帧，或对应Audio中一段压缩的音频。一般而言，同一个track中不可能有两个或者多个sample具有相同的时间戳。

	一个track由连续的chunk组成，而chunk则包含多个连续的sample。track和sample的概念比较容易理解，chunk这个概念则需要多思考一下，其原因主要是增加一个中间的层，这样的好处是不用直接做track到sample的映射，这些box的大小可以通过增加的chunk层得以可控，毕竟Butler Lampson很早就告诉我们，“计算机科学领域的任何问题都可以通过增加一个间接的中间层来解决”。下面例子的数据来自一个真实的文件，该文件有两个轨道（轨道1是音频轨道，轨道2是视频轨道），一个mdat部分位于文件开始的121 915字节处。每个轨道都有一个stbl容器，因此每个track有自己的一套完整的采样表。

	（1）stco

	它通过一个offset定义了每个chunk到文件开头的位置。Audio track 1的stco box的内容示例如下：

	Has header:

	{"size": 1312, "type": "stco"}

	Has values:

	{

	 "version": 0,

	 "flags": "0x000000",

	 "entry_count": 324,

	 "entry_list": [

	 { "chunk_offset": 121923 } ,

	 { "chunk_offset": 897412 } ,

	 { "chunk_offset": 1170432 } ,

	 { "chunk_offset": 1426814 } ,

	 ...

]

	}

	Video track 2的内容示例如下：

	Has header:

	{"size": 1224, "type": "stco"}

	Has values:

	{

	 "version": 0,

	 "flags": "0x000000",

	 "entry_count": 302,

	 "entry_list": [

	 { "chunk_offset": 130635 },

	 { "chunk_offset": 904603 },

	 { "chunk_offset": 1177851 },

	 { "chunk_offset": 1434346 },

	 ...

]

	}

	轨道1的第1个chunk（字节偏移量为121923）在mdat头的8字节之后立即开始，接着是轨道2的第1个chunk，而轨道2又接着轨道1的第2个chunk，以此类推，交替进行。轨道1由324个chunk组成，轨道2由302个chunk组成，所以chunk在轨道之间并不是完美交错的状态，有些轨道1的chunk与另一个轨道1的chunk相邻。

	注意：MP4其实也定义了co64 box，以记录各个chunk的偏移量。这个box允许64位偏移，这对于超过4GB的文件是必要的。但如果是较小的文件，还是建议使用stco box（只允许32位偏移量），因为在这种情况下可以节省该表的空间。对于容器格式，overhead问题也是一个非常重要的问题，它影响存储、分发成本，也影响播放体验。

	（2）stsc

	该box里包含的表用于计算一个给定chunk里包含多少个sample。对于track 1，stcs box里的表的内容示例如下：

	Has header:

	{"size": 52, "type": "stsc"}

	Has values:

	{ "version": 0,

	 "flags": "0x000000",

	 "entry_count": 3,

	 "entry_list": [

	 { "first_chunk": 1,

	 "samples_per_chunk": 12,

	 "samples_description_index": 1 } ,

	 { "first_chunk": 2,

	 "samples_per_chunk": 11,

	 "samples_description_index": 1 } ,

	 { "first_chunk": 324,

	 "samples_per_chunk": 5,

	 "samples_description_index": 1 }

]

	}

	对于track 2，其每个chunk包含的sample的数目如下：

	Has header:

	{"size": 1180, "type": "stsc"}

	Has values:

	{

	 "version": 0,

	 "flags": "0x000000",

	 "entry_count": 97,

	 "entry_list": [

	 { "first_chunk": 1,

	 "samples_per_chunk": 31,

	 "samples_description_index": 1 },

	 { "first_chunk": 2,

	 "samples_per_chunk": 30,

	 "samples_description_index": 1 },

	 { "first_chunk": 17,

	 "samples_per_chunk": 29,

	 "samples_description_index": 1 },

	 { "first_chunk": 18,

	 "samples_per_chunk": 28,

	 "samples_description_index": 1 }

	 ... 省略若干行类似内容

]

	 }

	由此我们可以确定，轨道1的chunk 1包含12个连续的sample，chunk 2包含11个sample，其他剩下的chunk都包含5个sample。对于第2个track，其第1个chunk将包含31个连续的sample，第2个chunk包含30个sample（第3个chunk到第16个chunk也是如此，这里由“下一个entry. first_chunk−当前entry.first_chunk = 17−2”来决定），第17个chunk包含29个sample，第18个chunk包含28个sample，以此类推。通过上面的stco、stsc box的内容可以看出，使用chunk、sample这样的两级结构，使得描述最终sample所需要的数据量大为减少，这是通过增加一个间接的层chunk实现的。

	（3）stsz

	stsz box里的表说明了给定track内的每个单独sample的大小（以字节为单位）。track 1的stsz box里的内容如下：

	Has header:

	{"size": 14256, "type": "stsz"}

	Has values:

	{

	 "version": 0,

	 "flags": "0x000000",

	 "sample_size": 0,

	 "sample_count": 3559,

	 "entry_list": [

	 { "entry_size": 682 } ,

	 { "entry_size": 683 } ,

	 { "entry_size": 682 } ,

	... 省略若干行类似内容

	 { "entry_size": 715 } ,

	 { "entry_size": 669 } ,

	 { "entry_size": 667 } ,

]

	 }

	track 2的stsz box里的内容如下：

	Has header:

	{"size": 34160, "type": "stsz"}

	Has values:

	 { "version": 0,

	 "flags": "0x000000",

	 "sample_size": 0,

	 "sample_count": 8535,

	 "entry_list": [

	 { "entry_size": 532641 },

	 { "entry_size": 53341 },

	... 省略若干行类似内容

	 { "entry_size": 414 },

	 { "entry_size": 8474 },

]

	 }

	track 1似乎完全由小的sample组成（原因是音频的采样一般比较小，即使编码后，其大小的差异也不是很大），所有的样本大小大致相同，大约为600～700字节。track 2在每sample的字节大小上有很大的变化。如果你有一些视频编解码器的知识（在这个例子中实际上是HEVC编码），可能就知道其原因在于I、B和P帧有不同的压缩效率。你甚至可能根据这些采样的大小猜到GoP的大致结构。从stco和stsc我们可以知道，track 1的前12个sample在chunk 1中连续，从文件开始的121923字节位置开始，而每个sample的具体位置用对应chunk的位置加上其sample的大小即可得到。

	（4）stts

	在随机访问的时候，最终用户不太可能希望看到“定位到第3000个样本”这样的使用方式，更可能的要求是“从第100秒开始”这种时间方式。而stts box就用于将每个sample映射到时间上，从而很好地解决了这个问题。

	track 1的stts box的内容如下：

	Has header:

	{"size": 24, "type": "stts"}

	Has values:

	{

	 "version": 0,

	 "flags": "0x000000",

	 "entry_count": 1,

	 "entry_list": [

	 {

	 "sample_count": 3559,

	 "sample_delta": 1024

	 }

]

	}

	track 2的stts box的内容如下：

	Has header:

	{"size": 24, "type": "stts"}

	Has values:

	{

	 "version": 0,

	 "flags": "0x000000",

	 "entry_count": 1,

	 "entry_list": [

	 {

	 "sample_count": 8535,

	 "sample_delta": 1

	 }

]

	}

	两个表都正好有一个条目。这意味着每个轨道的所有sample都有相同的持续时间。标准确实允许stts表中有多个条目，它规定，“Decoding Time to Sample box包含解码时间的delta，DT(n+ 1) = DT(n) + STTS(n)，其中STTS(n)是第n个sample的（未压缩）表项”。也就是说，一个给定sample的解码时间是由轨道中所有前面sample的累积时间确定的，这其实带来了一个潜在的依赖问题，这意味着解码显示当前帧，会依赖前面的帧的时间数据。在fMP4/CMAF场景，因为有可能从中间任意位置解码，使用了绝对时间而非这种有依赖关系的方式来描述时间。另外，这里也可以看到stts box描述使用了RLE（Run-Length Encoding）的编码方式，这样上面描述恒定帧率的时候，只需要一个entry（条目）就可以了。

	采样delta是以什么单位来衡量的呢？我们可以通过查看媒体box中定义的时间尺度（timescale）值，即轨道对应的mdhd box来了解。对于track 1，timescale值为24000，表示单位为1/24000秒，所以track 1中所有样本的持续时间为1024/24000秒。对于track 2，timescale值为60，表示单位为1/60秒，所以track 2中所有样本的持续时间为1/60秒（考虑到track 2是以60帧录制的视频轨道，这并不是一个令人惊讶的结果）。

	（5）示例小结

	从上面的例子中我们可以确定mdat中前几个块和采样的字节和时间偏移，如表4-19所示。

	表4-19 块和采样的字节和时间偏移

	[image:]

	[image:]

	13. edts解析

	edts定义了创建Movie媒体文件中的一个track的一部分媒体，所有的edts数据都在一个表里，包括每一部分的时间偏移量和长度，如表4-20所示。如果没有该表，这个track就会被立即播放。一个空的edts用来定位到track的起始时间偏移位置。

	表4-20 edts参数

	[image:]

	trak中的edts数据如下：

	000000f0: 0500 0000 02ca 0000 0000 0030 6564 7473 0edts

	00000100: 0000 0028 656c 7374 0000 0000 0000 0002 ...(elst........

	00000110: 0000 0050 ffff ffff 0001 0000 0000 2710 ...P..........'.

	00000120: 0000 07d0 0001 0000 0000 114a 6d64 6961 Jmdia

	这个edts box的大小为0x00000030（48）字节，类型为edts；其中包含了elst子容器，elst子容器的大小为0x00000028（40）字节，edts容器+elst子容器的大小为48字节。至此，edts容器解析完毕。对edts box特别是elst box做一个更一步的说明，elst因为在逻辑上把trak做了一个偏移，很多播放器或者对应的工具支持得并不是很好，所以碰到这个box需要注意兼容性问题。

	至此，一般的MP4文件的格式解析标准已经介绍完毕。读者可以根据对应的解析方式解析MP4文件，读取MP4中的音视频数据和对应的媒体信息。另外，使用二进制查看工具解析MP4文件需要一字节一字节地解析，比较耗费时间和精力，可以借助分析工具进行辅助解析。后续会介绍MP4文件的常用分析工具及FFmpeg对解析MP4文件的支持情况。不过在进入这部分内容前，我们暂停一下，先看看当前很受追捧的fMP4与CMAF。

4.1.2 Fragment MP4与CMAF

	前面提及的MP4内容本身适用于存储和点播场景。我们知道，直播场景中的传输是流式的，在这种情况下，针对流式场景下的Fragment MP4（又称fMP4）及后来的CMAF被提了出来。在正式进入前，我们先看看一般的MP4文件有哪些问题。

	在普通模式下，MP4单一的moov box模式的限制如下：

	・在写入全部数据之前不能写入该box，这样对于捕获/实时录制是一个挑战。如果没有写入最后的moov box，意味着前面的工作完全白费，并且还没有什么机会修复这个文件。

	・对于几个小时的电影来说，moov box的大小可能相当大，这对内存优化来说是个问题。对于网络播放场景，大的moov box意味着需要先行下载大量的数据才能开始播放，很多时候高达几兆大小的moov box并不少见，这对于快速播放显示并不是什么好事。

	基于上面这些问题，fMP4及后来的CMAF被提出来。其基本原理是，将一部电影或直播流划分为较小的片段，称为分片，分片这种能力是流媒体应用的关键。与原来等待一个完整的MP4文件的下载相比，我们更希望每次下载的时间不超过几秒钟，这样就可以在下载的过程中同时播放。此外，随着网络条件的变化，我们还希望能够在不同版本的流媒体之间无缝切换，以便得到更高或更低的分辨率，或者更多或更少的压缩比。这就是自适应比特率流媒体的特点。同时，分片越短，就越能快速地适应网络环境的变化。但不幸的是，这给压缩和分发也带来一些挑战。
怎么判断一个文件是普通的MP4还是fMP4呢？一般通过判定是否存在mvex box（Movie Extends box）来确定，但这个方式准确地说并是特别的严谨。
	一个 fMP4 流由一个初始化段和一连串的媒体段组成。初始化段类似于一个未分片文件的开始，它由一个ftyp box和一个moov box组成。moov box包含额外的信息，以表明流是切片的，主要包括一个mvex
	 [image: 怎么判断一个文件是普通的MP4还是fMP4呢？一般通过判定是否存在mvex box（Movie Extends box）来确定，但这个方式准确地说并是特别的严谨。]box。不过与上面的传统MP4相比较，fMP4的moov box只存储了文件级别的媒体信息，因此比传统MP4文件的moov box要小很多。mvex是fMP4的标准box，它的作用是告诉Demuxer端这是一个fMP4文件，具体的sample信息内容不再放到trak里，而是放到每一个moof中。

	音视频切片文件由一个moof（movie fragment）box和一个mdat box组成，前者包含该片段的元数据，后者包含部分音频、视频的有效载荷。moof box存放的是fragment（分片）级别的元信息，用于描述所在的fragment。该类型的box在普通的MP4文件中是不存在的，而在fMP4文件中，每个fragment都会有一个moof类型的box。moof和moov类似，它包含了当前片段中MP4的相关元信息，但将moov的部分信息变成了多个moof这样的方式。另外，一般而言，普通的MP4文件只有一个mdat box，而fMP4/CMAF文件则有多个mdat box。它也可能在开始时有一个styp box，styp就像ftyp一样，但针对的是一个音视频切片片段。在一个正确编码的流中，每个媒体fragment都可以被解码和播放，除去需要所依赖的初始化片段外，任何其他片段的信息都不再需要。粗略来讲，fMP4的构成如下：

	1 ftyp

	1 moov

	N [moof mdat] // 一起构成分片

	1 mfra
ASF是微软的专有容器格式。关于ASF的更多信息，可以参考https://learn.microsoft.com/en-us/windows/win32/wmformat/ overview- of-the-asf-format。
	fMP4格式早期在微软的Smooth Streaming架构中被提出，有趣的是，当时微软已经有了ASF
	 [image: ASF是微软的专有容器格式。关于ASF的更多信息，可以参考https://learn.microsoft.com/en-us/windows/win32/wmformat/ overview- of-the-asf-format。]（Advanced Systems Format），而其Smooth Streaming技术依然选择了基于ISO BMFF的fMP4作为分发格式。具体的原因可以参考Smooth Streaming的主要贡献者Alex Zambelli在描述该技术时的博客文章，在这篇博客文章中，Alex Zambelli还清晰地用图4-6解释了fMP4格式的高层视图及分片部分的构成。

	[image:]

	[image:]

	图4-6 fMP4与分片

	上面的mvex box是可选的，其由mehd和trex组成，其中，mehd是可选的，它指定整个文件的持续时间，整个文件的持续时间对应于最长的轨道持续时间（包含所有分片）；trex是必选的（如果mvex存在），每个轨道都有一个单独的trex，这个box为其轨道（track_ID）指定默认的标志和值。在moof box中，对应特性如果没有被标识或设置对应的值，解码器将从trex box中获取对应轨道的默认值。

	通常每个封闭的GoP都作为一个单独的分片来存储，这种分片模式被称为基于关键帧的分片。使用的FFmpeg命令一般如下：

	ffmpeg -i in.h264 -c:v copy -f mp4 -movflags frag_keyframe+empty_moov frag_out.mp4

	下面介绍CMAF（通用媒体应用格式，Common Media Application Format），它是一种可扩展的格式，用于打包分段的媒体对象，以便在自适应媒体流中在终端用户设备上传输和解码。使用CMAF的最初目的是简化基于HTTP的流媒体的交付。它是一个新兴的标准，有助于降低成本和复杂性，并可以结合其他技术来减少端到端的延迟。CMAF通过与HLS和DASH协议合作，在一个统一的传输容器文件下打包数据，简化了播放设备的媒体传输过程。

	值得再提的是，CMAF本身不是一个协议，而是一种格式，它包含一套容器和标准，用于统一HLS和MPEG-DASH等协议底层的单一媒体流。CMAF以ISO BMFF为基础，为分片的内容定义两个基础的brand（品牌）：cmfc和cmf2。其限定主要如下。

	cmfc品牌的约束如下：

	・定义了ISO BMFF box中的一些默认值。

	・每个文件只包含一个媒体，这意味着音频和视频存储在不同的文件中，这个特性带来了灵活性，但也带来了一些挑战。

	・每个分片有一个单一的轨道片段（moof）。

	・视频轨道中存在ColorInformation box和PixelAspectRatio box。

	・在每个轨道分片中存在一个tfdt box，在MPEG DASH格式中，分片在时间上可能是不连续的。因此，DASH要求每个分片（即每个traf box）中都要有tfdt box。注意，tfdt box指定了当前分片的解码时间（以mvhd时间尺度为单位，当前分片中第1个样本的解码时间，实际上tfdt是分片的一个时间锚点）。

	・edit list被限定为仅在媒体跳过时使用。

	在cmfc品牌的基础上，cmf2品牌进一步限定如下：

	・不应使用edit list。

	・可以使用负的composition偏移。

	・样本默认值应在每个轨道分片中重复出现。

4.1.3 MP4分析工具

	在实际应用中我们经常需要对MP4文件进行分析。分析MP4封装格式的工具比较多，除了FFmpeg之外，还有一些常用工具，如Elecard StreamEye、MP4Box、mp4info、mediainfo、l-smash、Bento4等。下面简单介绍这几款常用工具，具体的使用方法请参考相应的文档或者命令行帮助。

	1. Elecard StreamEye

	Elecard StreamEye是一款非常强大的视频信息查看工具，能够查看帧的排列信息，将I帧、P帧、B帧以不同颜色的柱状展现出来，而且柱的长短根据帧的大小展示。我们还能够通过Elecard StreamEye分析MP4的封装内容信息，包括流、宏块、文件头、图像及文件的信息等；还能够根据每帧的顺序进行逐帧查看，看到每一帧的详细信息与状态。同时，它也简单支持一些容器格式的信息查看。使用Elecard StreamEye查看MP4信息如图4-7所示。

	[image:]

	图4-7 Elecard StreamEye查看MP4信息

	2. MP4Box

	MP4Box是GPAC项目中的一个组件，它是一个命令行工具，可以通过MP4Box命令针对媒体文件进行合成、拆解等操作。其操作信息大概如下：

	MP4Box [option] input [option]

	 -h general general options help

	 -h hint hinting options help

	 -h dash DASH segmenter help

	 -h import import options help

	 -h encode encode options help

	 -h meta meta handling options help

	 -h extract extraction options help

	 -h dump dump options help

	 -h swf Flash（SWF）options help

	 -h crypt ISMA E&A options help

	 -h format supported formats help

	 -h rtp file streamer help

	 -h live BIFS streamer help

	 -h all all options are printed

	 -nodes lists supported MPEG4 nodes

	 -node NodeName gets MPEG4 node syntax and QP info

	 -xnodes lists supported X3D nodes

	 -xnode NodeName gets X3D node syntax

	 -snodes lists supported SVG nodes

	 -languages lists supported ISO 639 languages

	 -boxes lists all supported ISOBMF boxes and their syntax

	 -quiet quiet mode

	 -noprog disables progress

	 -v verbose mode

	 -logs set log tools and levels, formatted as a ':'-separated list of toolX[:toolZ]@levelX

	 -log-file FILE sets output log file. Also works with -lf FILE

	 -log-clock or -lc logs time in micro sec since start time of GPAC before each log line.

	 -log-utc or -lu logs UTC time in ms before each log line.

	 -version gets build version

	 -- INPUT escape option if INPUT starts with - character

	从以上帮助信息可以看到，MP4Box还有很多子帮助项，例如DASH切片、编码、metadata、BIFS流、ISMA、SWF相关帮助信息等。下面使用MP4Box分析一下output.mp4的信息，内容如下：

	* Movie Info *

	Track # 1 Info - TrackID 1 - TimeScale 25000

	Media Duration 00:00:10.000 - Indicated Duration 00:00:10.000

	Track has 2 edit lists: track duration is 00:00:10.080

	Media Info: Language "Undetermined (und)" - Type "vide:avc1" - 250 samples

	Visual Track layout: x=0 y=0 width=1280 height=714

	MPEG-4 Config: Visual Stream - ObjectTypeIndication 0x21

	AVC/H264 Video - Visual Size 1280 x 714

	 AVC Info: 1 SPS - 1 PPS - Profile High @ Level 4.1

	 NAL Unit length bits: 32

	 Pixel Aspect Ratio 1:1 - Indicated track size 1280 x 714

	 Chroma format YUV 4:2:0 - Luma bit depth 8 - chroma bit depth 8

	 SPS#1 hash: 1B6511945AA7E9C7DE258A277BF95A423D4FC5B9

	 PPS#1 hash: DC73BC45117A5611E4C7638CE58777ED2E22E887

	Self-synchronized

	 RFC6381 Codec Parameters: avc1.640029

	 Average GOP length: 41 samples

	Track # 2 Info - TrackID 2 - TimeScale 48000

	Media Duration 00:00:10.005 - Indicated Duration 00:00:10.005

	Track has 1 edit lists: track duration is 00:00:10.006

	Media Info: Language "Undetermined (und)" - Type "soun:mp4a" - 469 samples

	MPEG-4 Config: Audio Stream - ObjectTypeIndication 0x40

	MPEG-4 Audio AAC LC - 2 Channel(s) - SampleRate 48000

	Synchronized on stream 1

	 RFC6381 Codec Parameters: mp4a.40.2

	Alternate Group ID 1

	 All samples are sync

	从输出内容可以看到，对应的解析信息，例如timescale、duration之类的信息，与前面介绍的MP4原理一节中所看到的解析MP4文件得到的数据相同。

	3. mp4info

	mp4info也是一个不错的MP4分析工具，而且是可视化工具，可以将MP4文件中的各box解析出来，并将其中的数据展现出来，分析MP4内容时使用mp4info会更方便。

	如图4-8所示，通过mp4info可以解析MP4文件容器，解析的box格式可以直接展现出来。相关box解析信息比之前逐字节地读取和解析方便很多，也更加直观。

	[image:]

	图4-8 mp4info查看MP4文件容器信息

4.1.4 MP4在FFmpeg中的Demuxer

	根据前面介绍的查看FFmpeg的MP4的Demuxer的方法，使用命令行ffmpeg -h demuxer= mp4来查看MP4的Demuxer信息如下：

	Demuxer mov,mp4,m4a,3gp,3g2,mj2 [QuickTime / MOV]:

	 Common extensions: mov,mp4,m4a,3gp,3g2,mj2,psp,m4b,ism,ismv,isma,f4v,avif.

	如输出内容所示，通过查看FFmpeg的help信息，可以看到MP4的Demuxer与mov、3gp、m4a、3g2、mj2、avif的Demuxer相同，原因是这些文件格式本身都是从ISO BMFF派生出来的。解封装MP4文件时参数如表4-21所示。

	表4-21 FFmpeg解封装MP4常用参数

	[image:]

	[image:]

	[image:]

	通过FFmpeg解封装时也可以使用参数ignore_editlist来忽略EditList box对MP4进行解封装。关于MP4的Demuxer操作通常使用默认配置即可，在这里不过多地解释与举例。

4.1.5 MP4在FFmpeg中的Muxer

	在前面一节提到，MP4与mov、3gp、m4a、3g2、mj2的Demuxer相同，它们的Muxer也差别不大，但是是不同的Muxer，尽管在FFmpeg中使用的是同一套格式进行的封装与解封装。MP4的封装相对解封装来说稍微复杂一些，因为封装时可选参数多一些，如表4-22所示。

	表4-22 FFmpeg封装MP4常用参数

	[image:]

	[image:]

	[image:]

	[image:]

	从参数的列表中可以看到，MP4的Muxer支持的参数比较复杂，例如支持在视频关键帧处切片、支持设置moov容器的最大大小、支持设置encrypt加密方案等。下面对常见的参数进行举例。

	1. faststart使用案例

	正常情况下，FFmpeg生成的moov在mdat写完成之后才写入，可以通过参数faststart将moov容器移动至mdat前面。下面举一个例子：

	ffmpeg -i input.flv -c copy -f mp4 output.mp4

	使用mp4info查看output.mp4的容器出现顺序，如图4-9所示。

	[image:]

	图4-9 MP4文件默认moov存储位置

	可以看到图4-9中moov容器是在mdat的后面，如果使用参数faststart就会在生成完上述结构之后将moov移动到mdat前面。

	ffmpeg -i input.flv -c copy -f mp4 -movflags faststart output.mp4

	再使用mp4info查看MP4的容器顺序，可以看到moov被移动到mdat前面，如图4-10所示。

	[image:]

	图4-10 MP4文件moov移动到mdat前面

	2. dash参数使用案例

	当生成DASH格式的时候，会使用一种特殊的MP4格式。我们可以通过dash参数进行生成。

	ffmpeg -i input.flv -c copy -f mp4 -movflags dash output.mp4

	使用 mp4info 查看容器格式信息，稍微有些特殊，具体的信息在前面均有介绍，如图 4-11所示。

	从图4-11中可以看到，这个DASH格式的MP4文件存储的容器信息与常规的MP4格式有些差别，主要以3种容器为主：sidx、moof与mdat。

	[image:]

	图4-11 DASH格式的MP4文件存储

	3. isml参数使用案例

	ISMV为微软发布的一个流媒体格式，是Microsoft Smooth Streaming技术的基础。FFmpeg通过参数isml可以发布ISML直播流，将ISMV推流至IIS服务器，并可以通过参数isml进行转换。下面看看这个已经在实际中很少见的格式。

	ffmpeg -re -i input.mp4 -c copy -movflags isml+frag_keyframe -f ismv Stream

	可以观察流的格式，大致如下：

	^@^@^@^Tftypisml^@^@^B^@piff^@^@^F<uuid??^K0?^T^Q/^H^@ ^L?f^@^@^@^@<?xml version="1.0" encoding="utf-8"?>

	<smil xmlns="http://www.w3.org/2001/SMIL20/Language">

	<head>

	<meta name="creator" content="Lavf57.71.100" />

	</head>

	<body>

	<switch>

	<video systemBitrate="2183592">

	<param name="systemBitrate" value="2183592" valuetype="data"/>

	<param name="trackID" value="1" valuetype="data"/>

	<param name="systemLanguage" value="und" valuetype="data"/>

	<param name="trackName" value="video_und" valuetype="data"/>

	<param name="CodecPrivateData" value="0000000167640029ACD9805005BF93011000000300100000030328F18319A00000000168E97B2C8B" valuetype="data"/>

	<param name="FourCC" value="H264" valuetype="data"/>

	<param name="MaxWidth" value="1280" valuetype="data"/>

	<param name="MaxHeight" value="714" valuetype="data"/>

	<param name="DisplayWidth" value="1280" valuetype="data"/>

	<param name="DisplayHeight" value="714" valuetype="data"/>

	</video>

	<audio systemBitrate="120463">

	<param name="systemBitrate" value="120463" valuetype="data"/>

	<param name="trackID" value="2" valuetype="data"/>

	<param name="systemLanguage" value="und" valuetype="data"/>

	<param name="trackName" value="audio_und" valuetype="data"/>

	<param name="FourCC" value="AACL" valuetype="data"/>

	<param name="CodecPrivateData" value="119056E500" valuetype="data"/>

	<param name="AudioTag" value="255" valuetype="data"/>

	<param name="Channels" value="2" valuetype="data"/>

	<param name="SamplingRate" value="48000" valuetype="data"/>

	<param name="BitsPerSample" value="16" valuetype="data"/>

	<param name="PacketSize" value="4" valuetype="data"/>

	</audio>

	</switch>

	</body>

	</smil>

	生成的文件格式的原理类似HLS，使用XML格式进行索引，索引内容主要包含了音频流的关键信息，例如视频宽、高以及码率等，然后刷新切片内容进行直播。另外，它的一些技术思想其实已经被诸如LL-HLS、LL-DASH等低延迟直播技术所吸收。

	4. Apple平台的兼容问题

	在封装HEVC码流的时候，FFmpeg默认生成的MP4经常会面临在Apple相关平台上的播放兼容问题，核心是需要-tag:v hvc1。如果没有这个标签，VLC打开该视频没有问题，但QuickTime播放器则不行。该标签修复了QuickTime的问题，使得可以在Apple相关平台上正确地播放。使用的命令示例如下：

	ffmpeg -i input.mp4 -c:v libx265 -c:a aac -crf 25 -tag:v hvc1 outputh265.mp4

	原因是HEVC视频在进行MP4封装的时候，可以使用不同的编解码标签，根据ISO/IEC FDIS 14496-15:2019中8.4.1节的HEVC视频流定义，有hvc1和hev1两种模式。这两者的区别在于参数集（SPS、PPS、VPS）在MP4文件中的位置不同。ISO/IEC FDIS 14496-15:2019的8.3.2节指出：“在视频图像中使用的参数集必须在包含该视频图像的样本之前或在该视频图像的样本中发送。对于一个特定样本条目适用的视频流，当样本条目名称为‘hvc1’时，视频参数集、序列参数集和图像参数集应仅存储在样本条目中；而当样本条目名称为‘hev1’时，可存储在样本条目和样本中。”

	由上面可以得出如下结论：

	・hvc1参数集存储在样本条目的带外（即在stsd的下面）。

	・hev1参数集被存储在样本条目的带外或样本的带内（即SPS/PPS/VPS NALU在码流/mdat box内）。

	Mac上的QuickTime播放器只支持hvc1。在Apple设备上播放HLS，Apple也更倾向于hvc1。

4.2 视频文件转FLV

	在网络直播与点播场景中，FLV也是一种常见的格式。FLV是Adobe发布的一种可作为直播也可以作为点播的封装格式。其封装格式非常简单，均以FLVTAG的形式存在，并且每一个TAG都是独立存在的。接下来详细介绍一下FLV标准。

4.2.1 FLV文件标准介绍

	FLV文件格式分为两部分：一部分为FLV文件头，另一部分为FLV文件内容。

	1. FLV文件头格式解析

	如表4-23所示，FLV文件头格式中签名字段占用3字节，最终组成的3个字符为FLV。然后是文件的版本，常见的为1。接下来的1字节前边5位为0，接着音频展示设置为1，然后下一位为0，再下一位为视频展示，设置为1，那么如果是一个音视频都能展示的FLV文件，这个字节应设置为0x05（00000101）。最后是4字节的数据，为FLV文件头数据的偏移位置。

	表4-23 FLV文件头

	[image:]

	以下面的FLV文件为例具体分析一下。

	00000000: 464c 5601 0500 0000 0900 0000 0012 0001 FLV.............

	00000010: 7400 0000 0000 0000 0200 0a6f 6e4d 6574 t..........onMet

	00000020: 6144 6174 6108 0000 0010 0008 6475 7261 aData.......dura

	00000030: 7469 6f6e 0040 2428 f5c2 8f5c 2900 0577 tion.@$(...\)..w

	从FLV文件数据内容分析出结果如下。

	・3字节的标签：F、L、V

	・1字节的FLV文件版本：0x01

	・5位的保留标记类型：00000b

	・1位的音频显示标记类型：1b

	・1位的保留标记类型：0b

	・1位的视频显示标记类型：1b

	・4字节的文件头数据偏移：0x00000009

	至此，FLV的文件头解析完毕。

	2. FLV文件内容格式解析

	如表4-24所示，FLV文件内容格式主要为FLVTAG。FLVTAG分为两部分，分别为Header部分与Body部分，如表4-25所示。

	▼表4-24 FLV文件TAG排列方式

	[image:]

	▼表4-25 FLVTAG格式

	[image:]

	从表4-25中可以看到FLVTAG的Header部分信息如下：

	・保留位占2位，最大为11b。

	・滤镜位占1位，最大为1b。

	・TAG类型占5位，最大为11111b，与保留位、滤镜位共用一字节，常见的为0x08、0x09、0x12。在处理时，一般默认保留位与滤镜位设置为0。

	・数据大小占用24位（3字节），最大为0xFFFFFF（16 777 215）字节。

	・时间戳占用24位（3字节），最大为0xFFFFFF（16 777 215）毫秒，转换为秒等于16 777秒，转换为分钟为279分钟，转换为小时为4.66小时。所以如果使用FLV格式，这个时间戳最大可以存储4.66小时。

	・扩展时间戳占用8位（1字节），最大为0xFF（255），扩展时间戳使得FLV原有的时间戳得到扩展，不仅仅局限于4.66小时，可以存储更久，1193小时，转换为以天为单位大约为49.7天。

	・流ID占用24位（3字节），最大为0xFFFFFF；不过FLV中一直将这个存储为0。

	在FLVTAG的Header之后存储的为TAG的Data，大小为FLVTAG的Header中DataSize存储的大小，存储的数据分为视频数据、音频数据及脚本数据。下面分别介绍这3种数据格式。

	（1）VideoTag数据格式解析

	如果从FLVTAG的Header中读取到TagType为0x09，则该TAG为视频数据TAG，FLV支持多种视频格式，如表4-26所示。

	表4-26 VideoTag数据格式

	[image:]

	[image:]

	（2）AudioTag数据格式解析

	从FLVTAG的Header中解析到TagType为0x08，则这个TAG为音频TAG，与视频TAG类似，音频TAG里面可以封装的压缩音频编码也可以有很多种，如表4-27所示。

	表4-27 AudioTag数据格式

	[image:]

	[image:]

	（3）ScriptData数据格式解析

	当FLVTAG读取的TagType为0x12时，这个数据位表征是ScriptData类型。ScriptData常见的展现方式为FLV的Metadata，里面存储的一般为AMF数据，如表4-28所示。

	表4-28 ScriptData数据格式

	[image:]
http://download.macromedia.com/f4v/video_file_format_spec_v10_1.pdf。
	其他相关FLV的ScriptData内容解析部分可以参考FLV标准文档
	 [image: http://download.macromedia.com/f4v/video_file_format_spec_v10_1.pdf。]，其中会有更多详细说明。

4.2.2 FLV Muxer参数说明

	使用FFmpeg的FLV Muxer生成FLV格式，从它的选项角度而言比较简单。FFmpeg生成FLV文件时可以使用的参数也非常少，如表4-29所示。

	表4-29 FFmpeg的FLV Muxer参数

	[image:]

	根据列表中的参数可以看到，在生成FLV文件时，写入视频、音频数据时均需要写入Sequence Header数据，如果FLV视频流中没有Sequence Header，那么视频很有可能不会被显示；如果FLV音频流中没有 Sequence Header，那么音频很有可能不会被播放。使用FFmpeg中的参数flvflags的值并设置为aac_seq_header_detect，这将会写入音频AAC的Sequence Header，这也是FLV Muxer的默认设置。

4.2.3 文件转FLV举例

	从前文标准中可以看到FLV封装中可以支持的视频和音频编码，如果封装FLV时视频或者音频不符合上述标准，则肯定封装不进FLV，并且会报错。下面尝试将不在前文列表中的AC-3音频封装进FLV，看看会出现什么问题。

	ffmpeg -i input_ac3.mp4 -c copy -f flv output.flv

	命令行执行后输出内容如下：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input_ac3.mp4':

	 Duration: 00:00:10.02, start: 0.000000, bitrate: 2378 kb/s

	 Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], 2183 kb/s, 25 fps, 25 tbr, 25k tbn, 50 tbc (default)

	 Stream #0:1(und): Audio: ac3 (ac-3 / 0x332D6361), 48000 Hz, stereo, fltp, 192 kb/s (default)

	[flv @ 0x7fe624809200] FLV does not support sample rate 48000, choose from (44100, 22050, 11025)

	[flv @ 0x7fe624809200] Audio codec ac3 not compatible with flv

	Could not write header for output file #0 (incorrect codec parameters ?): Function not implemented

	Stream mapping:

	 Stream #0:0 -> #0:0 (copy)

	 Stream #0:1 -> #0:1 (copy)

	 Last message repeated 1 times

	从输出的内容中可以看到，因为AC-3音频编码格式并没有被FLV容器支持，所以报错。为了解决这类问题，可以进行转码，将AC-3音频转换为AAC或者MP3这类FLV标准支持的音频。

	ffmpeg -i input_ac3.mp4 -vcodec copy -acodec aac -f flv output.flv

	如果原媒体文件中的音视频编码格式本身就是FLV标准所支持的格式，那么只用转封装（通常称为Remuxing）即可，无须执行转码操作。所以，如果只是从一种封装格式转成FLV格式的话，可以先确认源文件中的编码格式是否是FLV所支持的。在日常中，经常有人询问H.265是否可以封装在FLV中，由前面列出的FLV支持的视频编码格式清单中可以看到，FLV的标准并不支持H.265，如果想要支持，需要自行在FFmpeg中定制。

4.2.4 生成带关键索引的FLV

https://yamdi.sourceforge.net/ Yet Another MetaData Injector for FLV。
	在网络视频点播文件为FLV格式时，早期人们常用yamdi
	 [image: https://yamdi.sourceforge.net/ Yet Another MetaData Injector for FLV。]工具先对FLV文件进行一次转换，该工具依据FLV文件中的关键帧建立一个索引，并将索引写入metadata头中，这样播放端就可以依据这些索引信息执行快进、跳转等操作。这个功能目前用FFmpeg同样可以实现，使用参数add_keyframe_index即可。

	ffmpeg -i input.mp4 -c copy -f flv -flvflags add_keyframe_index output.flv

	在上述命令行执行之后，生成的output.flv文件中的metadata中即带有关键帧的索引信息。

	00000180: 0041 4614 6100 0000 0000 0868 6173 5669 .AF.a......hasVi

	00000190: 6465 6f01 0100 0c68 6173 4b65 7966 7261 deo....hasKeyfra

	000001a0: 6d65 7301 0100 0868 6173 4175 6469 6f01 mes....hasAudio.

	000001b0: 0100 0b68 6173 4d65 7461 6461 7461 0101 ...hasMetadata..

	000001c0: 000c 6361 6e53 6565 6b54 6f45 6e64 0101 ..canSeekToEnd..

	000001d0: 0008 6461 7461 7369 7a65 0041 4612 fc00 ..datasize.AF...

	000001e0: 0000 0000 0976 6964 656f 7369 7a65 0041 videosize.A

	000001f0: 44dc cd00 0000 0000 0961 7564 696f 7369 D........audiosi

	00000200: 7a65 0041 035d 4800 0000 0000 0d6c 6173 ze.A.]H......las

	00000210: 7474 696d 6573 7461 6d70 0040 23eb 851e ttimestamp.@#...

	00000220: b851 ec00 156c 6173 746b 6579 6672 616d .Q...lastkeyfram

	00000230: 6574 696d 6573 7461 6d70 0040 22f5 c28f etimestamp.@"...

	00000240: 5c28 f600 146c 6173 746b 6579 6672 616d \(...lastkeyfram

	00000250: 656c 6f63 6174 696f 6e00 4144 87b4 0000 elocation.AD....

	00000260: 0000 0009 6b65 7966 7261 6d65 7303 000d keyframes...

	00000270: 6669 6c65 706f 7369 7469 6f6e 730a 0000 filepositions...

	00000280: 0007 0040 8b58 0000 0000 0000 4127 c19a ...@.X......A'..

	00000290: 0000 0000 0041 345c fd00 0000 0000 413a A4\......A:

	000002a0: ff15 0000 0000 0041 405d d100 0000 0000 A@]......

	000002b0: 4142 3661 8000 0000 0041 4488 0480 0000 AB6a.....AD.....

	000002c0: 0000 0574 696d 6573 0a00 0000 0700 0000 ...times........

	000002d0: 0000 0000 0000 003f f28f 5c28 f5c2 8f00 ?..\(....

	000002e0: 400e 147a e147 ae14 0040 168f 5c28 f5c2 @..z.G...@..\(..

	000002f0: 8f00 401d 9999 9999 999a 0040 20e1 47ae ..@........@ .G.

	00000300: 147a e100 4022 f5c2 8f5c 28f6 0000 0900 .z..@"...\(.....

	如文件数据内容所示，该FLV文件中包含了关键帧索引信息。需要注意：这些关键帧索引信息并不是FLV的标准字段，但是由于被广泛使用，已经成为常用的字段，所以FFmpeg中同样也支持了这个功能。

4.2.5 FLV文件格式分析工具

	有时候需要分析FLV内容，可以考虑使用FlvParse这个可视化工具，如图4-12所示。

	[image:]

	图4-12 FlvParse分析FLV文件示例

	除了 FlvParse 工具，还可以使用FlvAnalyzer工具对FLV文件进行分析。打开FlvAnalyzer之后分析FLV文件，看到的信息会比FlvParse更全面，如图4-13所示。

	除了以上两款FLV分析工具之外，还可以使用ffprobe来分析FLV文件，并且后者能够将关键帧索引的相关信息打印出来。

	ffprobe -v trace -i output.flv

	上述命令行执行的效果如下：

	[flv @ 0x7f84ab002a00] Format flv probed with size=2048 and score=100

	[flv @ 0x7f84ab002a00] Before avformat_find_stream_info() pos: 13 bytes read:32768 seeks:0 nb_streams:0

	[flv @ 0x7f84ab002a00] type:18, size:762, last:-1, dts:0 pos:21

	[flv @ 0x7f84ab002a00] keyframe stream hasn't been created

	[flv @ 0x7f84ab002a00] type:9, size:48, last:-1, dts:0 pos:798

	[flv @ 0x7f84ab002a00] keyframe filepositions = 875 times = 0

	[flv @ 0x7f84ab002a00] keyframe filepositions = 778445 times = 1000

	[flv @ 0x7f84ab002a00] keyframe filepositions = 1334525 times = 3000

	[flv @ 0x7f84ab002a00] keyframe filepositions = 1769237 times = 5000

	[flv @ 0x7f84ab002a00] keyframe filepositions = 2145186 times = 7000

	[flv @ 0x7f84ab002a00] keyframe filepositions = 2387139 times = 8000

	[flv @ 0x7f84ab002a00] keyframe filepositions = 2691081 times = 9000

	[image:]

	图4-13 FlvAnalyzer分析FLV文件示例

	从输出的内容中可以看到，信息中包含了keyframe关键帧存储在文件中的偏移位置及时间戳。至此，FFmpeg封装FLV文件的常用功能介绍完毕。

4.3 视频文件转MPEG-TS

参见https://www.iso.org/standard/75928.html。
	MPEG-TS在MPEG-2第1部分中被标准化
	 [image: 参见https://www.iso.org/standard/75928.html。]，最初专门为数字视频广播（DVB）应用而设计，与其对应的MPEG-PS多用于存储媒体，并在DVD中得到应用。相较而言，MPEG-TS面向传输，它将流划分为基本流，这些流被分割成小块。同时，系统信息以固定的时间间隔发送，因此接收器可以随时播放流。此外，该格式使用前向纠错（Forward Error Correction，FEC）技术，允许在接收器处纠正传输错误。MPEG-TS格式显然是为在有损传输通道上使用而设计的。

	从系统层面定义，TS/PS文件可以分成3层。

	・ES层：由单独的音频流（如MP3）、视频流（如H.264）组成基本数据流（Elementary Stream，ES）。

	・PES层：将ES按一定的规则进行封装，例如H.264以访问单元（Access Unit，AU）作为拆分单元，并打上时间戳，组成分组的基本数据流（Packetized Elementary Stream，PES）。

	・TS/PS层：将PES包进行切分后再封装成固定大小（通常为188字节）的传输流（Transport Stream，TS）包，同时还将一些节目信息也封装成TS包，又称为片段（section）, 两者共同组成TS层。

	基本的打包流程如图4-14所示，来自编码器的ES首先被转化为PES。由此添加的PES头包括一个流标识符、PES包的长度、媒体时间戳，以及其他信息。接下来，PES被分割成184字节的小块，并通过向每个小块添加4字节的头，变成TS。最终的TS由固定长度为188字节的数据包组成。每个TS数据包头都带有PID（packet identifier，数据包标识符），PID将TS数据包和TS数据包中的基本流联系起来。

	[image:]

	图4-14 MPEG-TS/PS打包流程

	MPEG-TS标准的包长度是188字节。日本通过在标准的188字节的数据包中增加一个4字节的时间码（TimeCode，TC）字段，使之变为192字节的数据包，一般用于数字摄像机、录音机和播放器。还有一种是204字节的，是在188字节的基础上加上16字节的FEC构成。FFmpeg同时支持这3种格式变种。

	MPEG-TS包的基本结构如图4-15所示。

	[image:]

	图4-15 MPEG-TS

4.3.1 MPEG-TS格式简介

	MPEG-TS没有像许多其他文件类型（包括程序流）那样使用全局文件头，而是在每个数据包前都有一个头部。这个数据包的头部结构设计非常清晰，并且正好占4字节，这使得流式的解析会非常便利。

	1. MPEG-TS的头部

	表4-30详细列出了MPEG-TS重要的头部信息。

	表4-30 MPEG-TS重要的头部信息

	[image:]

	[image:]

	表4-30显示了MPEG-TS头的格式，包括每个字段包含的位数。许多值都是4字节中的特定位，所以需要进行位掩码操作以读取对应的值。这就是提供32位掩码的原因。

	（1）同步字节

	同步字节（sync byte）是一个完整的字节。使用一个完整的字节是一个有意的设计，目的是使定位和找到TS数据包的开始位置变得容易。读取媒体内容，直到找到两个连续的188字节的数据，起始字节都是0x47，然后就可以按标准解析后面的数据了。

	（2）数据包标识符

	数据包标识符，简称PID，用于识别与同一数据流有关的数据包。有些PID是保留的，这样能快速寻找特定的数据，如PSI（Program Specific Information）表。

	（3）有效载荷单元开始指示符

	有效载荷单元开始指示器或简称PUSI，在特定的有效载荷开始时将被设置为真。例如，当PSI在有效载荷中时，这个标志被设置为1。另一个重要的例子是PES数据包的开始。

	（4）连续计数器

	它在每个PID内递增，并在0x00到0x0F之间循环递增，当自适应字段控制位中设置了有效载荷标志时递增。可用于在传递给解码器之前对数据包进行排序，并识别空隙。注意，有些播放器如VLC会默认检查该计数器是否递增，而FFmpeg的MPEG-TS Demuxer则默认忽略该检查。

	（5）自适应字段

	简单看完了TS头部的固定4字节部分，来看看自适应字段部分，如表4-31所示。

	表4-31 自适应字段的字段

	[image:]

	[image:]

	2. MPEG-TS的payload部分

	（1）PSI
参见https://www.iso.org/standard/75928.html。
	PSI是一个“表”的集合。每个表都以一个特定的头开始，其定义如下，这些都包含在数据包的有效载荷中。PSI表是一种可以触发有效载荷单元开始指示器设置的数据包类型。ISO/IEC 13818-1（MPEG-2第一部分：系统）
	 [image: 参见https://www.iso.org/standard/75928.html。]定义的PSI数据包含如下4个表：

	・节目关联表（Program Association Table，PAT）

	・条件访问表（Conditional Access Table，CAT）

	・节目映射表（Program Map Table，PMT）

	・网络信息表（Network Information Table，NIT）

	PSI的每个表结构都被分成几个部分（section）。每个section可以跨越多个传输流数据包。一个传输流数据包也可以包含具有相同PID的多个section。自适应字段也出现在携带PSI数据的TS数据包中。PSI数据永远不会被加扰，这样接收端的解码器就可以轻松识别流的属性。

	构成PAT和CAT的部分与预定义的PID（数据包标识符）相关联，一个流中可能有多个独立的PMT部分；每个部分都有一个特定的用户定义的PID，并将一个节目编号映射到描述该节目的流的元数据上。PMT部分的PID是在PAT中定义的，而且是唯一在那里定义的PID。流本身包含在PES数据包中，用户定义的PID在PMT中指定。

	与数据包的头类似，该表是一个定义明确的结构。

	（2）PAT

	PAT的表数据本质上给出一个映射，说明哪些PID是哪些节目的一部分。这个表被定义使用固定的PID 0x0000、表ID 0x00。所有的表都以校验和结束，其保证数据在传输中是正确的。在HLS中，标准要求我们处理的是单一的节目流。这个表的好处是给了我们一个在处理其余流时可以期待的PID列表。

	（3）PMT

	PMT描述了每个PID的内容，因此与PAT相结合，可以获取数据流内容，如果是在多节目环境中，则是该特定节目的内容。在PMT里面有一个节目时钟参考（PCR）的PID参考，解码器可以用它来同步播放多个数据流。由这个PID识别的数据包将在该数据包的适配字段中包含一个时间戳，这个时间戳用于在解码器中生成一个时钟，PTS是相对这个值而言的。

	这里再回顾一下基本流（ES）的概念，它是实际传输的媒体数据。到目前为止所描述的其他内容用于帮助将ES送到最终播放端，并将其重新组装以用于播放。基本的流类型是一个8位的值，所以可能有256个值，其中许多是预先定义好的。有几个部分是私人定义的，还有的部分被保留。

	流类型的一些示例值如下。

	・27：H.264

	・15：AAC音频

	在PMT内还有额外的描述符，但解码器并不一定会使用。

	（4）PES

	简单回顾一下，一个视频基本流由一个序列的所有视频数据组成，包括序列头部和序列的所有子部分。一个ES只携带一种类型的数据（视频或音频），来自一个视频或音频编码器。

	PES由一个单一的ES产生，被封装成数据包，每个包的开始都有一个附加的数据包头部。一个PES只包含一种类型的数据，例如来自同一个视频或音频编码器的数据。PES包的长度是可变的，不像TS包是固定包长，其可能比TS包长很多。当TS包由PES形成时，PES头总是放在TS包有效载荷的开头，紧随TS包头。剩余的PES包内容填充到连续的TS包的有效载荷中，直到PES包全部封装完。当最后需要封装的PES包部分的长度小于TS包的数据部分长度时，最后的TS包可能通过塞入字节0xFF（全为1）来填充为固定长度。每个PES包头包括一个8位流ID，识别有效载荷的来源。另外，PES包头还可能包含时间参考，如PTS（显示时间戳，解码器呈现解码后的音频或视频的时间）、DTS（解码时间戳，解码器解码接入单元的时间）、ESCR（基本流时钟参考），如图4-16所示。

	简单介绍一下PES的头部字段。

	・stream_id：音频为0xc0～0xdf，即十进制192～223；视频为0xe0~0xef，即十进制224～239。

	・PES_packet_length：即该字段后的字节数，只有视频数据流可取0，表示任意长度。

	・optional PES HEADER：只有stream_id为音频/视频时才包含该部分。

	一般而言，为了保证兼容性，对PES有更多的限定，主要如下：

	・每个视频PES包从视频访问单元（AU）的开头开始。这里更明确地解释一下，对于AVC/ HEVC编码流的封装需要包含AUD（Access Unit Delimiter）。AUD是个特殊的NALU，它用来分隔AU，虽然AUD在编码标准中是可选的，但有的播放器要求必须有AUD才能识别一帧图像。

	・每个PES包包含不超过一个编码的视频帧（可能包含一个或两个编码的场或一个完整的帧）。

	・每个PES头都包含一个PTS。

	[image:]

	图4-16 PES结构

	3. MPEG-TS的一些特性

	MPEG-TS有一些奇怪的特性。它是为以太网产生之前的世界而建立的，包括失序的数据包检测和远程时间同步等功能。这些功能是数字无线广播所需要的，但在互联网上，这些通常是通过TCP和每个设备的高精度时钟来处理的。MPEG-TS还使用188字节的固定数据包大小，每个数据包以一个同步字节开始，以确定数据包的开始。同样，当在一个随机的位置加入一个多播流时，如改变电视频道时，这个特性有用，但当视频被保存为文件并通过HTTP拉取时，就没有必要了，如HLS场景下。有时候并不需要这些特性，但这些仍然会占用文件的空间。对于高码率的文件来说，这不是一个问题，但在低带宽环境中开销可能很大。在互联网时代，有限的带宽恰恰是最需要充分利用比特的场景，特别是在手机普及的今天。

	每188字节的TS数据包有一个4字节的头。这个头包含同步字节、一些标志位、一个数据包ID（或PID，用于识别唯一的音频或视频流）和一个连续计数器（用于识别丢失或失序的数据包）。每一帧都有一个预置的分组基本流（PES）头。PES头至少有14字节（如果帧解码时间与呈现时间不匹配，即有B帧，则为19字节），并对帧的时间戳等进行编码。因此，第1个数据包最多有170字节可用，而随后的数据包有184字节可用。如果一个帧小于170字节，则它必须被填充以消耗整个数据包。如果一个帧是171字节，则需要第2个数据包，因此需要376字节来传输171字节的有效载荷，使所需带宽增加一倍以上。在现实中，低于170字节的帧也并不少见。所以，在码率低于1Mbit/s时，10%或更多的额外开销并不罕见。

	另外，MPEG-TS格式并未考虑seek问题，没有带对应的全局索引信息，这一般需要应用自行解决，在HLS场景下是用I帧播放列表的方式来解决这个问题的。

4.3.2 MPEG-TS Muxer参数说明

	在FFmpeg中，封装MPEG-TS的详细参数如表4-32所示，主要集中在PID设置、时间间隔设置等功能上。

	表4-32 MPEG-TS Muxer参数说明

	[image:]

	[image:]

	[image:]

	上面参数的意义都比较明显，但需要提及的是，如果要用FFmpeg创建一个恒定速率的TS流，必须使用-muxrate参数。视频流编码不一定是CBR模式；但是视频速率的峰值加上音频速率不能超过muxrate。这个主要是在广电领域，当需要TS流传输是恒定速率时使用。

	另外，FFmpeg实现的MPEG-TS的Muxer或者Demuxer，本身并没有严格地按照DVB的标准，所以在广电这些对TS格式要求非常严格的领域，需要仔细地调整对应的参数来满足其要求。

4.3.3 MPEG-TS格式分析工具

	当需要分析MPEG-TS内容时，可以考虑使用EasyICE或者DVB Inspector，如图4-17所示。

	[image:]

	图4-17 EasyICE
具体的细节可以参考最新的标准：https://www.etsi.org/deliver/etsi_tr/101200_101299/101290/01.04.01_60/tr_101290v010401p.pdf。
	EasyICE中比较有特色的功能是TR101-290符合性测试，ETSI TR 101-290（ETR 290）
	 [image: 具体的细节可以参考最新的标准：https://www.etsi.org/deliver/etsi_tr/101200_101299/101290/01.04.01_60/tr_101290v010401p.pdf。]定义了监测MPEG传输流（MPEG-TS）的测量准则，有3个优先级。满足这三级延迟的要求对在广电领域的MPEG-TS的兼容性来说非常重要，如果你的产品基于广电场景，强烈建议满足EasyICE的TR101-290符合性测试。
这个项目位于https://www.digitalekabeltelevisie.nl/dvb_inspector/。
	另一个不错的分析工具是DVB Inspector
	 [image: 这个项目位于https://www.digitalekabeltelevisie.nl/dvb_inspector/。]，如图4-18所示。它的码率视图分析在基于一个恒定码率的传输流分析时非常有价值，也能用于分析MPEG-TS的overhead问题。

	[image:]

	图4-18 DVB Inspector

4.4 视频文件转HLS

HLS相关信息可以从Apple官网获取，那里有大量有用的信息。
	HTTP实时流（HTTP Live Streaming，HLS）
	 [image: HLS相关信息可以从Apple官网获取，那里有大量有用的信息。]是一个基于HTTP的自适应码率流媒体通信协议，由Apple公司开发，于2009年发布。在媒体播放器、网络浏览器、移动设备和流媒体服务器中对该协议的支持很普遍。HLS类似MPEG-DASH，它的工作方式是将整个流分解为一连串基于HTTP的小文件来下载，每个文件下载一个可能无限制的整体传输流的短块。同时，它使用扩展的M3U播放列表描述相关的信息，将不同码率编码的可用数据流列表发送给客户端。

	图4-19来自Apple官网，它很好地展示了HLS的基本架构。

	[image:]

	图4-19 HLS基本架构

	最初，HLS使用H.264作为MPEG-2 TS分片封装的视频编解码器，对分段文件的引用包含在M3U8清单文件中。2016年，苹果公司为fMP4文件增加了字节范围寻址及对H.265视频编码格式的支持。HTTP字节范围请求允许将片段指定为更大的URL的字节范围，并将片段合并为一个大文件。这一更新的主要好处如下：

	・提高了缓存性能。因为媒体播放器是按顺序浏览一个较大的文件，而不是从不同的位置下载每个片段。

	・需要管理的文件数量大幅减少，而不需要管理大量的小文件分片。

	・能够在HLS和MPEG-DASH中使用相同的媒体文件，这使得不同的播放器之间具有更广泛的兼容性。

	HLS内容支持加密，一般用AES-128进行加密。对于HTTP的分发，可以使用一个额外的SSL加密层。

	目前与HLS存在竞争的协议是MPEG-DASH，但二者解决的问题及使用的技术基础有很多是相似的，甚至是一致的，二者更多的竞争是在生态、技术迭代速度等领域。表4-33是一个简单的比较，读者可以了解一下二者的异同。

	表4-33 HLS与MPEG-DASH的简单比较

	[image:]

	[12] VAST，全称是Video Ad Serving Template，即广告分发技术，使视频播放器能够与广告服务器协调以获取视频广告。VPAID，即Video Player Ad-Serving Interface Definition，是另一类广告分发技术，它也允许视频广告单元与视频播放器互动。VPAID使广告商能够向用户提供富媒体和互动广告。另外，VPAID允许广告商记录用户如何与他们的视频广告互动的数据。

4.4.1 HLS标准的M3U8介绍

	HLS所使用的M3U8基于M3U播放列表扩展而来，主要用于将分片文件以列表形式描述，既支持直播又支持点播。下面看一个M3U8最简单的例子。

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-TARGETDURATION:4

	#EXT-X-MEDIA-SEQUENCE:0

	#EXTINF:3.760000,

	out0.ts

	#EXTINF:1.880000,

	out1.ts

	#EXTINF:1.760000,

	out2.ts

	#EXTINF:1.040000,

	out3.ts

	#EXTINF:1.560000,

	out4.ts

	从这个例子中可以看到下面几个字段。

	1. EXTM3U

	M3U8文件必须包含的标签，并且必须在文件的第1行。

	2. EXT-X-VERSION
参见https://www.rfc-editor.org/rfc/rfc8216。另外，HLS相关信息可以从Apple官网获取。
	M3U8文件的版本，常见的是3。其实版本已经发展了很多了，直至本书截稿时，已经发布了RFC8216参考标准版本
	 [image: 参见https://www.rfc-editor.org/rfc/rfc8216。另外，HLS相关信息可以从Apple官网获取。]。经历了这么多版本，期间也做了不少标签的增删。例如在版本2以后支持EXT-X-KEY标签，在版本3以后支持浮点EXTINF的duration值，在版本4以后支持EXT- X-BYTERAGE与EXT-X-I-FRAMES-ONLY标签，在版本 5 以后支持EXT-X-KEY的格式说明KEYFORMAT与KEYFORMATVERSION，以及EXT-X-MAP标签，在版本6以后支持EXT-X-MAP标签里面不包含EXT-X-I-FRAMES-ONLY标签。当然，在一些版本中也删除了一些标签，例如版本6中删除了EXT-X-STREAM-INF与EXT-X-I-FRAME-STREAM-INF标签，版本 7 中删除了EXT-X-ALLOW-CACHE标签。后续又增加了对低延迟的支持等。

	3. EXT-X-TARGETDURATION

	每一个分片都会有一个自己的duration（时长），这个标签是最大分片浮点数时长四舍五入后的整数值，例如1.02取整为1，2.568向后取整为3。如果在M3U8分片列表中最大的duration的数值为5.001，那么这个EXT-X-TARGETDURATION值将会为5。这个值是所有分片时长的整数部分的上限，而较长的分片片段则可能触发播放卡顿或其他错误。

	4. EXT-X-MEDIA-SEQUENCE

	M3U8直播时的直播切片序列，当打开M3U8时，以这个标签的值为参考，播放对应的序列号的切片。分片必须是动态改变的，并且序列号不能相同，为递增序。

	当M3U8列表中没有出现EXT-X-ENDLIST标签时，无论这个M3U8列表中有多少分片，播放分片都从倒数第3片开始播放，如果不满3片则不播放。当然，有些播放器是自行定制的，可能未遵照这个原则。如果前一片分片与后一片分片的序号不连续，播放可能会出错，那么需要使用EXT-X-DISCONTINUITY标签来解决这个错误。以播放当前分片的duration时间刷新M3U8列表，然后做对应的加载动作。如果播放列表在刷新之后与之前的列表相同，那么在播放当前分片duration一半的时间内再刷新一次。

	5. EXTINF

	EXTINF为M3U8列表中每一个分片的duration，如上面例子中的第1个分片的duration为3.760000秒。在EXTINF标签中除了duration值，还可以包含可选的描述信息，主要为标注切片信息，使用逗号分隔开。EXTINF下面的信息为具体的分片信息，分片存储路径可以为相对路径，也可以为绝对路径，还可以为互联网的URL链接地址。

	除了以上这些标签外，还有一些标签同样是常用标签。

	6. EXT-X-ENDLIST

	EXT-X-ENDLIST标签表明这个M3U8文件不会再有更多的切片产生，可以理解为这个M3U8已停止更新，并且播放分片到这个标签后结束。M3U8 不仅可以作为直播，也可以作为点播形式存在，在M3U8文件中保留所有切片信息，最后使用EXT-X-ENDLIST结尾，这个M3U8即为点播M3U8。

	7. EXT-X-STREAM-INF

	EXT-X-STREAM-INF标签主要出现在多级M3U8文件中，例如M3U8中包含子M3U8列表，或者在主M3U8中包含多码率M3U8时。该标签后需要跟一些属性，说明如下。

	1）BANDWIDTH：最高码率值，为播放EXT-X-STREAM-INF下对应的M3U8时占用的最大码率，这个参数是EXT-X-STREAM-INF标签中必须要包含的属性。

	2）AVERAGE-BANDWIDTH：平均码率值，为播放EXT-X-STREAM-INF下对应的M3U8时占用的平均码率，这个参数是可选参数。

	3）CODECS：用来声明EXT-X-STREAM-INF下对应的M3U8里的音频编码、视频编码的信息，例如当AAC-LC的音频与视频为H.264 Main Profile、Level 3.0时，CODECS值则为“mp4a.40.2，avc1.4d401e”。这个属性应该出现在EXT-X-STREAM-INF标签里，但是并不是在所有的M3U8中都可以看到，仅供参考。

	4）RESOLUTION：M3U8中视频的宽高信息描述，这个属性是一个可选属性。

	5）FRAME-RATE：子M3U8中的视频帧率，这个属性依然是一个可选属性。

	下面针对EXT-X-STREAM-INF举一个实际的例子。

	#EXTM3U

	#EXT-X-STREAM-INF:BANDWIDTH=1280000,AVERAGE-BANDWIDTH=1000000

	http://example.com/low.m3u8

	#EXT-X-STREAM-INF:BANDWIDTH=2560000,AVERAGE-BANDWIDTH=2000000

	http://example.com/mid.m3u8

	#EXT-X-STREAM-INF:BANDWIDTH=7680000,AVERAGE-BANDWIDTH=6000000

	http://example.com/hi.m3u8

	#EXT-X-STREAM-INF:BANDWIDTH=65000,CODECS="mp4a.40.5"

	http://example.com/audio-only.m3u8

	这个M3U8文件使用了4个EXT-X-STREAM-INF标签来标注子M3U8的属性，分别是：最高码率为1.28Mbit/s和平均码率为1Mbit/s的M3U8，最高码率为2.56Mbit/s和平均码率为2Mbit/s的M3U8，最高码率为7.68Mbit/s和平均码率为6Mbit/s的M3U8，以及只有65kbit/s的音频编码的M3U8。

	上面只是简单介绍了一些HLS的常用选项，更具体的可直接参考RFC及Apple网站上的信息。HLS的设计非常简洁有效，本身也并未使用特别多的新技术，它是基于已有标准的一次创新，并随着业界的技术发展趋势而进化，是一个典型的互联网协议的设计与迭代的过程，且在业界使用广泛，值得我们下功夫学习。

4.4.2 HLS Muxer参数

	FFmpeg自带HLS的封装参数，指定HLS格式即可进行HLS的封装，但是生成HLS时有各种参数可以进行设置，例如设置HLS列表中切片的前置路径、生成HLS的TS切片时设置TS的分片参数、生成HLS时设置M3U8列表中保存的TS个数等，如表4-34所示。

	表4-34 FFmpeg的HLS封装参数

	[image:]

	[image:]

	[image:]

4.4.3 HLS Muxer举例说明

	一般情况下，从文件转HLS直播时使用的参数如下。

	ffmpeg -i input.mp4 -c copy -f hls -bsf:v h264_mp4toannexb output.m3u8

	输出内容如下：

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-TARGETDURATION:10

	#EXT-X-MEDIA-SEQUENCE:37

	#EXTINF:5.120000,

	output37.ts

	#EXTINF:3.680000,

	output38.ts

	#EXTINF:5.720000,

	output39.ts

	#EXTINF:9.600000,

	output40.ts

	#EXTINF:0.240000,

	output41.ts

	因为默认是HLS直播，所以生成的M3U8文件内容会随着切片的产生而更新。观察上面的命令会发现一个特殊之处，命令行中多了一个参数-bsf:v h264_mp4toannexb，这个参数的作用是将MP4中的H.264数据转换为H.264 Annex B标准格式。Annex B标准编码常见于实时传输流中，是MPEG-TS要求的码流封装格式。如果源文件为TS或者将裸Annex B格式的H.264流作为直播传输流的源文件，则不需要这个参数，这个参数的作用在第7章会再次提及，不熟悉的读者可以直接跳到7.2.3节的h264_mp4toannexb部分阅读。生成HLS时还有其他的一些参数可以设置，下面一一介绍。

	1. start_number参数

	start_number参数设置M3U8列表中的第1片的序列数。我们尝试使用start_number参数设置M3U8中第1片的序列数为300，命令行如下：

	ffmpeg -i input.mp4 -c copy -f hls -bsf:v h264_mp4toannexb -start_number 300 output.m3u8

	输出的M3U8内容如下：

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-TARGETDURATION:4

	#EXT-X-MEDIA-SEQUENCE:300

	#EXTINF:3.760000,

	output300.ts

	#EXTINF:1.880000,

	output301.ts

	#EXTINF:1.760000,

	output302.ts

	#EXTINF:1.040000,

	output303.ts

	#EXTINF:1.560000,

	output304.ts

	从输出的M3U8内容可以看到，切片的第1片编号是300，上面的命令行参数-start_number生效。

	2. hls_time参数

	hls_time参数设置M3U8列表中切片的duration。例如，使用如下命令行控制转码切片长度为10秒左右一片。这个切片规则采用的方式为从关键帧处开始切片，所以在GoP不均匀的时候，其切片时间并不是很均匀。这时候如果先转码控制GoP变得均匀，再进行切片，则可以控制得非常规律。

	ffmpeg -i input.mp4 -c copy -f hls -bsf:v h264_mp4toannexb -hls_time 10 output.m3u8

	执行命令行后，输出的M3U8内容如下：

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-TARGETDURATION:11

	#EXT-X-MEDIA-SEQUENCE:0

	#EXTINF:10.480000,

	output0.ts

	#EXTINF:9.920000,

	output1.ts

	#EXTINF:9.840000,

	output2.ts

	#EXTINF:9.880000,

	output3.ts

	#EXTINF:7.640000,

	output4.ts

	从输出的M3U8内容可以看到，TS文件的每一片的时长都是在10秒左右，hls_time 10参数生效。

	3. hls_list_size参数

	hls_list_size参数设置M3U8列表中TS切片的个数，通过hls_list_size可以控制M3U8列表中TS分片的个数。命令行如下：

	ffmpeg -i input.mp4 -c copy -f hls -bsf:v h264_mp4toannexb -hls_list_size 3 output.m3u8

	命令执行后输出的M3U8内容如下，列表中最多有3个TS分片。

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-TARGETDURATION:2

	#EXT-X-MEDIA-SEQUENCE:2

	#EXTINF:1.760000,

	output2.ts

	#EXTINF:1.040000,

	output3.ts

	#EXTINF:1.560000,

	output4.ts

	从输出的M3U8内容可以看到，在M3U8文件窗口中只保留了3片TS的文件信息，hls_list_size设置生效。

	4. hls_wrap参数

	hls_wrap为设置M3U8列表中TS刷新回滚的参数，TS分片序号等于hls_wrap参数设置的数时则回滚。命令行如下：

	ffmpeg -i input.mp4 -c copy -f hls -bsf:v h264_mp4toannexb -hls_wrap 3 output.m3u8

	命令行执行后输出的M3U8内容如下，当切片序号大于2时，序号回滚为0。

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-TARGETDURATION:7

	#EXT-X-MEDIA-SEQUENCE:62

	#EXTINF:5.000000,

	output2.ts

	#EXTINF:6.960000,

	output0.ts

	#EXTINF:3.200000,

	output1.ts

	#EXTINF:3.840000,

	output2.ts

	#EXTINF:0.960000,

	output0.ts

	从输出的M3U8内容可以看到，生成的TS序号已经被回滚，M3U8内容中出现了两个编号为2、两个编号为0的TS片。

	注意：FFmpeg中hls_wrap配置参数对CDN缓存节点的支持并不友好，并且会引起很多不兼容的问题，在新版本的FFmpeg中该参数已经被弃用。

	5. hls_base_url参数

	hls_base_url为设置M3U8列表中文件路径前置基本路径的参数。在FFmpeg中生成M3U8时写入的TS切片路径默认为与M3U8生成的路径相同，但是实际上TS所存储的路径既可以为本地绝对路径，也可以为相对当前路径，还可以为网络路径，使用hls_base_url参数自行设置可以达到该效果。命令行如下：

	ffmpeg -i input.mp4 -c copy -f hls -hls_base_url http://192.168.0.1/live/ -bsf:v h264_mp4toannexb output.m3u8

	命令行执行后输出的M3U8内容如下，在M3U8中增加了绝对路径。

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-TARGETDURATION:4

	#EXT-X-MEDIA-SEQUENCE:0

	#EXTINF:3.760000,

	http://192.168.0.1/live/output0.ts

	#EXTINF:1.880000,

	http://192.168.0.1/live/output1.ts

	#EXTINF:1.760000,

	http://192.168.0.1/live/output2.ts

	#EXTINF:1.040000,

	http://192.168.0.1/live/output3.ts

	#EXTINF:1.560000,

	http://192.168.0.1/live/output4.ts

	从输出的M3U8内容可以看到，每一个TS文件前面都加上了一个“http”链接前缀，hls_ base_url设置的参数生效。

	6. hls_segment_filename参数

	hls_segment_filename为设置M3U8列表中切片文件名的规则模板的参数。如果不设置hls_ segment_filename参数，生成的TS切片文件名模板与M3U8的文件名模板相同。设置hls_segment_ filename规则命令行如下：

	ffmpeg -i sintel-1280-surround.mp4 -c copy -vframes 1000 -f hls -hls_segment_filename test_output-%d.ts -bsf:v h264_mp4toannexb output.m3u8

	命令行执行后输出的M3U8内容如下，TS切片规则可以通过参数被正确地设置。

	$ ls -l test_output-*

	-rw-r--r-- 1 junzhao staff 1685044 1 21 14:46 test_output-0.ts

	-rw-r--r-- 1 junzhao staff 2362408 1 21 14:46 test_output-1.ts

	-rw-r--r-- 1 junzhao staff 1784872 1 21 14:46 test_output-2.ts

	-rw-r--r-- 1 junzhao staff 52330928 1 21 14:46 test_output-3.ts

	BARRYJZHAO-MB1:FFmpeg junzhao$ cat output.m3u8

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-TARGETDURATION:10

	#EXT-X-MEDIA-SEQUENCE:0

	#EXTINF:10.416667,

	test_output-0.ts

	#EXTINF:10.416667,

	test_output-1.ts

	#EXTINF:10.416667,

	test_output-2.ts

	#EXTINF:10.416667,

	test_output-3.ts

	#EXT-X-ENDLIST

	从输出的M3U8内容与打开的M3U8文件名来看，TS分片的文件名前缀与M3U8文件名已经不相同，说明可以通过参数hls_segment_filename为HLS的TS分片单独设置文件名。

	7. hls_flags参数

	hls_flags参数有一些子参数，子参数包含了正常文件索引、删除过期切片、整数显示duration、在列表开始插入discontinuity标签及M3U8结束不追加endlist标签等。

	（1）delete_segments子参数

	使用delete_segments参数可删除不在M3U8列表中的旧文件。这里需要注意，FFmpeg删除切片时会根据hls_list_size的大小加1作为删除的依据。命令行如下：

	ffmpeg -f lavfi -i testsrc2=s=176x144:r=15 -vcodec libx264 -g 30 -r:v 15 -f hls -hls_time 2 -hls_list_size 4 -hls_flags delete_segments -t 30 output-test.m3u8

	该命令中，hls_list_size为4，命令行执行后最后生成的切片与M3U8列表文件内容如下：

	BARRYJZHAO-MB1:FFmpeg junzhao$ ls *.ts

	output-test10.ts output-test11.ts output-test12.ts output-test13.ts output-test14.ts

	BARRYJZHAO-MB1:FFmpeg junzhao$ cat output-test.m3u8

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-TARGETDURATION:2

	#EXT-X-MEDIA-SEQUENCE:11

	#EXTINF:2.000000,

	output-test11.ts

	#EXTINF:2.000000,

	output-test12.ts

	#EXTINF:2.000000,

	output-test13.ts

	#EXTINF:2.000000,

	output-test14.ts

	从输出的内容可以看到，切片已经切到了第15片（切片默认从0开始作为索引），但是目录中只有从编号10～14的5（hls_list_size+1）个切片，其他早期的切片全部被删除。这是因为使用了-hls_flags delete_segments参数，它删除了前面的0～9号切片，保留的TS切片数刚好是5个。

	（2）round_durations子参数

	使用round_durations子参数实现切片信息的duration为整数值。命令行如下：

	ffmpeg -i input.mp4 -c copy -f hls -hls_flags round_durations -bsf:v h264_mp4toannexb output.m3u8

	命令行执行后生成的M3U8内容如下，duration为整型。

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-TARGETDURATION:4

	#EXT-X-MEDIA-SEQUENCE:0

	#EXTINF:4,

	output0.ts

	#EXTINF:2,

	output1.ts

	#EXTINF:2,

	output2.ts

	#EXTINF:1,

	output3.ts

	#EXTINF:2,

	output4.ts

	从输出的M3U8文件内容中可以看到，每一片TS的时长均为整数，而不是平常看到的浮点数，设置的hls_flags round_durations生效。

	（3）discont_start子参数

	discont_start子参数在生成M3U8时，在切片信息前插入discontinuity标签。该方法可以用于相邻TS切片之间出现不连续，比如时间戳跳转，或者TS的连续计数器不连续等时。命令行如下：

	ffmpeg -i input.mp4 -c copy -f hls -hls_flags discont_start -bsf:v h264_mp4toannexb output.m3u8

	命令行执行后生成的M3U8内容如下，在切片前加入了discontinuity标签。

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-TARGETDURATION:4

	#EXT-X-MEDIA-SEQUENCE:0

	#EXT-X-DISCONTINUITY

	#EXTINF:3.760000,

	output0.ts

	#EXTINF:1.880000,

	output1.ts

	#EXTINF:1.760000,

	output2.ts

	#EXTINF:1.040000,

	output3.ts

	#EXTINF:1.560000,

	output4.ts

	从输出的M3U8内容可以看到，在第1片TS信息的前面有一个EXT-X- DISCONTINUTY标签，这个标签常用作切片不连续时的特别声明。

	（4） omit_endlist

	omit_endlist 子参数在生成 M3U8 结束时在文件末尾不追加 endlist 标签。因为在常规生成M3U8文件结束时，FFmpeg会默认写入endlist标签。使用这个参数可以控制在M3U8结束时不写入endlist标签。命令行如下：

	ffmpeg -i sintel-1280-surround.mp4 -c copy -vframes 2000 -f hls -hls_flags omit_endlist -bsf:v h264_mp4toannexb output.m3u8

	命令行执行完成之后，在文件转M3U8结束之后，M3U8文件的末尾处不会追加endlist标签。

	BARRYJZHAO-MB1:FFmpeg junzhao$cat output.m3u8

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-TARGETDURATION:7

	#EXT-X-MEDIA-SEQUENCE:8

	#EXTINF:1.625000,

	output8.ts

	#EXTINF:5.958333,

	output9.ts

	#EXTINF:5.833333,

	output10.ts

	#EXTINF:7.416667,

	output11.ts

	#EXTINF:1.875000,

	output12.ts

	从输出的M3U8内容可以看到，在生成HLS文件结束时并没有在M3U8末尾处追加EXT-X-ENDLIST标签。

	（5）split_by_time

	split_by_time子参数生成M3U8时是根据hls_time参数设定的数值作为秒数参考对TS进行切片的，并不一定要遇到关键帧。在之前的例子中可以看到，设定hls_time参数值之后，切片生成的TS的duration有时远大于设定的值，使用split_by_time可以解决这个问题。命令行如下：

	ffmpeg -i input.ts -c copy -f hls -hls_time 2 -hls_flags split_by_time output.m3u8

	命令行执行完成之后，hls_time参数设置的切片duration已经生效。效果如下：

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-TARGETDURATION:3

	#EXT-X-MEDIA-SEQUENCE:61

	#EXTINF:2.040000,

	output61.ts

	#EXTINF:2.000000,

	output62.ts

	#EXTINF:1.920000,

	output63.ts

	#EXTINF:2.080000,

	output64.ts

	#EXTINF:0.520000,

	output65.ts

	从输出的内容可以看到，生成的切片在没有遇到关键帧时依然可以与hls_time设置的切片的时长相差不多。

	注意：split_by_time参数必须与hls_time配合使用，并且使用split_by_time参数时有可能会影响首画面体验，例如出现花屏或者首画面显示慢的问题，因为视频的第1帧不一定是关键帧。

	8. strftime参数

	strftime参数用于设置HLS切片文件名，以及为M3U8文件中的切片信息文件命名，值为生成TS切片文件时实时获取的当前系统时间。命令行如下：

	ffmpeg -re -i sintel-1280-surround.mp4 -c copy -vframes 2000 -f hls -strftime 1 -bsf:v h264_mp4toannexb output.m3u8

	命令行执行后生成的内容如下：

	BARRYJZHAO-MB1:FFmpeg junzhao$ ls -l output*.ts

	-rw-r--r-- 1 junzhao staff 471316 1 21 15:27 output-1674286028.ts

	-rw-r--r-- 1 junzhao staff 1617364 1 21 15:27 output-1674286029.ts

	-rw-r--r-- 1 junzhao staff 1207148 1 21 15:27 output-1674286035.ts

	-rw-r--r-- 1 junzhao staff 1297012 1 21 15:27 output-1674286041.ts

	-rw-r--r-- 1 junzhao staff 287640 1 21 15:27 output-1674286049.ts

	BARRYJZHAO-MB1:FFmpeg junzhao$ cat output.m3u8

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-TARGETDURATION:7

	#EXT-X-MEDIA-SEQUENCE:8

	#EXTINF:1.625000,

	output-1674286028.ts

	#EXTINF:5.958333,

	output-1674286029.ts

	#EXTINF:5.833333,

	output-1674286035.ts

	#EXTINF:7.416667,

	output-1674286041.ts

	#EXTINF:1.875000,

	output-1674286049.ts

	#EXT-X-ENDLIST

	从输出的M3U8内容与TS切片的命名可以看到，切片的名称是以本地时间的形式来命名的。这个命令还有一个有趣的地方就是它加上了-re这个参数，原因是切片操作很快，不同的切片可能在相同的时间生成而导致文件被覆盖，加上-re这个参数，可以避免出现类似“[hls muxer @ 0x7f8516824800] Duplicated segment filename detected: output-1674285954.ts”这样的警告。

	9. method参数

	method参数为设置HLS将M3U8及TS文件上传至HTTP服务器的方法，这个功能使用的前提是需要有一台HTTP服务器，支持上传相关的方法，如PUT、POST等。可以尝试使用Nginx的webdav模块来完成这个功能，使用method参数的PUT方法可以实现通过HTTP推流HLS的功能。首先需要配置一个支持上传文件的HTTP服务器，本例使用Nginx作为HLS直播的推流服务器，需要支持WebDAV功能。Nginx配置如下：

	location / {

	 client_max_body_size 10M;

	 dav_access group:rw all:rw;

	 dav_methods PUT DELETE MKCOL COPY MOVE;

	 root html/;

	}

	配置完成后启动Nginx即可。然后通过FFmpeg执行HLS推流命令行如下：

	ffmpeg -i input.mp4 -c copy -f hls -hls_time 3 -hls_list_size 0 -method PUT -t 30 http://127.0.0.1/test/output_test.m3u8

	命令行执行后，在Nginx对应的配置目录下将会有FFmpeg推流上传的HLS相关M3U8及TS文件，效果如下：

	BARRYJZHAO-MB1:FFmpeg junzhao$ ls -l /usr/local/nginx/html/test/

	total 5856

	-rw-rw-rw- 1 nobody admin 224 7 18 19:59 output_test.m3u8

	-rw-rw-rw- 1 nobody admin 1373152 7 18 19:59 output_test0.ts

	-rw-rw-rw- 1 nobody admin 838856 7 18 19:59 output_test1.ts

	-rw-rw-rw- 1 nobody admin 564188 7 18 19:59 output_test2.ts

	-rw-rw-rw- 1 nobody admin 209432 7 18 19:59 output_test3.ts

	BARRYJZHAO-MB1:FFmpeg junzhao$ cat /usr/local/nginx/html/test/output_test.m3u8

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-TARGETDURATION:4

	#EXT-X-MEDIA-SEQUENCE:0

	#EXTINF:3.760000,

	output_test0.ts

	#EXTINF:3.640000,

	output_test1.ts

	#EXTINF:2.080000,

	output_test2.ts

	#EXTINF:0.520000,

	output_test3.ts

	#EXT-X-ENDLIST

	10. 输出多码率HLS

	HLS参考标准支持动态多码率切换，FFmpeg的HLS输出同样也支持生成多码率码流的M3U8，使用var_stream_map参数并配合map参数实现流的一一对应即可达到目的。这里值得注意的是，var_stream_map参数里使用的是字符串，这个字符串是用户自己手动输入的，内容的编写需要认真拼写，避免因拼写错误出现异常结果。关于var_stream_map里的关键字与规则如表4-35所示。

	表4-35 var_stream_map关键字与规则

	[image:]

	[14] ISO-3166定义的名称用于表示国家及其地区名称的代码。参见https://www.iso.org/iso-3166-country-codes.html。

	每一组流对应一个map的流，每一个流使用空格分隔，每一个流的属性用逗号（“,”）分隔，属性与对应的值用冒号做键与值的对应（key:value）。下面举一个例子。

	ffmpeg -i input.mp4 -b:a:0 32k -b:a:1 64k -b:v:0 1000k -map 0:a -map 0:a -map 0:v -f hls -var_stream_map "a:0,agroup:aud_low,default:yes,language:ENG a:1,agroup:aud_high,

	language:CHN v:0,agroup:aud_low" -master_pl_name master.m3u8 -t 30 output%v.m3u8

	这条命令行是将输入的input.mp4转码出音频码率为32kbit/s、64kbit/s的两路音频流，视频码率为1Mbit/s的视频流。输出共3路流，用map做流的对应，然后使用var_stream_map对每一路流进行属性设置。第1路为32kbit/s的音频流，agroup标识为aud_low，为默认使用的音频流，该音频流为英语；第2路音频流的标识是aud_high，该流为中文；第3路为视频流，对应的agroup为aud_low。也就是说这是个多码流的M3U8，默认播放的是视频和对应低码率的、音频为英语的音频流。对应输出的master.m3u8中的内容如下：

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-MEDIA:TYPE=AUDIO,GROUP-ID="group_aud_low",NAME="audio_0",DEFAULT=YES,LANGUAGE="ENG",URI="output0.m3u8"

	#EXT-X-MEDIA:TYPE=AUDIO,GROUP-ID="group_aud_high",NAME="audio_1",DEFAULT=NO,LANGUAGE="CHN",URI="output1.m3u8"

	#EXT-X-STREAM-INF:BANDWIDTH=1170400,RESOLUTION=1920x800,CODECS="avc1.640028,mp4a.40.2",AUDIO="group_aud_low"

	output2.m3u8

	至此，FFmpeg转HLS的功能介绍完毕。

4.5 视频文件切片

	视频文件切片与HLS基本类似，但是HLS切片在标准中只支持TS格式的切片，并且是直播与点播切片，既可以使用segment方式切片，也可以使用ss加上t参数进行切片，可以将segment视为一个通用的切片Muxer，不过这些功能在一起会让用户有些困惑。下面重点介绍一下segment与ss加上t参数对视频文件切片的方法。

4.5.1 segment切片参数

	表4-36为segment生成文件切片的详细参数列表，有些参数与HLS Muxer的参数基本相同。下面着重介绍一些不同的部分。

	表4-36 FFmpeg的segment切片参数

	[image:]

	[image:]

	[image:]

4.5.2 segment切片举例

	1. segment_format指定切片文件的格式

	使用segment_format可指定切片文件的格式。前面讲述过HLS切片主要为MPEG-TS文件格式，在segment中，可以根据segment_format来指定切片文件的格式，既可以为MPEG-TS切片，也可以为MP4切片，还可以为FLV切片等。举例如下：

	ffmpeg -i input.mp4 -c copy -f segment -segment_format mp4 test_output-%d.mp4

	这个命令行用于将一个MP4文件切割为MP4切片，切出来的切片文件的时间戳与上一个MP4的结束时间戳是连续的。

	查看文件列表和文件内容如下：

	ls -l test_output-*.mp4

	-rw-r--r-- 1 liuqi staff 1332928 7 18 20:01 test_output-0.mp4

	-rw-r--r-- 1 liuqi staff 435067 7 18 20:01 test_output-1.mp4

	-rw-r--r-- 1 liuqi staff 376366 7 18 20:01 test_output-2.mp4

	-rw-r--r-- 1 liuqi staff 242743 7 18 20:01 test_output-3.mp4

	-rw-r--r-- 1 liuqi staff 507397 7 18 20:01 test_output-4.mp4

	查看第1个MP4切片的最后时间戳如下：

	ffprobe -v quiet -show_packets -select_streams v test_output-0.mp4 2> x|grep pts_time | tail -n 3

	pts_time=3.680000

	pts_time=3.800000

	pts_time=3.760000

	查看第2个MP4切片的开始时间戳如下：

	ffprobe -v quiet -show_packets -select_streams v test_output-1.mp4 2> x|grep pts_time | head -n 3

	pts_time=3.840000

	pts_time=3.920000

	pts_time=3.880000

	从示例中可以看到，test_output-0.mp4的最后视频时间戳与test_output-1.mp4的起始时间戳刚好为一个正常的duration，也就是0.040秒。

	2. segment_list与segment_list_type指定切片索引列表

	使用segment切割文件时，不仅可以切割MP4，同样可以切割TS或者FLV等文件，生成的文件索引列表也可以指定名称。当然，列表不仅仅是M3U8，也可以是其他格式。

	（1）生成ffconcat格式索引文件

	ffmpeg -i input.mp4 -c copy -f segment -segment_format mp4 -segment_list_type ffconcat -segment_list output.lst test_output-%d.mp4

	上面这条命令将生成ffconcat格式的索引文件output.lst，这个文件将会生成如下MP4切片的文件列表：

	BARRYJZHAO-MB1:FFmpeg junzhao$ ls -l test_output-*.mp4

	-rw-r--r-- 1 liuqi staff 1332928 7 18 20:09 test_output-0.mp4

	-rw-r--r-- 1 liuqi staff 435067 7 18 20:09 test_output-1.mp4

	-rw-r--r-- 1 liuqi staff 376366 7 18 20:09 test_output-2.mp4

	-rw-r--r-- 1 liuqi staff 242743 7 18 20:09 test_output-3.mp4

	-rw-r--r-- 1 liuqi staff 507397 7 18 20:09 test_output-4.mp4

	BARRYJZHAO-MB1:FFmpeg junzhao$ cat output.lst

	ffconcat version 1.0

	file test_output-0.mp4

	file test_output-1.mp4

	file test_output-2.mp4

	file test_output-3.mp4

	file test_output-4.mp4

	从输出的文件与output.lst内容可以看到，输出的列表是ffconcat格式，这种格式常见于虚拟轮播等场景。

	（2）生成FLAT格式索引文件

	ffmpeg -i input.mp4 -c copy -f segment -segment_format mp4 -segment_list_type flat -segment_list filelist.txt test_output-%d.mp4

	上面这条命令将生成如下MP4切片的文本文件列表：

	BARRYJZHAO-MB1:FFmpeg junzhao$

	-rw-r--r-- 1 liuqi staff 1332928 7 18 20:13 test_output-0.mp4

	-rw-r--r-- 1 liuqi staff 435067 7 18 20:13 test_output-1.mp4

	-rw-r--r-- 1 liuqi staff 376366 7 18 20:13 test_output-2.mp4

	-rw-r--r-- 1 liuqi staff 242743 7 18 20:13 test_output-3.mp4

	-rw-r--r-- 1 liuqi staff 507397 7 18 20:13 test_output-4.mp4

	BARRYJZHAO-MB1:FFmpeg junzhao$ cat filelist.txt

	test_output-0.mp4

	test_output-1.mp4

	test_output-2.mp4

	test_output-3.mp4

	test_output-4.mp4

	从以上内容可以看到，切片列表被列在了一个TXT文本中。

	（3）生成CSV格式索引文件

	ffmpeg -i input.mp4 -c copy -f segment -segment_format mp4 -segment_list_type csv -segment_list filelist.csv test_output-%d.mp4

	上面这条命令将会生成CSV格式的列表文件。列表文件中的内容分3个字段：文件名、文件起始时间、文件结束时间。

	BARRYJZHAO-MB1:FFmpeg junzhao$ls -l test_output-*.mp4

	-rw-r--r-- 1 liuqi staff 1332928 7 18 20:16 test_output-0.mp4

	-rw-r--r-- 1 liuqi staff 435067 7 18 20:16 test_output-1.mp4

	-rw-r--r-- 1 liuqi staff 376366 7 18 20:16 test_output-2.mp4

	-rw-r--r-- 1 liuqi staff 242743 7 18 20:16 test_output-3.mp4

	-rw-r--r-- 1 liuqi staff 507397 7 18 20:16 test_output-4.mp4

	BARRYJZHAO-MB1:FFmpeg junzhao$ cat filelist.csv

	test_output-0.mp4,0.000000,3.840000

	test_output-1.mp4,3.840000,5.720000

	test_output-2.mp4,5.720000,7.480000

	test_output-3.mp4,7.480000,8.520000

	test_output-4.mp4,8.520000,10.080000

	从输出的内容可以看到，切片文件的信息列入CSV文件，CSV文件可以用类似操作数据库的方式进行操作，也可以根据CSV生成视图图像。

	（4）生成M3U8格式索引文件

	ffmpeg -i input.mp4 -c copy -f segment -segment_format mp4 -segment_list_type m3u8 -segment_list output.m3u8 test_output-%d.mp4

	M3U8列表不仅仅可以生成MPEG-TS格式文件，同样可以生成其他格式。

	BARRYJZHAO-MB1:FFmpeg junzhao$ ls -l test_output-*.mp4

	-rw-r--r-- 1 liuqi staff 1332928 7 18 20:17 test_output-0.mp4

	-rw-r--r-- 1 liuqi staff 435067 7 18 20:17 test_output-1.mp4

	-rw-r--r-- 1 liuqi staff 376366 7 18 20:17 test_output-2.mp4

	-rw-r--r-- 1 liuqi staff 242743 7 18 20:17 test_output-3.mp4

	-rw-r--r-- 1 liuqi staff 507397 7 18 20:18 test_output-4.mp4

	BARRYJZHAO-MB1:FFmpeg junzhao$ cat output.m3u8

	#EXTM3U

	#EXT-X-VERSION:3

	#EXT-X-MEDIA-SEQUENCE:0

	#EXT-X-ALLOW-CACHE:YES

	#EXT-X-TARGETDURATION:4

	#EXTINF:3.840000,

	test_output-0.mp4

	#EXTINF:1.880000,

	test_output-1.mp4

	#EXTINF:1.760000,

	test_output-2.mp4

	#EXTINF:1.040000,

	test_output-3.mp4

	#EXTINF:1.560000,

	test_output-4.mp4

	#EXT-X-ENDLIST

	从输出的内容可以看到，输出的M3U8与使用HLS模块生成的M3U8基本相同。

	3. reset_timestamps设置切片时间戳归零

	使用reset_timestamps可以将每一个切片的时间戳归零。命令行如下：

	ffmpeg -i input.mp4 -c copy -f segment -segment_format mp4 -reset_timestamps 1 test_output-%d.mp4

	命令行执行完成之后，可以查看一下是否每一个切片的时间戳都从0开始。先查看一下生成的切片文件。

	ls -l test_output-*.mp4

	-rw-r--r-- 1 liuqi staff 1332928 7 19 10:29 test_output-0.mp4

	-rw-r--r-- 1 liuqi staff 435043 7 19 10:30 test_output-1.mp4

	-rw-r--r-- 1 liuqi staff 376342 7 19 10:30 test_output-2.mp4

	-rw-r--r-- 1 liuqi staff 242719 7 19 10:30 test_output-3.mp4

	-rw-r--r-- 1 liuqi staff 507373 7 19 10:30 test_output-4.mp4

	然后查看一下第1片的末尾时间戳。

	ffprobe -v quiet -show_packets -select_streams v test_output-0.mp4 2> x|grep pts_time | tail -n 3

	pts_time=3.680000

	pts_time=3.800000

	pts_time=3.760000

	再查看一下第2片的开始时间戳。

	ffprobe -v quiet -show_packets -select_streams v test_output-1.mp4 2> x|grep pts_time | head -n 3

	pts_time=0.000000

	pts_time=0.080000

	pts_time=0.040000

	从输出效果来看，每一片的开始时间戳均已经归零，参数设置生效。

	4. segment_times按照时间点切片

	对文件进行切片时，有时需要均匀地切片，有时需要按照指定的时间长度进行切片，segment可以根据指定的时间点进行切片。举个例子如下：

	ffmpeg -re -i input.mp4 -c copy -f segment -segment_format mp4 -segment_times 3,9,12 test_output-%d.mp4

	从命令行的参数可以看到，分别在第3秒、第9秒、第12秒这3个时间点进行切片。

4.5.3 使用ss与t参数切片

	在FFmpeg中，使用ss可以进行视频文件的定位，ss所传递的参数为时间值，t所传递的参数是时间间隔值。下面举个例子来说明ss与t的作用。

	1. 使用ss指定剪切开头

	在前面章节中介绍FFmpeg基本参数时，粗略介绍过FFmpeg的基本转码原理，FFmpeg自身的ss参数可以作为切片起始时间点。例如，从一个视频文件的第8秒开始截取内容。

	ffmpeg -ss 8 -i input.mp4 -c copy output.ts

	命令行执行后，生成的output.ts将会比input.mp4的视频少8秒钟，因为output.ts是从input.mp4的第8秒开始截取的。使用前面介绍过的ffprobe分别获得input.mp4与output.ts的文件duration进行对比，信息如下：

	ffprobe -v quiet -show_format input.mp4 |grep duration; ffprobe -v quiet -show_format output.ts |grep duration

	duration=10.000000

	duration=2.000000

	如输出结果所示，input.mp4的duration是10秒，而output.ts的duration是2秒，相差8秒。

	2. 使用t指定视频总长度

	使用FFmpeg截取视频除了可以指定开始截取位置以外，还可以指定截取数据的长度，FFmpeg的t参数可以指定截取的视频长度。例如，截取input.mp4文件的前10秒数据。

	ffmpeg -i input.mp4 -c copy -t 10 -copyts output.ts

	命令行执行之后，会生成一个时间从0开始的output.ts。查看一下input.mp4与output.ts的起始时间与长度相关信息。

	ffprobe -v quiet -show_format input.mp4 |grep start_time; ffprobe -v quiet -show_format output.ts |grep start_time

	start_time=0.000000

	start_time=0.000000

	ffprobe -v quiet -show_format input.mp4 |grep duration; ffprobe -v quiet -show_format output.ts |grep duration

	duration=10.000000

	duration=10.000000

	从两个文件的duration信息可以看到，input的start_time是0，duration是10.000000，而output.ts的start_time也是0，duration则是10.000000，参数生效。

	3. 使用output_ts_offset指定输出start_time

	FFmpeg支持ss与t两个参数一同使用来切割视频的某一段，并指定输出文件的start_time。实现上述功能可以使用output_ts_offset参数。

	ffmpeg -i input.mp4 -c copy -t 10 -output_ts_offset 120 output.mp4

	命令行执行之后输出的output.mp4文件的start_time将被指定为120。效果如下：

	[FORMAT]

	filename=output.mp4

	nb_streams=2

	nb_programs=0

	format_name=mov,mp4,m4a,3gp,3g2,mj2

	format_long_name=QuickTime / MOV

	start_time=120.000000

	duration=10.000000

	size=2889109

	bit_rate=2309901

	probe_score=100

	TAG:major_brand=isom

	TAG:minor_version=512

	TAG:compatible_brands=isomiso2avc1mp41

	TAG:encoder=Lavf57.71.100

	[/FORMAT]

	从输出的内容可以看到，start_time从120秒开始，而duration是10秒，指定开始时间与duration操作生效。

4.6 视频文件的音视频流抽取

	在某些情况下，除了分析封装数据，我们还需要分析音视频流部分。本节将重点介绍如何抽取音视频数据，FFmpeg支持直接从音视频封装中抽取音视频数据。下面举几个例子。

4.6.1 提取AAC音频流

	除了转封装、转码，FFmpeg还可以提取音频流，例如需要提取音频流并保存到另一个封装中。下面看一下FFmpeg提取MP4文件中AAC音频流的方法。

	ffmpeg -i input.mp4 -vn -acodec copy output.aac

	执行上述命令之后，输出如下信息：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input.mp4':

 略去少量内容

	 Stream #0:1(und): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 120 kb/s (default)

	Output #0, adts, to 'output.aac':

	 Stream #0:0(und): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 120 kb/s (default)

	Stream mapping:

	 Stream #0:1 -> #0:0 (copy)

	Press [q] to stop, [?] for help

	size= 150kB time=00:00:09.98 bitrate= 123.4kbits/s speed=1.3e+03x

	video:0kB audio:147kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 2.179079%

	从输出的内容可以看到，输入的MP4文件中包含视频流与音频流，输出信息中只有AAC音频，生成的output.aac文件内容则为AAC音频流数据。

4.6.2 提取H.264视频流

	有时在视频编辑场景中需要提取视频流，或者与另一路视频流进行合并等，此时也可以使用FFmpeg来完成。

	ffmpeg -i input.mp4 -vcodec copy -an output.h264

	通过FFmpeg将视频中的视频流提取出来，执行上面命令后，输出信息如下：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input.mp4':

 略去少量内容

	 Stream #0:1(und): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 120 kb/s (default)

	Output #0, h264, to 'output.h264':

	 Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], q=2-31, 2183 kb/s, 25 fps, 25 tbr, 25 tbn, 25 tbc (default)

	Stream mapping:

	 Stream #0:0 -> #0:0 (copy)

	Press [q] to stop, [?] for help

	frame= 250 fps=0.0 q=-1.0 Lsize= 2666kB time=00:00:10.00 bitrate=2183.8kbits/s speed=1.41e+03x

	video:2666kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.010222%

	从输出的内容可以看到，输入的MP4文件中包含音频流与视频流，输出信息中只有H.264视频，生成的output.h264则为H.264视频流文件。

4.6.3 提取H.265视频流

	与H.264的提取方法类似，再举一个从MP4文件中提取H.265数据的例子。

	ffmpeg -i input.mp4 -vcodec copy -an -bsf hevc_mp4toannexb -f hevc output.hevc

	执行这条命令后，输出信息如下：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input_hevc.mp4':

 略去少量内容

	 Stream #0:1(und): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 128 kb/s (default)

	Output #0, hevc, to 'output.hevc':

	 Stream #0:0(und): Video: hevc (Main) (hev1 / 0x31766568), yuv420p(tv, progressive), 1280x714 [SAR 1:1 DAR 640:357], q=2-31, 1044 kb/s, 25 fps, 25 tbr, 25 tbn, 25 tbc (default)

	Stream mapping:

	 Stream #0:0 -> #0:0 (copy)

	Press [q] to stop, [?] for help

	frame= 252 fps=0.0 q=-1.0 Lsize= 1290kB time=00:00:10.00 bitrate=1056.4kbits/s speed=1.32e+03x

	video:1290kB audio:0kB subtitle:0kB other streams:0kB global headers:1kB muxing overhead: 0.000000%

	由于输入文件input.mp4的容器格式为MP4，MP4中存储的视频数据并不是标准的Annex B格式，所以需要将MP4的视频存储格式转存为Annex B格式，输出的HEVC格式文件可以直接使用播放器进行观看。

4.7 系统资源使用情况

	在使用FFmpeg进行格式转换、编码转换操作时，所占用的系统资源各有不同。如果使用FFmpeg仅仅转换封装格式而非转换编码，所使用的CPU资源并不多。下面看一个转封装时的CPU使用率的例子。

	ffmpeg -re -i input.mp4 -c copy -f mpegts output.ts

	执行了上面这条命令之后，使用top命令查看CPU使用率，如图4-20所示。

	[image:]

	图4-20 FFmpeg转封装时CPU的使用情况

	通过图4-20可以看出，使用FFmpeg进行封装转换时并不会占用大量的CPU资源，因为此时主要以读取、写入音视频数据为主，并不涉及复杂的计算。如果使用FFmpeg进行编码转换，则需要进行大量的计算，从而会占用大量的CPU资源。

	ffmpeg -re -i input.mp4 -vcodec libx264 -acodec copy -f mpegts output.ts

	命令执行后则开始进行转码操作，执行之后使用top查看CPU使用率，如图4-21所示。

	[image:]

	图4-21 FFmpeg转码时CPU的使用情况

	从图4-21可以看到使用FFmpeg进行视频编码转换时CPU的使用情况，CPU使用率相对比较高。在转码时CPU使用率会非常高，因为涉及大量的计算，CPU使用情况取决于计算的复杂程度。

4.8 小结

	容器格式是一个重要但又极易被忽视的知识点，一般认为它属于系统层，但一直被学术界所忽视。任何编码格式的使用都面临存储、分发、编辑、overhead等挑战，一般而言，我们需要关注容器中数据的组织结构、音视频编码格式、时间戳、元信息、如何支持seek操作，以及是否支持流化和录制等。另外，也需要有合适的工具来分析容器格式异常或者错误。

	在本章中，我们重点分析了常用的MP4、FLV、MPEG-TS、HLS标准格式，并给出了相应的FFmpeg实例。通过本章的学习，读者可以掌握大部分媒体文件格式转换的实现方法，并对这些容器格式有更深入的了解，从而有能力使用FFmpeg来完成相关的任务。

第5章

编码与转码

	上一章介绍了音视频容器封装格式，以及使用FFmpeg进行容器封装格式的转换等。本章将重点介绍音视频编码、转码功能，以及使用FFmpeg进行音视频编码转换。

	所有在互联网上传播的媒体文件都需要被压缩，以便快速地从一个地方传输到另一个地方。媒体文件的快速传播在过去几年中变得尤为重要，因为原始媒体文件的质量和尺寸在不断增长，内容制作者和发行者都在提升人们消费的界限。最新的设备有望提供HDR/HDR+、4K和8K分辨率、60fps/120fps高帧率质量的内容。然而，提供高质量的媒体内容是有成本的，无论是处理、存储还是传输。
Codec在不同场景下表征的意义不大一样，可以视为压缩设备、程序或者标准。但在不同的上下文场景下，我们能很容易地区分。并不是每个视频编解码器都是基于混合编码方案的，但当前使用最为广泛的视频编解码器都是基于混合方案。可能基于AI的编解码技术能够改变这一事实。
	这就是编解码器（Codec）发挥作用的地方。编解码器是一种压缩媒体数据的设备、程序或者标准
	 [image: Codec在不同场景下表征的意义不大一样，可以视为压缩设备、程序或者标准。但在不同的上下文场景下，我们能很容易地区分。]，以实现更快的传输或者降低存储空间。Codec一词是enCOde和DECode两个术语的缩略语的组合。一般认为第一个标准化的视频编解码器是H.261，由国际电信联盟（ITU）视频编码专家组于1988年批准，并于1990年公开推出。迄今为止的每一个主流使用的编解码器都基于混合编码方案
	 [image: 并不是每个视频编解码器都是基于混合编码方案的，但当前使用最为广泛的视频编解码器都是基于混合方案。可能基于AI的编解码技术能够改变这一事实。]，在空间域利用预测（使用内部预测以及运动补偿），在变换域对产生的残差信号进行编码。在实际应用中，最常使用的变换方法是离散余弦变换（Discrete Cosine Transform，DCT）。HEVC混合编码框架如图5-1所示。

	[image:]

	图5-1 HEVC混合编码框架示意

	视频混合编码主要涉及的流程包含分区、预测、变换、量化、环路滤波、熵编码等关键技术。

	使用分区的主要原因是精确地处理预测。一般而言，在移动较多的区域使用较小的块，而在静态背景上使用较大的块。一旦分区完成，就可以在它们之上做出预测。主要有两类预测：一是帧间预测，主要考虑时间冗余，需要发送运动向量和残差；二是帧内预测，考虑空间冗余，需要发送预测方向和残差。在预测之后，就得到残差块（预测分区与真实分区的差值），然后用某种方式对残差块进行变换，就得到一些结果。这样在随后的步骤中，对这些变换后的结果进行分析，就可以知道哪些像素丢弃后依然能保持图像整体的质量了。DCT无疑是最重要的变换方式之一，可以使用它将一张图像转换到频域，这时候大多数能量会集中在低频部分，所以丢掉高频系数能减少描述图像所需的数据量，同时不会牺牲太多的图像质量。接下来对系数进行量化以达到压缩的目的，最后一步则是对量化后的数据执行无损的熵编码，这主要是利用了语法元素间的相关性以进一步压缩，这样就产生了适合存储或者传输的码流。这就是编码的基本流程，解码流程反其道而行之即可。

	鉴于市场上有许多不同的商业模式和应用，而全球对更高效的媒体文件传输的需求越来越大，不同组织或者联盟因为种种原因而崛起，我们可能会遇到多种Codec。编解码器的发展基本上分为几个“流派”，以解决没有一个编解码器能适合所有使用情况的问题。下面是几个主要的视频编码标准制定的“流派”。

	・标准制定组织。ITU-T视频编码专家组（VCEG）和ISO/IEC JTC1运动图像专家组（MPEG）。

	・基于公司/联盟的组织。典型的如开放媒体联盟（AOMedia）。

	・国标。典型如AVS系列，包含AVS、AVS+、AVS2、AVS3等。

	虽然几派都专注于改善媒体传输，但它们之间的关键区别在于：ITU-T和ISO/IEC JTC1标准制定组织创造了专利技术，需要为编解码器的部署支付专利费；开放媒体联盟则是开发开源的编解码器；而AVS系列则着重于自主编码标准和国产化问题。然而需要注意的是，尽管如此，对于这些编解码器的“开放”程度一直存在一些争议。

5.1 软编码H.264

H.264即AVC（Advanced Video Coding），H.265即HEVC（High-Efficiency Video Coding），它们都有两个名称，主要是因为是这两个编解码器标准都是由MPEG和国际电信联盟（ITU）联合标准化的。H.266即VVC（Versatile Video Coding），原因相同。
	当前网络中常见的视频编码格式要数H.264（AVC）
	 [image: H.264即AVC（Advanced Video Coding），H.265即HEVC（High-Efficiency Video Coding），它们都有两个名称，主要是因为是这两个编解码器标准都是由MPEG和国际电信联盟（ITU）联合标准化的。H.266即VVC（Versatile Video Coding），原因相同。]最为火热，支持H.264的封装格式很多，如RTMP、FLV、MP4、HLS（M3U8）、MKV、TS等。FFmpeg本身并不支持H.264编码器，而是采用了集成第三方模块的方式进行支持，如x264和OpenH264。x264和OpenH264二者各有各的优势，OpenH264开源比较晚，最初主要是为了让RTC等低延迟场景且版权更为宽松一些。不过目前x264还是最常用的H.264编码器，主要因为其优异的压缩性能和良好的工程实践。这里我们重点介绍FFmpeg中x264的使用。使用x264进行H.264编码时，所支持的像素格式主要包括yuv420p、yuvj420p、yuv422p、yuvj422p、yuv444p、yuvj444p、nv12、nv16、nv21、yuv420p10le、yuv422p10le、yuv444p10le、nv20le、gray、gray10le。通过ffmpeg -h encoder=libx264可以查看。

	Encoder libx264 [libx264 H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10]:

	 General capabilities: dr1 delay threads

	 Threading capabilities: other

	 Supported pixel formats: yuv420p yuvj420p yuv422p yuvj422p yuv444p yuvj444p nv12 nv16 nv21 yuv420p10le yuv422p10le yuv444p10le nv20le gray gray10le

	其支持的输入格式较多，并且能同时支持8位和10位位深。下面详细介绍一下FFmpeg中x264的参数。

5.1.1 x264编码参数简介

	x264大概是最为知名的H.264编码器了，FFmpeg中支持了很多x264的编码参数，其实现上主要是把x264的参数映射到FFmpeg里，一部分是以FFmpeg公共参数的方式，另一部分是以编码器特定参数的方式。同样，也可以使用x264本身的参数形式来进行控制。现在FFmpeg更建议后一种方式，其原因在于前面这种映射操作有些弊端，一是将x264的参数映射到FFmpeg的参数时容易出现语义上的细微差异，另外，如果底层libx264这样的第三方库发生变化，如新增、删除或者改变相关参数，FFmpeg也需要变化，使得耦合比较重，所以社区目前更偏向后一种方式（使用命令查看一下FFmpeg支持libx264、libx265的参数数目也可以看到，如ffmpeg -h encoder= libx264命令）。具体在FFmpeg中能支持的x264参数如表5-1所示。

	表5-1 x264参数

	[image:]

	[image:]

	▲[4] Constant Rate Factor（CRF）是x264和x265编码器的默认质量（和速率）控制方式，同样也适用于libvpx。对于x264和x265，可以设置的范围为0～51之间的浮点数，较低的数值会获得更好的质量，但代价是文件尺寸更大；更高的值意味着更多的压缩，但在某些时候你会注意到质量的下降。从实现上说，CRF通过降低“不太重要”的帧的质量来实现这一点。从经验上说，一个±6的CRF变化导致大约一半/两倍的文件大小，这可以用来粗略估计CRF变化和最终码率之间的变化关系。

	[image:]

	[image:]

	[image:]

	以上为FFmpeg支持的x264编码参数，设置参数后编码生成的文件可以通过一些外部协助工具进行查看分析，例如Elecard、Bitrate Viewer、ffprobe等。另外，x264默认会打印设置的参数，这也可以被用于检查x264参数设置是否如预期。

5.1.2 H.264编码举例

	在前一节已经给出了FFmpeg中H.264编码器libx264的操作参数，它的编码选项非常丰富，下面说明一些重要的参数，并据此举一些实际常用的例子。

	1. 编码器预设参数设置

	preset可用来权衡压缩效率和编码速度。如果指定一个预设的preset，它所做的改变将在所有其他参数被应用之前被应用。一般来说，应该把这个选项设置为能承受的最慢的速度。x264 preset详细的参数说明可以使用x264 --fullhelp查看，找到x264帮助信息中preset参数项之后，可以看到其包含以下几种预设参数。

	1）ultrafast：最快的编码方式。除了默认设置外，增加以下参数设置。

	--no-8x8dct --aq-mode 0 --b-adapt 0 --bframes 0 --no-cabac --no-deblock --no-mbtree --me dia --no-mixed-refs --partitions none --rc-lookahead 0 --ref 1 --scenecut 0 --subme 0 --trellis 0 --no-weightb --weightp 0

	2）superfast：超级快速的编码方式。除了默认设置外，增加以下参数设置。

	--no-mbtree --me dia --no-mixed-refs --partitions i8x8,i4x4 --rc-lookahead 0 --ref 1 --subme 1 --trellis 0 --weightp 1

	3）veryfast：非常快速的编码方式。除了默认设置外，增加以下参数设置。

	--no-mixed-refs --rc-lookahead 10 --ref 1 --subme 2 --trellis 0 --weightp 1

	4）faster：稍微快速的编码方式。除了默认设置外，增加以下参数设置。

	--no-mixed-refs --rc-lookahead 20 --ref 2 --subme 4 --weightp 1

	5）fast：快速的编码方式。除了默认设置外，增加以下参数设置。

	--rc-lookahead 30 --ref 2 --subme 6 --weightp 1

	6）medium：折中的编码方式。这是x264的默认设置，参数全部为默认设置值。从mediainfo获取到的信息可以看到，实际上的设置如下。

	cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x3:0x113 / me=hex / subme=7 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=1 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=1 / lookahead_threads=1 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=250 / keyint_min=25 / scenecut=40 / intra_refresh=0 / rc_lookahead=40 / rc=crf / mbtree=1 / crf=23.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / ip_ratio=1.40 / aq=1:1.00

	7）slow：慢的编码方式。除了默认设置外，增加以下参数设置。

	--direct auto --rc-lookahead 50 --ref 5 --subme 8 --trellis 2

	8）slower：更慢的编码方式。除了默认设置外，增加以下参数设置。

	--b-adapt 2 --direct auto --me umh --partitions all --rc-lookahead 60 --ref 8 --subme 9 --trellis 2

	9）veryslow：非常慢的编码方式。除了默认设置外，增加以下参数设置。

	--b-adapt 2 --bframes 8 --direct auto --me umh --merange 24 --partitions all --ref 16 --subme 10 --trellis 2 --rc-lookahead 60

	10）placebo：最慢的编码方式。除了默认设置外，增加以下参数设置。

	--bframes 16 --b-adapt 2 --direct auto --slow-firstpass --no-fast-pskip --me tesa --merange 24 --partitions all --rc-lookahead 60 --ref 16 --subme 11 --trellis 2

	根据设置参数的不同，所编码出来的图像质量和压缩率也会有所不同。当然，编码复杂度的差异导致编码时间也不同。设置相关的预设（preset）参数后，很多参数也会被preset的设置所影响，我们需要了解具体的参数含义。为了方便操作，一般先通过preset进行设置，然后再做其他参数的调整。下面看一下相同的机器中分别设置ultrafast与medium参数后的转码效率对比。

	ffmpeg -i skyfall2-trailer.mp4 -c:v libx264 -preset ultrafast -b:v 2000k output.mp4

	命令行执行后输出内容如下：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from '/data/ffmpeg_build/skyfall2-trailer.mp4':

	 Metadata:

	 major_brand : mp42

	 minor_version : 0

	 compatible_brands: isom

	 creation_time : 2012-07-31T00:31:48.000000Z

	 Duration: 00:02:30.77, start: 0.000000, bitrate: 4002 kb/s

	 Stream #0:0[0x1](eng): Video: h264 (Main) (avc1 / 0x31637661), yuv420p(tv, progressive), 1920x1080 [SAR 1:1 DAR 16:9], 3937 kb/s, 23.98 fps, 23.98 tbr, 24k tbn (default)

	 Metadata:

	 creation_time : 2012-07-31T00:31:48.000000Z

	 handler_name : MP4 Video Media Handler

	 vendor_id : [0][0][0][0]

	 encoder : AVC Coding

	 Stream #0:1[0x2](eng): Audio: aac (LC) (mp4a / 0x6134706D), 44100 Hz, stereo, fltp, 61 kb/s (default)

	 Metadata:

	 creation_time : 2012-07-31T00:31:48.000000Z

	 handler_name : MP4 Sound Media Handler

	 vendor_id : [0][0][0][0]

	File 'output.mp4' already exists. Overwrite? [y/N] y

	Stream mapping:

	 Stream #0:0 -> #0:0 (h264 (native) -> h264 (libx264))

	Press [q] to stop, [?] for help

	[libx264 @ 0x4aec6c0] using SAR=1/1

	[libx264 @ 0x4aec6c0] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.2 AVX FMA3 BMI2 AVX2

	[libx264 @ 0x4aec6c0] profile Constrained Baseline, level 4.0, 4:2:0, 8-bit

	[libx264 @ 0x4aec6c0] 264 - core 164 r3094 bfc87b7 - H.264/MPEG-4 AVC codec - Copyleft 2003-2022 - http://www.videolan.org/x264.html - options: cabac=0 ref=1 deblock=0:0:0 analyse=0:0 me=dia subme=0 psy=1 psy_rd=1.00:0.00 mixed_ref=0 me_range=16 chroma_me=1 trellis=0 8x8dct=0 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=0 threads=12 lookahead_threads=2 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=0 weightp=0 keyint=250 keyint_min=23 scenecut=0 intra_refresh=0 rc=abr mbtree=0 bitrate=2000 ratetol=1.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=0

 省略部分输出

	frame= 3615 fps=294 q=-1.0 Lsize= 37436kB time=00:02:30.73 bitrate=2034.5kbits/s dup=1 drop=0 speed=12.3x

	video:37420kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.041638%

	[libx264 @ 0x4aec6c0] frame I:15 Avg QP:27.60 size: 55186

	[libx264 @ 0x4aec6c0] frame P:3600 Avg QP:29.67 size: 10414

	[libx264 @ 0x4aec6c0] mb I I16..4: 100.0% 0.0% 0.0%

	[libx264 @ 0x4aec6c0] mb P I16..4: 13.9% 0.0% 0.0% P16..4: 12.9% 0.0% 0.0% 0.0% 0.0% skip:73.1%

	[libx264 @ 0x4aec6c0] final ratefactor: 32.28

	[libx264 @ 0x4aec6c0] coded y,uvDC,uvAC intra: 12.7% 17.5% 4.7% inter: 4.2% 3.7% 0.3%

	[libx264 @ 0x4aec6c0] i16 v,h,dc,p: 46% 29% 12% 14%

	[libx264 @ 0x4aec6c0] i8c dc,h,v,p: 62% 19% 15% 4%

	[libx264 @ 0x4aec6c0] kb/s:2033.10

	从命令行执行后输出的内容中可以看到，在我们的例子中，在转码的预设参数为ultrafast模式下，转码的速度为12.3倍速，并且可以从全部的输出信息中看到视频流中帧类型的统计信息、详细的编码参数设置的对应的值，以及使用的CPU的多媒体加速指令信息等。从最后的输出信息中可以看到，它并不包含B帧编码信息，与编码参数设置的bframes=0刚好相对应。如果编码结果不如你的预期的话，基本上上面打印的这些详细信息也能够帮助你很快地定位大部分的问题。接下来看一下设置为medium模式后的速度与画质等。

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from '/data/ffmpeg_build/skyfall2-trailer.mp4':

	 Metadata:

	 major_brand : mp42

	 minor_version : 0

	 compatible_brands: isom

	 creation_time : 2012-07-31T00:31:48.000000Z

	 Duration: 00:02:30.77, start: 0.000000, bitrate: 4002 kb/s

	 Stream #0:0[0x1](eng): Video: h264 (Main) (avc1 / 0x31637661), yuv420p(tv, progressive), 1920x1080 [SAR 1:1 DAR 16:9], 3937 kb/s, 23.98 fps, 23.98 tbr, 24k tbn (default)

	 Metadata:

	 creation_time : 2012-07-31T00:31:48.000000Z

	 handler_name : MP4 Video Media Handler

	 vendor_id : [0][0][0][0]

	 encoder : AVC Coding

	 Stream #0:1[0x2](eng): Audio: aac (LC) (mp4a / 0x6134706D), 44100 Hz, stereo, fltp, 61 kb/s (default)

	 Metadata:

	 creation_time : 2012-07-31T00:31:48.000000Z

	 handler_name : MP4 Sound Media Handler

	 vendor_id : [0][0][0][0]

	Stream mapping:

	 Stream #0:0 -> #0:0 (h264 (native) -> h264 (libx264))

	Press [q] to stop, [?] for help

	[libx264 @ 0x48cb6c0] using SAR=1/1

	[libx264 @ 0x48cb6c0] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.2 AVX FMA3 BMI2 AVX2

	[libx264 @ 0x48cb6c0] profile High, level 4.0, 4:2:0, 8-bit

	[libx264 @ 0x48cb6c0] 264 - core 164 r3094 bfc87b7 - H.264/MPEG-4 AVC codec - Copyleft 2003-2022 - http://www.videolan.org/x264.html - options: cabac=1 ref=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=12 lookahead_threads=2 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=23 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=abr mbtree=1 bitrate=2000 ratetol=1.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00

 省略部分输出

	frame= 3615 fps= 57 q=-1.0 Lsize= 37633kB time=00:02:30.65 bitrate=2046.4kbits/s dup=1 drop=0 speed=2.37x

	video:37593kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.105472%

	[libx264 @ 0x48cb6c0] frame I:127 Avg QP:18.19 size: 61994

	[libx264 @ 0x48cb6c0] frame P:1276 Avg QP:22.77 size: 14791

	[libx264 @ 0x48cb6c0] frame B:2212 Avg QP:24.86 size: 5311

	[libx264 @ 0x48cb6c0] consecutive B-frames: 11.8% 10.8% 27.3% 50.1%

	[libx264 @ 0x48cb6c0] mb I I16..4: 56.2% 27.2% 16.6%

	[libx264 @ 0x48cb6c0] mb P I16..4: 10.3% 14.1% 0.8% P16..4: 18.8% 3.4% 1.2% 0.0% 0.0% skip:51.4%

	[libx264 @ 0x48cb6c0] mb B I16..4: 1.4% 1.2% 0.1% B16..8: 18.7% 1.7% 0.2% direct: 1.4% skip:75.2% L0:48.9% L1:48.5% BI: 2.6%

	[libx264 @ 0x48cb6c0] final ratefactor: 25.52

	[libx264 @ 0x48cb6c0] 8x8 transform intra:47.6% inter:77.4%

	[libx264 @ 0x48cb6c0] coded y,uvDC,uvAC intra: 23.0% 33.1% 9.2% inter: 4.3% 6.1% 0.4%

	[libx264 @ 0x48cb6c0] i16 v,h,dc,p: 51% 27% 9% 14%

	[libx264 @ 0x48cb6c0] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 35% 20% 29% 2% 3% 3% 3% 2% 3%

	[libx264 @ 0x48cb6c0] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 27% 26% 19% 4% 5% 5% 5% 4% 4%

	[libx264 @ 0x48cb6c0] i8c dc,h,v,p: 64% 18% 14% 3%

	[libx264 @ 0x48cb6c0] Weighted P-Frames: Y:11.0% UV:8.6%

	[libx264 @ 0x48cb6c0] ref P L0: 70.2% 11.0% 13.6% 5.1% 0.1%

	[libx264 @ 0x48cb6c0] ref B L0: 86.0% 11.7% 2.3%

	[libx264 @ 0x48cb6c0] ref B L1: 97.3% 2.7%

	[libx264 @ 0x48cb6c0] kb/s:2042.50

	从以上输出内容中可以看到，设置medium模式后，转码速度为2.37倍速，虽然速度降低了，但画质却比ultrafast时有明显的提升。从全部输出信息中也能够看到更多详细的编码参数设置信息，比如从这一段输出信息中可以明确看到有B帧编码信息，而B帧一般可以保证在相同码率时，清晰度相对ultrafast编码出来的视频画质有一定的提升。如图5-2所示为这两种preset下的画质清晰度对比。

	[image:]

	图5-2 medium与ultrafast标准输出视频清晰度对比

	图5-2中左边图像部分是通过medium转码之后的图像，右边是通过预设参数ultrafast转码之后的图像。很显然，左右侧图像质量差异比较大，右侧图像的马赛克非常明显，特别是树木部分，主要是因为两个preset中所设置的编码参数不同，编码参数不相同导致了编码质量的差异。特别是因为左侧B帧的使用，使得最终的编码质量更优，上面的转码信息的统计输出也间接说明了一些问题。ultrafast和medium preset所对应的编码参数细节意义可以参考前面的参数说明。另外，关于编码参数的完整设置，如果只有最终x264编码的流，可以通过mediainfo工具查看确认。以上面的ultrafast preset为例，可以看到编码参数的设置如下：

	[root@VM_69_111_centos /data/ffmpeg/t_ffmpeg]# mediainfo output-u.mp4

	General

	Complete name : output-u.mp4

	Format : MPEG-4

	Format profile : Base Media

	Codec ID : isom (isom/iso2/avc1/mp41)

	File size : 36.6 MiB

	Duration : 2 min 30 s

	Overall bit rate : 2 034 kb/s

	Writing application : Lavf59.24.100

	Video

	ID : 1

	Format : AVC

	Format/Info : Advanced Video Codec

	Format profile : Baseline@L4

	Format settings : 1 Ref Frames

	Format settings, CABAC : No

	Format settings, Reference frames : 1 frame

	Codec ID : avc1

	Codec ID/Info : Advanced Video Coding

	Duration : 2 min 30 s

	Bit rate : 2 000 kb/s

	Maximum bit rate : 2 033 kb/s

	Width : 1 920 pixels

	Height : 1 080 pixels

	Display aspect ratio : 16:9

	Frame rate mode : Constant

	Frame rate : 23.976 (24000/1001) FPS

	Color space : YUV

	Chroma subsampling : 4:2:0

	Bit depth : 8 bits

	Scan type : Progressive

	Bits/(Pixel*Frame) : 0.040

	Stream size : 36.5 MiB (100%)

	Writing library : x264 core 164 r3094 bfc87b7

	Encoding settings : cabac=0 / ref=1 / deblock=0:0:0 / analyse=0:0 / me=dia / subme=0 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=0 / me_range=16 / chroma_me=1 / trellis=0 / 8x8dct=0 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=0 / threads=12 / lookahead_threads=2 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=0 / weightp=0 / keyint=250 / keyint_min=23 / scenecut=0 / intra_refresh=0 / rc=abr / mbtree=0 / bitrate=2000 / ratetol=1.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / ip_ratio=1.40 / aq=0

	Language : English

	Codec configuration box : avcC

	2. H.264编码优化

	使用tune参数调优H.264编码时，可以包含如下几个场景：film、animation、grain、stillimage、psnr、ssim、fastdecode、zerolatency。这几种场景所使用的x264参数均有差异，主要与preset一起，进一步针对输入内容做优化。如果指定了一个tune，这些参数的变化将在preset之后、所有其他参数之前应用。如果源内容与可用的tune之一相匹配，则可以使用这个对应的选项，否则不建议设置。

	1）film：用于高质量的电影内容，使用低强度的deblocking。除默认参数配置外，还设置了以下参数。

	--deblock -1:-1 --psy-rd <unset>:0.15

	2）animation：适用于动画片，使用更高强度的deblocking和更多的参考帧。除默认参数配置外，还设置了以下参数。

	--bframes {+2} --deblock 1:1 --psy-rd 0.4:<unset> --aq-strength 0.6 --ref {Double if >1 else 1}

	3）grain：保留老的、有颗粒的电影素材中的颗粒结构。除默认参数配置外，还设置了以下参数。

	--aq-strength 0.5 --no-dct-decimate --deadzone-inter 6 --deadzone-intra 6 --deblock -2:-2 --ipratio 1.1 --pbratio 1.1 --psy-rd <unset>:0.25 --qcomp 0.8

	4）stillimage：适合于类似幻灯片这种变换较慢的内容。除默认参数配置外，还设置了以下参数。

	--aq-strength 1.2 --deblock -3:-3 --psy-rd 2.0:0.7

	5）psnr：除默认参数配置外，还设置了以下参数。

	--aq-mode 0 --no-psy

	6）ssim：除默认参数配置外，还设置了以下参数。

	--aq-mode 2 --no-psy

	7）fastdecode：允许通过禁用某些过滤器、CABAC等来加速解码。除默认参数配置外，还设置了以下参数。

	--no-cabac --no-deblock --no-weightb --weightp 0

	8）zerolatency：适合于快速编码和低延迟流媒体。除默认参数配置外，还设置了以下参数。

	--bframes 0 --force-cfr --no-mbtree --sync-lookahead 0 --sliced-threads --rc-lookahead 0

	在使用FFmpeg与x264进行H.264直播编码并进行推流时，一般建议将tune参数设置为zerolatency，它会显著降低因编码导致的延迟。

	3. H.264的profile和level设置

	这里的profile和level的设置与H.264标准文档ISO-14496-Part10中描述的profile和level的信息基本相同，x264编码器支持baseline、main、high、high10、high4:2:2、high4:4:4 predictive共6种profile参数设置。profile不同，编码器能使用的编码工具集合也不同。

	baseline profile是最简单的profile，必须由所有解码器支持。它可能对实时应用很有用，如视频会议，其中编码器和解码器必须快速运行。main profile被广泛使用，它在压缩性能和计算复杂性之间提供了一个良好的折衷，适用于基本的标清电视广播。constrained baseline profile是main profile的一个子集，在低复杂性、低延迟的应用中很受欢迎，如移动视频。high profile则提供额外的工具来提高高清电视的压缩率。

	baseline profile支持I和P slice（分片）、基本的4×4整数变换、使用CAVLC进行熵编码，主要用于实时应用，如视频会议或低处理能力的平台。它的特点是复杂性低，但编码效率相应也最低。它还支持3种提高传输效率的工具：FMO、ASO和冗余片，这些都是constrained baseline profile不支持的。不过在实际的场景中，这3个工具使用得并不太多。

	extended profile是baseline profile的一个超集。extended profile主要在baseline profile的基础上扩展了几种容错技术。它使用B slice并支持交错视频编码。这个profile是针对流媒体视频的，它的特点是压缩率更高，但也更复杂。这个profile支持为流媒体设计的特殊slice：SI和SP slice，这些允许服务器在需要时可在不同的码率流之间切换。

	main profile是constrained baseline profile的一个超集。main profile使用I、P和B slice且支持CABAC熵编码，同时也支持CAVLC。它支持B slice的预测模式，如加权预测。它可以与渐进式或隔行式视频一起工作。它缺少一些baseline profile和extended profile所支持的容错技术。这个profile文件主要用于数字非高清电视广播。

	high profile是main profile的一个超集。high profile提供了比其他profile更高的压缩率，但实施复杂性和计算成本有所增加。它增加了一些额外的工具，如8×8变换和8×8预测、支持与频率有关的量化器权重的量化器scale矩阵、单独的Cr和Cb量化器参数，以及单色视频。它主要用于高清晰度应用场景。例如，它被用来在蓝光光盘上存储高清视频，并被用于高清电视广播。

	high10 profile（Hi10P）是建立在high profile之上的，增加了10位的图片精度的支持。在实际的场景中，H.264的“10位”使用并不多，主要是“10位”一般对应更高的分辨率，而这并非H.264所特别擅长的领域。

	high4:2:2 profile（Hi422P）增加了对4:2:2色度子采样格式的支持，同时使用高达10位/样本的图像精度。它主要针对使用隔行扫描视频的专业应用。这个profile建立在high10 profile的基础上。

	high4:4:4 predictive profile（Hi444PP）是建立在high4:2:2 profile之上的。它支持高达4:4:4的色度采样、每个采样高达14位和有效的无损区域编码，以及将每张图片编码为3个独立的颜色平面。

	AVC/H.264标准所规定的具体的编码工具可以参考表5-2，x264编码的profile设置细节也可以参考这个表。

	表5-2 H.264编码profile所对应的编码工具

	[image:]

	[image:]

	[image:]

	level规定了解码器能够处理的视频的大小。它规定了视频的最大码率和每秒的最大宏块数。级数范围为1～5，有中间级数（如1.1、1.2、1.3等）。一个在特定level上运行的解码器也必须处理其下的所有级数。

	level设置则与ISO-14496-Part10参考中Annex A中描述的表格完全相同，如表5-3所示。

	表5-3 H.264 level参数

	[image:]

	[image:]

	[image:]

	下面使用baseline profile编码一个H.264视频，然后使用high profile编码一个H.264视频，并分析两类不同profile编码出来的视频的区别。从前面内容可以看到，使用baseline profile编码的H.264视频不会包含B slice，而使用main profile、high profile编码出来的视频可以包含B slice。那么下面着重查看baseline与high两个不同profile编码出来的视频是否包含B slice。

	首先，使用FFmpeg编码生成baseline与high两种profile的视频。

	ffmpeg -i input.mp4 -c:v libx264 -profile:v baseline -level 3.1 output_baseline.ts

	ffmpeg -i input.mp4 -c:v libx264 -profile:v high -level 3.1 output_high.ts

	从上面可以看到共执行了两次编码，分别生成output_baseline.ts与output_high.ts两个视频文件。前面章节中提到过，使用ffprobe可以查看每一帧是I帧、P帧还是B帧，下面使用ffprobe查看这两个文件中包含B帧的情况。

	ffprobe -v quiet -show_frames -select_streams v output_baseline.ts|grep "pict_type= B"|wc -l

 0

	ffprobe -v quiet -show_frames -select_streams v output_high.ts |grep "pict_type=B"|wc -l

	 140

	从输出的结果可以看到，baseline profile中包含了0个B帧，而high profile的视频中则包含了140个B帧。在实时流媒体直播时，相对main或high profile，采用baseline编码会使得编解码的压力较小，且因为没有B帧引入编码重排，延迟也相应小一些。而代价是相同码率下，其质量较差。适当地加入B帧能够有效地降低码率，但会引入延迟，所以需要根据特定需求与具体的业务场景综合平衡，再进行选择。

	4. 控制场景切换时关键帧的插入

	在FFmpeg中，通过命令行的-g参数设置以帧数间隔为GoP的长度，但是当遇到场景切换时，如从一个画面场景突然变成另外一个画面场景时，会强行插入一个关键帧，这时候GoP的间隔将会重新开始计算。这样的场景切换在点播视频文件中会时常遇到，如果将点播文件进行M3U8切片，或者将点播文件进行串流虚拟直播，GoP的间隔也会有相同的情况。在有些情况下，我们不希望因为场景变动而产生可变的GoP，这时可以使用sc_threshold参数进行调整来控制场景切换时是否插入关键帧。

	下面我们先执行FFmpeg命令设置编码时的GoP大小，生成的MP4文件使用Elecard StreamEye来观察GoP的情况。

	ffmpeg -i input.mp4 -c:v libx264 -g 50 -t 60 output.mp4

	根据这条命令可以看出，每50帧设置为一个GoP，生成60秒的MP4视频。接下来查看一下GoP的情况，如图5-3所示。

	从图5-3可以看到，I帧之间的平均距离是21.63，这个是因为x264强行插入IDR所导致的。插入IDR的原因是编码器自动判定了场景切换，并在场景切换时动态插入了IDR帧。要使GoP更加均匀，使用参数sc_threshold关闭场景切换判定即可。

	ffmpeg -i input.mp4 -c:v libx264 -g 50 -sc_threshold 0 -t 60 -y output.mp4

	执行这条命令行之后，设置GoP间隔为50帧，并且在场景切换时不再插入关键帧。执行生成的MP4使用Elecard StreamEye观察的效果如图5-4所示。可见，IDR的分布非常均匀，均为50帧一个GoP，场景切换时也没有强行插入IDR。这样的好处是可以精确地控制关键帧的出现频率，代价则是损失了一些编码质量。

	[image:]

	▲图5-3 查看固定GoP长度视频

	[image:]

	▲图5-4 查看固定GoP长度视频

	5. 设置x264内部参数

	由于FFmpeg设置x264参数时增加的参数比较多，所以FFmpeg开放了x264-params，可以通过这个参数设置x264内部私有参数，如设置I帧、P帧、B帧的顺序及规律等。通过x264-params可以设置很多x264本身的参数，下面举个例子：控制I帧、P帧、B帧的出现顺序及频率。首先分析一下GoP参数，如果视频GoP设置为50帧，那么如果这50帧中不希望出现B帧，则客户通过设置x264参数bframes为0即可。

	ffmpeg -i input.mp4 -vframes 500 -c:v libx264 -x264-params "bframes=0" -g 50 -sc_threshold 0 output-nb.mp4

	从libx264的统计输出可以确认，没有产生B帧。也可以使用Elecard StreamEye查看帧的信息来确认output-nb.mp4帧排列中并不包含B帧，全部为P帧与I帧。

	[libx264 @ 0x5c21980] frame I:10 Avg QP:15.98 size: 93676

	[libx264 @ 0x5c21980] frame P:490 Avg QP:20.11 size: 19357

	[libx264 @ 0x5c21980] mb I I16..4: 48.0% 36.7% 15.3%

	[libx264 @ 0x5c21980] mb P I16..4: 6.7% 10.9% 1.7% P16..4: 18.3% 5.3% 2.0% 0.0% 0.0% skip:55.1%

	[libx264 @ 0x5c21980] 8x8 transform intra:54.6% inter:68.9%

	[libx264 @ 0x5c21980] coded y,uvDC,uvAC intra: 38.1% 44.2% 12.0% inter: 9.9% 10.7% 0.5%

	[libx264 @ 0x5c21980] i16 v,h,dc,p: 47% 27% 8% 18%

	[libx264 @ 0x5c21980] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 29% 20% 23% 3% 5% 6% 5% 3% 5%

	[libx264 @ 0x5c21980] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 22% 25% 18% 5% 8% 6% 7% 4% 6%

	[libx264 @ 0x5c21980] i8c dc,h,v,p: 61% 21% 14% 4%

	[libx264 @ 0x5c21980] Weighted P-Frames: Y:2.7% UV:1.8%

	[libx264 @ 0x5c21980] ref P L0: 65.4% 13.1% 14.1% 7.3% 0.0%

	[libx264 @ 0x5c21980] kb/s:3997.90

	如果希望控制I帧、P帧、B帧的出现频率与规律，控制GoP中B帧的帧数、P帧的频率即可，同时对x264的参数b-adapt进行设置。

	例如，设置GoP中每两个P帧之间存放3个B帧。

	ffmpeg -i input.mp4 -vframes 300 -c:v libx264 -x264-params "bframes=3:b-adapt=0" -g 25 -sc_threshold 0 output-b.mp4

	命令行执行之后，观察x264的编码统计可以看到一共编码300帧，GoP设置为25帧，关闭B帧自适应功能（b-adapt=0），每个miniGoP的B帧数目设置为3，这样预计产生的GoP结构为IBBBPBBBP...BBBP，miniGoP的结构则为BBBP这样4帧一组，所以每个GoP内有6组miniGoP。I帧总数目为300/25=12帧，P帧总数目为12×(25−1)/4=72帧，B帧数目为P帧的3倍，即72×3=216帧。

	[libx264 @ 0x4341bc0] frame I:12 Avg QP:14.75 size: 71282

	[libx264 @ 0x4341bc0] frame P:72 Avg QP:19.95 size: 33070

	[libx264 @ 0x4341bc0] frame B:216 Avg QP:20.52 size: 13329

	[libx264 @ 0x4341bc0] consecutive B-frames: 4.0% 0.0% 0.0% 96.0%

	[libx264 @ 0x4341bc0] mb I I16..4: 53.5% 33.3% 13.3%

	[libx264 @ 0x4341bc0] mb P I16..4: 11.9% 22.7% 4.6% P16..4: 9.5% 3.2% 1.4% 0.0% 0.0% skip:46.7%

	[libx264 @ 0x4341bc0] mb B I16..4: 5.1% 5.6% 0.7% B16..8: 17.7% 3.7% 0.4% direct: 3.6% skip:63.2% L0:55.7% L1:40.6% BI: 3.7%

	[libx264 @ 0x4341bc0] 8x8 transform intra:50.2% inter:72.4%

	[libx264 @ 0x4341bc0] coded y,uvDC,uvAC intra: 41.6% 44.7% 13.1% inter: 8.2% 9.5% 0.2%

	[libx264 @ 0x4341bc0] i16 v,h,dc,p: 57% 21% 7% 16%

	[libx264 @ 0x4341bc0] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 25% 23% 20% 4% 4% 5% 5% 5% 9%

	[libx264 @ 0x4341bc0] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 23% 28% 16% 5% 6% 5% 7% 4% 6%

	[libx264 @ 0x4341bc0] i8c dc,h,v,p: 62% 21% 14% 3%

	[libx264 @ 0x4341bc0] Weighted P-Frames: Y:1.4% UV:0.0%

	[libx264 @ 0x4341bc0] ref P L0: 73.3% 13.1% 10.3% 3.3%

	[libx264 @ 0x4341bc0] ref B L0: 92.5% 6.4% 1.1%

	[libx264 @ 0x4341bc0] ref B L1: 96.6% 3.4%

	[libx264 @ 0x4341bc0] kb/s:3909.97

	当然，也可以使用Elecard StreamEye来确认帧的分布信息，如图5-5所示。

	一般而言，当视频中的B帧增加时，同等码率时压缩质量将会更高，但是B帧越多，编码与解码带来的复杂度相应会提高。合理地使用B帧非常重要，尤其是在平衡清晰度与码率时。

	如果没有B帧，一个典型的x264流的帧类型是这样的，如IPPPPP...PI。使用--bframes 2，则最多两个连续的P帧可以被替换为B帧，如IBBPBBPBPPPB...PI。B帧与P帧的不同之处在于它可以使用未来帧来执行运动预测，这样可以在压缩率方面带来明显的好处。它们的平均质量由-pbratio参数控制。

	[image:]

	图5-5 Elecard查看帧的分布信息

	下面介绍另外一个有趣的事情。x264有时也会区分两种不同的B帧。习惯上，一般大写的B可以指一个被其他帧作为参考的B帧，而小写的b可以指一个非B帧，即不作为参考。如果看到B和b的混合，通常与上述情况有关。当其区别不重要时，一般只用B来指代所有B帧。B帧被作为参考帧主要是因为x264支持了b-pyramid。

	另外，B帧的出现使得帧的显示时间序PTS与解码时间序DTS的解耦出现了必要性，原因是此时帧的显示顺序不再同解码顺序有一样的单调递增性。图5-5的左下角显示的帧序列就是以DTS序列显示的顺序，所以是IPBBBPBB...。

	下面是对上面例子的一个解释，以上面的编码序列为例，可以很明显地看到，DTS和PTS不再同时满足单调递增，需要执行对应的重排以正确显示P帧和B帧。

	PTS: 1 5 2 3 4

	DTS: 1 2 3 4 5

	Stream： I P B B B

	6. CBR设置

	从前面对x264参数的介绍可以看到，编码能够设置VBR、CBR、CRF等码控模式，其中VBR（Variable Bitrate）为可变码率，CBR（Constant Bitrate）为恒定码率，CRF则表示以质量为目标。尽管现在互联网中所看到的视频以VBR居多，但CBR依然存在，它主要用于广电领域等使用固定传输通道的场景。顾名思义，当用恒定码率编码时，整个文件中使用一个恒定的码率，而不管视频文件中的场景有多复杂。当用FFmpeg编码时，可以通过设置b:v、maxrate和minrate使用相同的值来实现CBR。FFmpeg通过参数-b:v来指定视频的编码码率，但是单独设置它，则设定的码率是平均码率，并不能够很好地控制最大码率及最小码率，如果需要控制最大码率和最小码率以控制码率的波动，需要同时结合FFmpeg的3个参数：-b:v、maxrate、minrate。为了更好地控制编码时的波动情况，还可以设置编码时buffer的大小，使用参数-bufsize的设置即可。buffer并不是越小越好，而是应设置得恰到好处，如下面例子中设置5Mbit/s码率的视频，bufsize设置为5Mbit，可以很好地控制码率波动。

	ffmpeg -i input.mp4 -an -c:v libx264 -x264opts "nal-hrd=cbr:force-cfr=1" -b:v 5M -maxrate 5M -minrate 5M -bufsize 5M -muxrate 5.5M output-cbr.ts

	命令行分析如下：

	・设置H.264的编码HRD形式为CBR。

	・设置视频目标平均码率为5Mbit/s。

	・设置最大码率为5Mbit/s。

	・设置最小码率为5Mbit/s。

	・设置编码的buffer大小为5Mbit/s。

	・MPEG-TS在执行封装的时候填充（padding）这个码流到5.5Mbit/s。

	根据上述参数设置生成output.ts文件，使用Bitrate Viewer查看码率波动效果，如图5-6所示。

	[image:]

	图5-6 Bitrate Viewer查看码率波动效果

	从图5-6中可以看到码率波动最小为3740kbit/s，最大为6374kbit/s，平均码率则稳定在5000kbit/s。将CBR视为“每一帧都被分配相同的位数”是一个常见的错误。如果是这样的话，那么P或B帧的作用是什么呢？P/B帧出现的根本原因是通过参考另一帧来减少位数，很多CBR流都有P或B帧。可以很容易地看到，即使在CBR流中，每一帧都有不同的位数。在H.264中，CBR意味着送入解码器的位数在一段时间内是恒定的。换句话说，到解码器的数据传输率在一个窗口时间内是恒定的。

	接下来使用mediainfo确认一些视频流信息，如下所示。容器层面是恒定码率5500kbit/s，Video部分也是恒定码率，为5000kbit/s。

	[root@VM_69_111_centos /data/ffmpeg/t_ffmpeg]# mediainfo output-cbr.ts

	General

	ID : 1 (0x1)

	Complete name : output-cbr.ts

	Format : MPEG-TS

	File size : 98.8 MiB

	Duration : 2 min 30 s

	Overall bit rate mode : Constant

	Overall bit rate : 5 500 kb/s

	Video

	ID : 256 (0x100)

	Menu ID : 1 (0x1)

	Format : AVC

	Format/Info : Advanced Video Codec

	Format profile : High@L4

	Format settings : CABAC / 4 Ref Frames

	Format settings, CABAC : Yes

	Format settings, Reference frames : 4 frames

	Codec ID : 27

	Duration : 2 min 30 s

	Bit rate mode : Constant

	Bit rate : 5 000 kb/s / 5 000 kb/s

	Width : 1 920 pixels

	Height : 1 080 pixels

	Display aspect ratio : 16:9

	Frame rate : 23.976 (24000/1001) FPS

	Color space : YUV

	Chroma subsampling : 4:2:0

	Bit depth : 8 bits

	Scan type : Progressive

	Bits/(Pixel*Frame) : 0.101

	Stream size : 93.9 MiB (95%)

	Writing library : x264 core 164 r3094 bfc87b7

	Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x3:0x113 / me=hex / subme=7 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=1 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=12 / lookahead_threads=2 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=250 / keyint_min=23 / scenecut=40 / intra_refresh=0 / rc_lookahead=40 / rc=cbr / mbtree=1 / bitrate=5000 / ratetol=1.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / vbv_maxrate=5000 / vbv_bufsize=4000 / nal_hrd=cbr / filler=1 / ip_ratio=1.40 / aq=1:1.00

	可以看到流的码率类型为CBR。

	注意，在上面的例子中，输出文件需要为.ts（MPEG-TS），因为MP4不支持NAL填充。如果媒体文件中每帧视频画面内容变化不大，使用CBR这种模式会浪费带宽，但它的确能确保码率在整个流中保持不变。在某些应用中，使用这种模式可能是有价值的，但一般来说，在大部分情况下应该使得编码流在可能的情况下使用较低的码率，除非你明确知道使用CBR的原因。

	说明：FFmpeg中进行H.265编码时，可以采用x265进行编码，H.265编码参数与x264的编码参数相差不多，基本可以通用，所以我们不再单独介绍FFmpeg怎么使用x265来进行编码。

5.2 硬件加速

	多媒体应用程序是典型的资源密集型应用，因此优化多媒体应用程序至关重要，这也是使用视频处理专用硬件加速的初衷。为了支持硬件加速，应用软件开发厂商面临着各种挑战：一是存在潜在的系统性能风险问题，二是因为要面对各种硬件架构的复杂性而苦苦挣扎，并需要维护不同的代码路径来支持不同的架构和不同的方案。优化这类代码耗时费力：可能需要面对不同的操作系统，诸如Linux、Windows、macOS/iOS、Android/ChromeOS；需要面对不同的硬件厂商，诸如Intel、NVIDIA、AMD、ARM、TI、Broadcom……因此，提供一个通用且完整的跨平台、跨硬件厂商的多媒体硬件加速方案显得价值非凡。

	专用视频加速硬件可以使得解码、编码或过滤等操作更快完成且使用更少的其他资源（特别是CPU）。但也需要注意，其可能会存在额外的限制，而这些限制在仅使用软件Codec时一般不存在。比如，各种视频加速硬件支持的特性各不相同，所以在使用的时候，建议多阅读相关文档及咨询相应的公司。对于具有多种不同profile的复杂的Codec，硬件解码器很少能实现全部功能（例如，对于H.264，硬件解码器往往只支持8位的YUV 4:2:0格式）。

	在PC平台上，视频硬件通常集成到GPU（来自AMD、Intel或NVIDIA）中，而在移动SoC类型的平台上，它通常是独立的IP核（存在着许多不同的供应商）。硬件解码器一般生成与软件解码器相同的输出，但使用更少的耗电和CPU算力来完成解码。

	许多硬件解码器的一个共同特点是能够输出硬件Surface（通常直接显示到显示器或屏幕上），而该Surface可以被其他组件进一步使用（使用独立显卡时，这意味着硬件Surface在GPU的存储器中，而非系统内存中）。对于播放的场景，避免了渲染输出之前的复制（copy）操作；在某些情况下，它也可以与支持硬件Surface输入的编码器一起使用，以避免在转码情况下进行任何复制操作。另外，通常认为硬件编码器的输出比x264等优秀软件编码器的输出质量差一些，但编码速度则通常更快，且不会占用太多的CPU资源。也就是说，硬件编码器一般需要更高的码率来达到相同的视觉感知质量，或者说它们在相同码率的情况下以更低的视觉感知质量输出。具有解码或编码能力的硬件系统还可以提供其他相关过滤器加速功能，比如常见的缩放和去隔行等。是否支持后处理功能取决于不同的硬件系统。

	FFmpeg所支持的硬件加速方案，粗略以各OS厂商和芯片厂商特定方案及行业联盟定义的标准来区分可分为以下3类。

	・以操作系统分：Windows、Linux、macOS/iOS、Android。

	・以芯片厂商的特定方案分：Intel、AMD、NVIDIA等。

	・以行业标准或事实标准分：着重OpenMAX与OpenCL、Vulkan、OpenGL及CUDA等。

	这只是一个粗略的分类，很多时候，它们之间纵横交错，联系繁杂，并非像列出的3类这般泾渭分明，这从另一个侧面也印证了硬件加速方案的复杂性。就像我们熟知的大部分事情一样，一方面各种API或解决方案在不断地进化，另一方面，它们也背负着历史，从后面的分析中也可以或多或少地窥知其变迁的痕迹。

5.2.1 基于OS的硬件加速方案简介

	下面我们一起来看一下基于OS的硬件加速方案。

	1. Windows：Direct3D及DirectShow系列

	在Windows上，有Direct3D 9 DXVA2、Direct3D 11 Video API、DirectShow、Media Foundation等框架 API。大多数用于 Windows 上的多媒体应用程序都基于 Microsoft DirectShow 或 Media Foundation（MF）框架API，以支持处理媒体文件的各种操作。而Microsoft DirectShow Plugin和Microsoft Foundation Transforms（MFT）均集成了Microsoft DirectX视频加速（DXVA）2.0，允许调用标准DXVA 2.0接口直接操作GPU，从而降低视频处理的负载。

	DXVA由一组API和对应的DDI（Device Driver Interface）组成，它被用作硬件加速视频处理。软件Codec和软件视频处理器可以使用DXVA让某些CPU密集型操作在GPU上运行。例如，软件解码器可以让逆离散余弦变换（iDCT）在GPU上运行。在DXVA中，一些解码操作由图形硬件驱动程序实现，这组功能被称为加速器（accelerator）。其他解码操作由用户模式应用软件实现，被称为主机解码器或软件解码器。在通常情况下，加速器使用GPU来加速某些操作。当使用加速器执行解码操作时，主机解码器必须向加速器发送包含执行操作所需信息的缓冲区。

	DXVA 2 API需要Windows Vista或更高版本的支持。为了后向兼容，Windows Vista仍支持DXVA 1 API（Windows提供了一个仿真层，可在API和DDI的版本之间进行转换。另外，由于DXVA 1现在存在的价值基本上是后向兼容，所以我们略过它，书中的DXVA大多数情况下指的是 DXVA 2）。为了使用 DXVA 功能，基本上只能根据需要选择使用 DirectShow 或者 Media Foundation。另外需要注意的是，DXVA/DXVA 2/DXVA-HD只定义了解码加速、后处理加速，并未定义编码加速，如果想从Windows层面加速编码的话，只能选择Media Foundation或者特定芯片厂商的编码加速实现。现在，FFmpeg只支持DXVA 2的硬件加速解码，并未支持DXVA-HD加速的后处理和基于Media Foundation硬件加速的编码（在DirectShow时代，Windows上的编码支持需要使用FSDK）。

	图 5-7 展示了基于 Media Foundation 媒体框架，支持硬件加速的转码的完整流水线（Pipeline）。

	[image:]

	图5-7 Media Foundation媒体框架

	注意，由于微软的多媒体框架的进化，实际上，现在存在两种接口来支持硬件加速，分别是Direct3D 9 DXVA 2与Direct3D 11 Video API。前者应该使用IDirect3DDeviceManager9接口作为加速设备句柄，而后者使用ID3D11Device接口。

	对于Direct3D 9 DXVA 2的接口，基本解码步骤如下：

	・打开一个Direct3D 9设备句柄。

	・设置DXVA解码器配置选项。

	・分配解压之后得到缓冲空间。

	・开始解码。

	Direct3D 11 Video API接口与上面的步骤差异不大，其基本解码步骤如图5-8所示。

	・打开一个Direct3D 11设备句柄。

	・发现并设置解码器配置选项。

	・分配解压之后得到缓冲空间。

	・开始解码。

	[image:]

	图5-8 基于Direct3D11的解码步骤

	在微软网站上，上述两种情况都有很好的描述，参考链接为https://msdn.microsoft.com/en-us/ library/windows/desktop/cc307941(v=vs.85).aspx。

	实际上，FFmpeg基于Windows上的硬件加速只有解码部分，且只使用了Media Foundation媒体框架，只是同时支持两种设备绑定接口，分别是Direct3D 9 DXVA 2与Direct3D 11 Video API。

	注意：DXVA 2接口主要是为了支持后向兼容，一些硬件编码器可以接受这些硬件帧作为输入。

	下面是在Windows环境下，基于AMD、Intel、NVIDIA GPU使用DXVA 2和D3D11VA解码，硬件厂商提供的编码器编码的例子。

	AMD AMF：

	ffmpeg -hwaccel dxva2 -hwaccel_output_format dxva2_vld -i <video> -c:v h264_amf -b:v 2M -y out.mp4

	ffmpeg -hwaccel d3d11va -hwaccel_output_format d3d11 -i <video> -c:v h264_amf -b:v 2M -y out.mp4

	Intel QSV：

	ffmpeg -hwaccel dxva2 -hwaccel_output_format dxva2_vld -i <video> -c:v h264_qsv -vf hwmap=derive_device=qsv,format=qsv -b:v 2M -y out.mp4

	ffmpeg -hwaccel d3d11va -hwaccel_output_format d3d11 -i <video> -c:v h264_qsv -vf hwmap=derive_device=qsv,format=qsv -b:v 2M -y out.mp4

	NVIDIA NVENC：

	ffmpeg -hwaccel d3d11va -hwaccel_output_format d3d11 -i <video> -c:v h264_nvenc -b:v 2M -y out.mp4

	2. Linux：VDPAU/VAAPI/V4L2及M2M
这幅漫画来自著名的XKCD网站，参见https://xkcd.com/927。
	Linux上的硬件加速接口经历了一个漫长的演化过程，期间不乏各种力量的角力。如图5-9所示漫画
	 [image: 这幅漫画来自著名的XKCD网站，参见https://xkcd.com/927。]非常形象地展示了有关接口的演化与各种力量的角力。

	[image:]

	图5-9 创立标准
参见 https://http.download.nvidia.com/XFree86/vdpau/doxygen/html/index.html。参见 https://github.com/intel/libva。参见https://www.phoronix.com/scan.php?page=news_item&px=NVIDIA-NVDEC-GStreamer。
	最终的结果是VDPAU
	 [image: 参见 https://http.download.nvidia.com/XFree86/vdpau/doxygen/html/index.html。]与VAAPI
	 [image: 参见 https://github.com/intel/libva。]共存这样一个现状，而这两个API背后的力量则分别是支持VDPAU的NVIDIA和支持VAAPI的Intel。另一个熟悉的芯片厂商AMD实际上同时提供基于VDPAU和VAAPI的支持，真是为难他们了。另外，对照VDPAU与VAAPI可知，VDPAU仅定义了解码部分的硬件加速，而缺少编码部分的加速（解码部分也缺乏VP8/VP9的支持，且API的更新状态似乎也比较慢）。此外，值得一提的是——现在最新的状态是NVIDIA似乎想用NVDEC取代提供VDPAU接口的方式来提供Linux上的硬件加速
	 [image: 参见https://www.phoronix.com/scan.php?page=news_item&px=NVIDIA-NVDEC-GStreamer。]，或许在不久的将来，VAAPI会统一Linux上的Video硬件加速接口（这样，AMD也不必再有同时支持VDPAU与VAAPI而双线作战的窘境），这对Linux用户无疑是一个福音。除了VDPAU和VAAPI以外，Linux的Video4Linux2 API的扩展部分定义了M2M接口，通过M2M接口，可以把Codec作为Video Filter实现，现在某些SoC平台已经提供支持，这个方案多使用于嵌入式环境。

	VAAPI接口在X Window下的框图如图5-10所示。

	[image:]

	图5-10 VAAPI接口在X Window下的框图

	在Linux上，FFmpeg通过使用VA- API接口对Intel GPU的支持最为完备，基本上所有主流的Codec都支持。Intel GPU上编码器和解码器支持的细节如表5-4和表5-5所示，表中的缩写，比如DG2、SKL是Intel CPU/GPU不同代次的架构缩写。

	▼表5-4 Intel CPU/GPU代号（codename）和缩写

	[image:]

	▼表5-5 Intel GPU支持情况

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	・*：VP8解码仅在TGL平台上支持

	・D：硬件解码

	・E：硬件解码，低能耗编码（VDEnc/Huc）

	・Es：硬件(PAK) + Shader(媒体内核+VME)编码

	Intel GPU的视频解码调用基于硬件的解码器（VDBox），它提供完全加速的硬件视频解码，以释放图形引擎用于其他操作。视频编码支持两种模式，一种是调用基于硬件的编码器（VDEnc/ Huc）来提供低功耗的编码，另一种是基于硬件（PAK）+ Shader（媒体内核+VME）的混合编码。这两种模式可以通过VAAPI来选择。除此之外，视频处理则主要通过基于硬件的视频处理器（VEBox/SFC）和基于着色器（媒体内核）两种方案来支持。

	FFmpeg的AVFilter部分还支持硬件加速的Scale、Deinterlace、ProcAmp(color balance)、Denoise和Sharpness等功能。另外，前面提及的FFmpeg VAAPI方案中不只有Intel的后端驱动，它也可以支持基于Mesa的桥接方式的驱动，这样其实可以支持AMD的GPU，但支持的功能明显比Intel GPU的少。

	Intel GPU视频处理支持的细节如表5-6所示。

	表5-6 Intel GPU视频处理支持细节

	[image:]

	[image:]

	・*：JSL/EHL仅支持BOB DI

	・CSC：Color Space Conversion，色彩空间转换

	・ProcAmp：亮度、对比度、色调、饱和度

	・STD/E：Skin Tone Detect & Enhancement，皮肤色调检测与增强

	・TCC：Total Color Control，完全颜色控制

	・HDR10 TM：HDR10 Tone Mapping，HDR10色调映射

	3. macOS/iOS: VideoToolbox

	在macOS上的硬件加速接口也随着苹果（Apple）公司经历了漫长的演化，从20世纪90年代初的QuickTime 1.0所使用的基于C的API开始，一直到iOS 8及Mac OS X 10.8，苹果公司才最终发布完整的Video Toolbox框架（之前的硬件加速接口并未对外公布，而是在苹果公司内部使用），期间也出现了现在已经废弃的Video Decode Acceleration（VDA）接口。Video Toolbox 是一套底层加速框架，依赖 CoreMedia、CoreVideo及CoreFoundation框架，同时支持编码、解码、像素转换等功能。Video Toolbox所处的基本层次及相关结构如图5-11所示。

	[image:]

	图5-11 Video Toolbox的层次结构

	关于Video Toolbox API的更多细节说明，可以参考https://developer.apple.com/documentation/videotoolbox。

	对于Video Toolbox用于解码的场景，需要特别注意的一个问题是，它要求输入的NALU是AVCC格式，在iOS、MacOS平台播放MPEG-TS切片的HLS视频时，需要将Annex B格式的SPS/PPS NALU转为AVCC格式的extradata，并将其他以start code方式分割的NALU转为基于4字节长度的方式。如果源视频流本身已经是AVCC格式，但NALU是3字节，而非4字节，则需要转为4字节长度格式。具体需要先更改extradata中标识NALU size的字段为4，每个视频帧中的NALU size都要改成4字节。另外，如果一个视频帧由多个NALU组成（即多切片编码的情况下），那么必须先将这些NALU打包到一个CMSampleBuffer中，一次性送给解码器。下面是一个使用FFmpeg的Video Toolbox加速解码以验证其解码性能的典型命令。

	ffmpeg -hwaccel videotoolbox -i input.mp4 -f null -

	FFmpeg支持Video Toolbox加速的H.263、H.264、HEVC、MPEG12/4、ProRes解码，以及H.264、HEVC、ProRes编码。

	4. Android: MediaCodec

	MediaCodec是谷歌公司在Android API 16之后推出的用于音视频编解码的一套偏底层的API，可以直接利用硬件加速视频的编解码处理。最初从API 16开始提供Java层的MediaCodec视频硬解码接口；从API 21，也就是Android 5.0开始提供native层的MediaCodec接口。一般而言，编解码器处理输入数据并生成输出数据，MediaCodec异步处理数据并使用一组输入和输出缓冲区。简单来讲，生产方客户端需要请求（或接收）一个空的输入缓冲区，填充数据并将其发送到编解码器进行处理，编解码器处理数据并将其放入输出缓冲区队列，最后，消费方客户端请求（或接收）一个填充的输出缓冲区，消费其内容并将其释放回编解码器。一个简单的示意如图5-12所示，来自Android官网。

	[image:]

	图5-12 MediaCodec处理示意

	MediaCodec可以处理的数据有以下3种类型：压缩数据、原始音频数据、原始视频数据。可以使用ByteBuffer来处理这3种数据，但一般使用Surface可以提高编解码器的性能。Surface使用本地视频缓冲区，无须映射或复制到ByteBuffer，因而效率更高。通常在使用Surface时无法访问原始视频数据，但可以使用ImageReader类来访问不安全的解码（原始）视频帧，这可能比使用ByteBuffer更有效率，因为一些本机缓冲区可能被直接映射到ByteBuffer。当使用ByteBuffer模式时，也可以使用Image类和getInput/OutputImage（int）访问原始视频帧。FFmpeg 3.1加入了Android MediaCodec硬件解码支持，其实现了FFmpeg的HWaccel接口。但到现在为止，FFmpeg都并未支持基于MediaCodec的硬件加速编码。

	FFmpeg是C库，而Android最初只在Java端抛出MediaCodec来实现硬解码，所以FFmpeg对MediaCodec的支持采用的是JNI（Java Native Interface）方式。FFmpeg已经为Android设计好了调用Java层函数的方法av_jni_set_java_vm。

	/*

	 * Manually set a Java virtual machine which will be used to retrieve the JNI

	 * environment. Once a Java VM is set it cannot be changed afterwards, meaning

	 * you can call multiple times av_jni_set_java_vm with the same Java VM pointer

	 * however it will error out if you try to set a different Java VM.

	 *

	 * @param vm Java virtual machine

	 * @param log_ctx context used for logging, can be NULL

	 * @return 0 on success, < 0 otherwise

	 */

	int av_jni_set_java_vm(void *vm, void *log_ctx);

	但是我们需要在JNI层传入Java对象，所以一般首先在库加载函数JNI_OnLoad中调用FFmpeg函数av_jni_set_java_vm，给FFmpeg设置Java虚拟机环境。

	介绍完背景知识之后，下面看看FFmpeg 实际的硬件加速例子。我们知道，当使用FFmpeg进行软编码时，常见的基于CPU的H.264或H.265编码成本比较高，其编码速度和规模受到一定的限制，所以基于编码效率及成本考虑，很多时候会考虑采用硬编码。在服务器或者PC场景，常见的硬编码有NVIDIA GPU与Intel QSV两种；而在嵌入式平台，一般使用树莓派、瑞芯微的芯片等。本节接下来重点介绍常见的NVIDIA GPU与Intel QSV硬编码，以及Raspberry Pi上的硬编码。

	说明：鉴于本书主要以介绍 FFmpeg 为主，所以不会重点介绍硬件相关环境的搭建。相关搭建的操作方式可以在对应硬件的官方网站中找到。

5.2.2 NVIDIA GPU硬编解码

https://developer.nvidia.com/ffmpeg汇集了NVIDIA GPU对FFmpeg支持的现状，所提供的非常完整的开发参考文档位于：https://docs.nvidia.com/video-technologies/video-codec-sdk/ffmpeg-with-nvidia-gpu。
	在服务器或者PC场景下，最常见的显卡厂商就是NVIDIA了。NVIDIA在异构计算、编解码加速领域投入颇深，特别是在当前AI技术爆发时期，其发展更为迅速。FFmpeg也集成了NVIDIA GPU
	 [image: https://developer.nvidia.com/ffmpeg汇集了NVIDIA GPU对FFmpeg支持的现状，所提供的非常完整的开发参考文档位于：https://docs.nvidia.com/video-technologies/video-codec-sdk/ffmpeg-with-nvidia-gpu。]的加速功能，这样，使用FFmpeg能够快速将NVIDIA的视频编解码功能使用起来。

	FFmpeg支持以下NVIDIA GPU上的视频硬件加速功能：

	・H.264和HEVC的硬件加速编码，即支持AV1硬件加速编码。

	・H.264、HEVC、VP9、VP8、MPEG2、MPEG4和AV1的硬件加速解码。

	・细致控制编码设置，如编码预置、速率控制和其他视频质量控制相关参数。

	・可以使用FFmpeg中的内置滤镜创建高性能的端到端硬件加速视频处理、1到N编码和1到N转码的管道。

	・使用FFmpeg中的共享CUDA上下文实现，能够自行定制高性能CUDA加速的滤镜。

	・同时支持Windows/Linux系统。

	下面介绍NVIDIA在FFmpeg中支持的操作参数。

	1. NVIDIA硬编码参数

	使用NVIDIA GPU编码之前需要了解在FFmpeg中对于NVIDIA的GPU硬编码均支持哪些参数，如表5-7所示，可以通过命令ffmpeg -h encoder=h264_nvenc进行查看。

	从参数表可以看到，编码的参数与开源的x264有些类似，但是参数数量比x264少很多，不过关键参数均在，如preset、profile、level、场景切换参数等。下面针对常用的参数进行举例。

	表5-7 NVIDIA硬编码参数

	[image:]

	[image:]

	2. NVIDIA硬编解码参数使用举例

	在使用NVIDIA编解码时，可以使用ffmpeg -h encoder=h264_nvenc查看FFmpeg中NVIDIA做H.264编码时的参数支持，使用ffmpeg -h decoder=h264_cuvid查看FFmpeg中NVIDIA做H.264解码时的参数支持。在做H.264编码时，首先需要确认nvenc支持的像素格式。

	Encoder h264_nvenc [NVIDIA NVENC H.264 encoder]:

	 General capabilities: delay

	 Threading capabilities: none

	 Supported pixel formats: yuv420p nv12 p010le yuv444p yuv444p16le bgr0 rgb0 cuda

	如h264_nvenc基本信息所示，使用nvenc进行H.264编码时所支持的像素格式为yuv420p、nv12、p010le、yuv444p、yuv444p16le、bgro、rgb0、cuda。

	在做H.264解码时，需要查看cuvid所支持的解码像素格式。

	Decoder h264_cuvid [Nvidia CUVID H264 decoder]:

	 General capabilities: delay

	 Threading capabilities: none

	 Supported pixel formats: cuda nv12

	如h264_cuvid基本信息所示，使用cuvid解码H.264时所支持的像素格式为cuda、nv12。了解清楚支持的像素格式后，接下来举个硬编码与硬解码的例子，其转码路径如图5-13所示。

	[image:]

	图5-13 NVIDIA转码路径

	ffmpeg -hwaccel cuvid -vcodec h264_cuvid -i input.mp4 -vf scale_npp=1920:1080 -vcodec h264_nvenc -acodec copy -f mp4 -y output.mp4

	执行命令行后，input.mp4的视频分辨率将改变为1920×1080，码率设置为2000kbit/s，输出为output.mp4。转码的效果如下：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input.mp4':

	 Metadata:

	 major_brand : isom

	 minor_version : 512

	 compatible_brands: isomiso2avc1mp41

	 encoder : Lavf57.63.100

	 Duration: 00:03:31.20, start: 0.000000, bitrate: 36127 kb/s

	 Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p(tv, bt709/unknown/ unknown), 3840x2160 [SAR 1:1 DAR 16:9], 35956 kb/s, 29.97 fps, 29.97 tbr, 1000000000.00 tbn, 2000000000.00 tbc (default)

省略部分打印

	Stream mapping:

	 Stream #0:0 -> #0:0 (h264 (h264_cuvid) -> h264 (h264_nvenc))

	 Stream #0:1 -> #0:1 (copy)

	Press [q] to stop, [?] for help

	frame= 951 fps= 35 q=36.0 size= 8594kB time=00:00:31.85 bitrate=2210.4kbits/s speed=1.17x

	如输出的过程信息所示，使用了cuvid硬解码与nvenc硬编码，并将视频从4K分辨率向下缩为1080p，同时将码率从35Mbit/s降低至2Mbit/s。对于相同的命令，在普通PC中如果不使用硬编解码，转码速度可能会比较慢。在我们的测试环境下，使用NVIDIA GPU执行硬转码4K视频至1080P视频时，CPU的使用效率可以控制在10%之内，而在使用软转码时CPU占用率可能会很高。

	3. 禁用NVIDIA Nouveau驱动

	在Linux环境中，很多Linux发行版默认使用第三方开源驱动Nouveau支持NVIDIA显卡。虽然Nouveau更通用，但是由于没有官方支持，其功能特性和性能都不如官方驱动，所以建议安装对应显卡型号的官方驱动以充分利用显卡的能力。安装官方驱动时，为了避免冲突需要禁用Nouveau。禁用步骤如下：

	1）创建Nouveau驱动黑名单。

	echo -e "blacklist nouveau\noptions nouveau modeset=0" > /etc/modprobe.d/blacklist_nouveau.conf

	2）备份并重建initramfs。

	mv /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.bak

	dracut -v /boot/initramfs-$(uname -r).img $(uname -r)

	3）重启系统确认Nouveau驱动状态。

	lsmod | grep nouveau

	4）关闭X Window，切换到init 3模式并安装NVIDIA显卡官方驱动。

5.2.3 Intel QSV硬编解码

Quick Sync Video本身使用Intel图形技术的专用媒体处理能力，即使用硬核来快速解码和编码，使处理器能够完成其他任务并提高系统的响应速度。在Linux环境下，为了使用QSV的能力，可以使用基于VA API的方案，也可以使用MediaSDK/OneAPL方案。
	除了可以使用NVIDIA GPU进行硬件编解码，Intel QSV
	 [image: Quick Sync Video本身使用Intel图形技术的专用媒体处理能力，即使用硬核来快速解码和编码，使处理器能够完成其他任务并提高系统的响应速度。在Linux环境下，为了使用QSV的能力，可以使用基于VA API的方案，也可以使用MediaSDK/OneAPL方案。]也是一种不错的方案。FFmpeg对Intel QSV的支持也比较完备，如果希望使用FFmpeg的Intel QSV编码，需要在编译FFmpeg时开启QSV支持。编译成功后，可以通过下面的命令来确认。

	ffmpeg -hide_banner -codecs | grep h264

	执行命令行后输出内容如下：

	DEV.LS h264 H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (decoders: h264 h264_qsv) (encoders: libx264 libx264rgb h264_nvenc h264_qsv h264_vaapi nvenc nvenc_h264)

	如输出的信息所示，FFmpeg通过--enable-libmfx开启对Intel QSV的支持。FFmpeg项目中已经提供了对H.264、H.265、VP9、MPEG2、MJPEG的硬解码和硬编码的支持，下面看一下H.264及H.265参数相关的支持与操作。

	1. Intel QSV H.264参数说明

	在使用Intel QSV编码之前，首先查看一下FFmpeg支持Intel Media SDK QSV的参数，如表5-8所示。执行命令行ffmpeg -h encoder=h264_qsv可以得到QSV参数信息。

	表5-8 Intel QSV H.264编码参数

	[image:]

	[image:]

	[image:]

	[image:]

	从列表中可以看出，Intel QSV硬件编码所支持的参数虽然比libx264软编码参数稍微少一些，但是基本上也可以满足常见的功能。下面举一个硬转码的例子，来对比一下它与软编码的区别。

	2. Intel QSV H.264使用举例

	既然使用的是硬件 Codec，一般考虑解码时使用硬件解码加速，编码时使用硬件编码加速。通过ffmpeg -h encoder=h264_qsv与ffmpeg -h decoder=h264_qsv查看h264_qsv硬件参数信息时可以看到，h264_qsv只支持nv12、p010le与qsv的像素格式，所以当使用yuv420p时需要转换成nv12才可以。下面看一下硬编码的例子。执行命令如下：

	ffmpeg -i 10M1080P.mp4 -pix_fmt nv12 -vcodec h264_qsv -an -y output.mp4

	命令行执行之后，转码信息如下所示，可以看到对应的转码速度。

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'H264_1080P_8M_29.97fps.mp4':

	 Duration: 00:01:00.29, start: 0.000000, bitrate: 8044 kb/s

省略相关

	 Stream #0:0 -> #0:0 (h264 (native) -> h264 (h264_qsv))

	Press [q] to stop, [?] for help

	libva info: VA-API version 0.99.0

	libva info: va_getDriverName() returns 0

	libva info: User requested driver 'iHD'

	libva info: Trying to open /opt/intel/mediasdk/lib64/iHD_drv_video.so

	libva info: Found init function __vaDriverInit_0_32

	libva info: va_openDriver() returns 0

	Output #0, mp4, to 'out_h264.mp4':

	 Stream #0:0(und): Video: h264 (h264_qsv) ([33][0][0][0] / 0x0021), nv12, 1920x1080 [SAR 1:1 DAR 16:9], q=2-31, 1000 kb/s, 29.97 fps, 11988 tbn, 29.97 tbc (default)

	frame= 1805 fps=241 q=-0.0 Lsize= 6468kB time=00:01:00.16 bitrate= 880.7kbits/s speed=8.03x

	如输出的内容所示，FFmpeg采用了Intel QSV进行H.264转码，将1080p分辨率、7.8Mbit/s的H.264视频转为1080p分辨率、1Mbit/s的视频输出，转码速度近8倍速。如果只使用libx264做软编码，其速度并不会有这么快。因为h264_qsv编码采用的是Intel的GPU编码，对CPU资源更加节省。

	3. Intel QSV H.265参数说明

	FFmpeg中的Intel QSV H.265（HEVC）的参数与Intel QSV H.264的参数类似，如表5-9所示。但是FFmpeg另外还支持指定是使用软编码还是硬编码的参数。

	表5-9 Intel QSV H.265(HEVC)编码参数

	[image:]

	[image:]

	[image:]

	[image:]

	4. Intel QSV H.265使用举例

	在使用Intel进行高清编码，并达到相同画质情况下，相较libx264，使用h264_qsv AVC编码之后可以观察到码率会比较高。但是使用H.265（HEVC）则能够在同样清晰度下更好地降低码率。下面举个例子：

	ffmpeg -hide_banner -y -hwaccel qsv -i 10M1080P.mp4 -an -c:v hevc_qsv -load_plugin hevc_hw -b:v 5M -maxrate 1M out.mp4

	执行命令行后，FFmpeg会将1080p的高清视频转为H.265视频。如前面一样，可以看到在使用CPU进行1080p的H.265编码时速度相对比较慢，而使用Intel QSV进行编码时，效率则会更高，且与上面用h264_qsv转码的结果比较，相同码率下其画面质量更优。

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'H264_1080P_8M_29.97fps.mp4

省略部分打印

	 Stream #0:0 -> #0:0 (h264 (native) -> hevc (hevc_qsv))

	Press [q] to stop, [?] for help

	libva info: VA-API version 0.99.0

	libva info: va_getDriverName() returns 0

	libva info: User requested driver 'iHD'

	libva info: Trying to open /opt/intel/mediasdk/lib64/iHD_drv_video.so

	libva info: Found init function __vaDriverInit_0_32

	libva info: va_openDriver() returns 0

	Output #0, mp4, to 'out_hevc.mp4':

	 Stream #0:0(und): Video: hevc (hevc_qsv) ([35][0][0][0] / 0x0023), nv12, 1920x1080 [SAR 1:1 DAR 16:9], q=2-31, 1000 kb/s, 29.97 fps, 11988 tbn, 29.97 tbc (default)

	frame=1805 fps= 70 q=-0.0 Lsize=36052kB time=00:01:00.06 bitrate=4917.4kbits/s speed=2.34x

	如输出内容所示，使用HEVC编码时转码速度为2.34倍速，并且是将视频码率从7856kbit/s转为5000kbit/s，分辨率为1080p。
oneVPL的全称是Video Processing Library，是Intel雄心勃勃的OneAPI项目的Video处理部分。如同名称所暗示的，oneAPI尝试解决的问题是：由于人工智能、视频分析、数据分析及传统高性能计算（HPC）方面的需求，人们对高性能的需求持续增加。
	考虑自身生态演化策略，Intel开始往所谓的oneVPL
	 [image: oneVPL的全称是Video Processing Library，是Intel雄心勃勃的OneAPI项目的Video处理部分。如同名称所暗示的，oneAPI尝试解决的问题是：由于人工智能、视频分析、数据分析及传统高性能计算（HPC）方面的需求，人们对高性能的需求持续增加。]迁移。oneVPL目前主要作为一个封装层，底部依然依赖Media SDK。不知其最终的发展是否能如其所规划的一样，做到大一统，但单以上面提及的加速基础设施而言，任重而道远。oneVPL和不同底层基础设施之间的关系如图5-14所示。

	与之类似，oneVPL与FFmpeg的关系如图5-15所示。所以，在Linux上，后续基于Intel平台的加速方案从下到上有VAAPI、Media SDK和oneVPL，选择似乎更为困难了。

	[image:]

	▲图5-14 oneVPL的架构

	[image:]

	▲图5-15 oneVPL和FFmpeg/GStreamer的关系

	至此，FFmpeg支持的Intel QSV硬编解码介绍结束。

5.2.4 Raspberry Pi硬编解码

	树莓派（Raspberry Pi）目前在全球应用极为广泛，常见于智能控制等方面，但是智能控制部分也少不了多媒体的处理。FFmpeg能够支持在树莓派中进行硬件编解码加速，本节将重点介绍树莓派的H.264编码。首先我们要让FFmpeg支持树莓派的硬编码，硬编码支持的配置如下：

	ffmpeg version n6.0 Copyright (c) 2000-2023 the FFmpeg developers

	 built with gcc 4.9.2 (Raspbian 4.9.2-10)

	 configuration: —enable-omx-rpi

	 libavutil 58. 2.100 / 58. 2.100

	 libavcodec 60. 3.100 / 60. 3.100

	 libavformat 60. 3.100 / 60. 3.100

	 libavdevice 60. 1.100 / 60. 1.100

	 libavfilter 9. 3.100 / 9. 3.100

	 libswscale 7. 1.100 / 7. 1.100

	 libswresample 4. 10.100 / 4. 10.100

	 libpostproc 57. 1.100 / 57. 1.100

	 V….. h264_omx OpenMAX IL H.264 video encoder (codec h264)

	在FFmpeg下支持树莓派的H.264编码采用的是OpenMAX框架，在编译FFmpeg工程之前配置编译时，需使用--enable-omx-rpi添加环境支持。下面看一下参数。

	1. h264_omx参数说明

	在树莓派中进行编码使用的是h264_omx，FFmpeg中关于树莓派的h264_omx编码参数如表5-10所示，可以通过命令行ffmpeg -h encoder=h264_omx获得。

	从中可以看到，目前一共3个参数可用，omx_libname与omx_libprefix均是运行FFmpeg时加载omx所使用的参数，zerocopy用于提升编码时的性能。

	表5-10 Raspberry Pi H.264编码参数

	[image:]

	2. h264_omx使用举例

	在树莓派的常规使用环境中，除非omx_libname与omx_libprefix有多个版本，否则不会频繁地使用它们，而zerocopy则为提升性能的参数。下面看一下使用h264_omx在树莓派下编码的效率。

	ffmpeg -i input.mp4 -vcodec h264_omx -b:v 500k -acodec copy -y output.mp4

	命令行执行后将会解码input.mp4，然后通过使用h264_omx编码器进行编码，最后输出output. mp4。过程如下：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input.mp4':

省略部分打印

	[h264_omx @ 0x300f400] Using OMX.broadcom.video_encode

	Output #0, mp4, to 'output.mp4':

	 Stream #0:0(und): Video: h264 (h264_omx) ([33][0][0][0] / 0x0021), yuv420p, 1920x1080 [SAR 1:1 DAR 16:9], q=2-31, 500 kb/s, 24 fps, 5000k tbn, 24 tbc (default)

	 Metadata:

	 handler_name : VideoHandler

	 encoder : Lavc57.89.100 h264_omx

	 Stream #0:1(und): Audio: ac3 ([165][0][0][0] / 0x00A5), 48000 Hz, 5.1(side), fltp, 448 kb/s (default)

	frame= 396 fps= 32 q=-0.0 size= 1902kB time=00:00:16.64 bitrate= 936.5kbits/s speed=1.35x

	从命令行执行后的输出内容中可以看到，在不控制转码速度的情况下，转码时的速度为1.35倍速，这个速度与在树莓派中使用CPU软编码相比是完胜的状态。下面是在树莓派下使用x264进行软编码的效率。

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input.mp4':

省略部分打印

	Press [q] to stop, [?] for help

	[libx264 @ 0x1bb6400] using SAR=1/1

	[libx264 @ 0x1bb6400] using cpu capabilities: ARMv6 NEON

	[libx264 @ 0x1bb6400] profile High, level 4.0

	Output #0, mp4, to 'output.mp4':

	 Stream #0:0(und): Video: h264 (libx264) ([33][0][0][0] / 0x0021), yuv420p, 1920x1080 [SAR 1:1 DAR 16:9], q=-1--1, 500 kb/s, 24 fps, 5000k tbn, 24 tbc (default)

	 Stream #0:1(und): Audio: ac3 ([165][0][0][0] / 0x00A5), 48000 Hz, 5.1(side), fltp, 448 kb/s (default)

	frame= 86 fps=4.6 q=38.0 size= 210kB time=00:00:03.71 bitrate= 463.7kbits/s speed=0.198x

	从使用x264软编码输出的内容中可以看到，在软编码不控制速度的情况下转码时的速度为0.198倍速，效率极其低下。不仅如此，长期这么转码下去，CPU的温度会非常高，从而引发CPU的降频，然后效率会越来越低。

5.2.5 macOS系统硬编解码

	在macOS系统下，通常硬编码采用h264_videotoolbox、硬解码采用h264_vda，这是最快捷、最节省CPU资源的方式。但是h264_videotoolbox的码率控制情况并不完美，因为h264_videotoolbox做硬编码时目前仅支持VBR/ABR模式，不支持CBR模式。下面介绍一下h264_videotoolbox硬编码的参数。

	1. macOS硬编解参数

	在苹果系统下编解码以使用videotoolbox为主，h264_videotoolbox则为苹果系统中硬件编码的主要编码器。使用命令行ffmpeg -h encoder=h264_videotoolbox可以查看h264_videotoolbox包含哪些参数，如表5-11所示。

	表5-11 videotoolbox编码参数

	[image:]

	从中可以看出，h264_videotoolbox硬编码参数并不多，但是在macOS下基本够用。下面举个硬转码的例子。

	2. macOS硬转码使用示例

	在macOS下可使用-hwaccel videotoolbox的方式加速解码，而硬件编码时可通过类似ffmpeg –h encoder=h264_videotoolbox的方式查看编码支持像素的色彩格式。下面看一下硬转码的效率：

	ffmpeg -hwaccel videotoolbox -hwaccel_output_format videotoolbox_vld -i input. mp4 -b:v 2000k -vcodec hevc_videotoolbox -vtag hvc1 -acodec copy output.mp4

	这条命令行执行后将会使用videotoolbox的方式加速解码，然后使用hevc_videotoolbox进行编码，输出视频码率为2Mbit/s的文件output.mp4，效果如下：

	Duration: 00:02:30.78,start: 0.000000, bitrate: 4001 kb/s

	Stream #0:0[0x1](eng):Video: h264(Main)(avc1/0x31637661),yuv420p(tv, progressive), 1920x1080 [SAR 1:1 DAR 16:9],3937 kb/s,23.98 fps,23.98 tbr,24k tbn(default)

省略部分输出

	Stream mapping:

	Stream #0:0 ->#0:0(h264(native)->hevc(hevc_videotoolbox))

	Stream #0:1->#0:1(copy)

省略部分输出

	Stream #0:0(eng):Video: hevc(hvc1 /0x31637668),nv12(tv,progressive),1928x1080 [SAR 1:1 DAR 16:9],q=2-31,2000 kb/s,23.98 fps,24k tbn(default)

	Metadata:

	creation_time :2012-07-31T00:31:48.000000Z

	handler_name :MP4 Video Media Handler

	vendor_id :[0][0][0][0]

	encoder :Lavc60.22.100 hevc_videotoolbox

省略部分输出

	[out#0/mp4 @0x7fa26c80d180] video:36510kB audio:1135kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.232810%

	frame= 3615 fps= 83 q=-0.0 Lsize=37732kB time=00:02:30.74 bitrate=2050.5kbits/s dup=1 drop=0 speed=3.45x

	从上面可以看到，输入的视频input.mp4分辨率为1080p、码率为4Mbit/s、帧率为23.98fps，经过转码后，输出视频的分辨率为1080p、码率为2Mbit/s、帧率为23.98fps。

5.2.6 其他加速方案简介

	加速本身是一个非常庞大的话题，FFmpeg最初从CPU的加速开始，使用多线程及线程池的方式，以充分利用CPU的多核心。另外，它也支持底层汇编及SIMD的优化，使用数据批量化处理来加速。一方面，CPU加速的普适性也更好；另一方面，其门槛比其他加速方案也相对低一些。所以如果有加速需求，不妨先从这里着手。

	此外，NVIDIA的CUDA以及Khronos Group（https://www.khronos.org）建立了一系列标准，也可用于加速。最出名的大概是OpenGL，还有用于异步计算加速的OpenCL及Vulkan。不过如同前面所说的，加速方式及标准如此之多，很难找到一个适用所有场景的方式。一般来说，最好的建议是，充分考虑硬件、开发成本、生态等之后再开始着手优化。另外在很多时候，算法层面的优化应该先行。

5.3 输出MP3

	在过去的20多年中，数字音频处理已经被感知音频编码所彻底改变。前面介绍了视频编码，后面两节将介绍一下FFmpeg对音频编码的支持，主要介绍目前广泛使用的MP3和AAC。

	在生活中听音乐时，很大概率碰到的是MP3音乐。MP3是MPEG-1 Audio Layer III的缩写，很多人以为它是MPEG3的缩写，但明显并不是。MP3在1994年由运动图像专家组（MPEG）创建，是一种有损压缩算法，这意味着在压缩算法完成后，并非所有的原始数据都被保留下来。MP3同时使用了基于心理声学领域的思想。其基本想法是，人耳只能辨别20Hz～20kHz的声音，所以任何超出这个阈值的数据都可以丢弃，以使文件更小。整个算法部分可以粗略地分成如下4个主要部分，MP3编码的框图如图5-16所示。
MDCT，即修改后的离散余弦变换（Modified Discrete Cosine Transform），是一种线性正交拉氏变换，基于时域混叠消除（TDAC）的思想。它在J.Princen、A.Bradley于1986年发表的论文“Analysis/Synthesis Filter Bank Design Based on Time Domain Aliasing Cancellation”中被首次提出，随后得到进一步发展。现行的很多音频编码格式都使用了MDCT技术。
	・将音频信号分成小块，这些被称为帧。然后对输出进行MDCT
	 [image: MDCT，即修改后的离散余弦变换（Modified Discrete Cosine Transform），是一种线性正交拉氏变换，基于时域混叠消除（TDAC）的思想。它在J.Princen、A.Bradley于1986年发表的论文“Analysis/Synthesis Filter Bank Design Based on Time Domain Aliasing Cancellation”中被首次提出，随后得到进一步发展。现行的很多音频编码格式都使用了MDCT技术。]滤波。

	・将采样传入一个1024点的FFT，然后应用心理声学模型。另一个MDCT滤波器在输出上执行。

	・对每个采样进行量化和编码。这也被称为噪声/位分配。噪声/位分配会自我调整，以满足码率和声音屏蔽的要求。

	・对码流进行格式化，称为音频帧。一个音频帧由4部分组成：头部、错误检查、音频数据和辅助数据。

	[image:]

	图5-16 MP3编码框图
LAME是一个高质量的MP3编码器，其 license是LGPL，网址为https://lame.sourceforge.io。
	使用FFmpeg可以解码MP3，同样也可以支持MP3编码。FFmpeg并未原生支持MP3编码，需要使用第三方库libmp3lame
	 [image: LAME是一个高质量的MP3编码器，其 license是LGPL，网址为https://lame.sourceforge.io。]。不但如此，MP3编码还是低延迟的编码，可以支持的采样率比较多，包含44100、48000、32000、22050、24000、16000、11025、12000、8000多种采样率，采样格式也比较多，包含s32p、fltp、s16p多种格式，声道布局方式支持包含mono（单声道模式）、stereo（环绕立体声模式）。下面介绍MP3编码参数。

5.3.1 MP3编码参数介绍

	查看FFmpeg对MP3的参数支持，可以通过ffmpeg -h encoder=libmp3lame得到，如表5-12所示。

	表5-12 MP3编码参数

	[image:]

	[14] 比特存储（Bit Reservoir）技术可以在信息量少的情况下降低码率，把多余的可用数据量放到Bit Reservoir中存储起来，在信息量大的情况下再从Bit Reservoir中提取出来，这样就可以结合CBR和VBR的优点了。

	从列表中可以看到，FFmpeg中包含了对MP3编码操作的主要控制参数，其他更高级的参数控制尚未从LAME移植到FFmpeg中，有待开发完善。下面介绍FFmpeg中重点支持的这些参数的使用及基本原理。

5.3.2 MP3的编码质量设置

	在FFmpeg中进行MP3编码采用的是第三方库libmp3lame，所以进行MP3编码时，需要设置编码参数acodec为libmp3lame。命令行如下：

	ffmpeg --i INPUT --acodec libmp3lame OUTPUT.mp3

	根据以上命令可以得到音频编码为MP3且封装格式也是MP3的文件。

	MP3编码的码率得到控制之后，控制质量时需要通过-qscale:a进行，也可以使用列表中的q参数进行控制，质量不同码率也不同，详情如表5-13所示。

	表5-13可以作为参考，将低码率转为高码率时并不一定符合上述参数，但大多数情况下是符合的。下面举一个例子。

	ffmpeg -i input.mp3 -acodec libmp3lame -q:a 8 output.mp3

	表5-13 MP3基本信息与q参数对应参数

	[image:]

	[image:]

	上面这条命令执行之后，将生成的output.mp3码率区间设置为70～105kbit/s。可以将转码前的input.mp3与转码后的output.mp3做一个比较。

	Input #0, mp3, from 'input.mp3':

 略去部分打印略去部分打印

	 Duration: 00:04:45.99, start: 0.000000, bitrate: 128 kb/s

	 Stream #0:0: Audio: mp3, 44100 Hz, stereo, s16p, 128 kb/s

	Stream mapping:

	 Stream #0:0 -> #0:0 (mp3 (native) -> mp3 (libmp3lame))

 略去部分打印

	 Stream #0:0: Audio: mp3 (libmp3lame), 44100 Hz, stereo, s16p, 91 kb/s

	size= 3194kB time=00:04:45.98 bitrate= 91.5kbits/s speed=56.1x

	从以上代码可以看到，转码前的input.mp3的码率为128kbit/s，转码后的output.mp3的码率为91kbit/s。在转码的过程中，从FFmpeg的输出过程信息中可以看到编码时的码率在不断变动。

	size= 3194kB time=00:04:45.98 bitrate= 91.5kbits/s speed=56.7x

	以上码率设置方式为VBR码控模式，VBR即可变码率模式（variable bitrate mode）。当编码目标是用尽可能低的码率达到一个固定的质量水平时，使用VBR。VBR主要用于针对以特定的质量水平为目标的编码，而不是特定的码率。VBR编码的最终文件大小比ABR更难预测，但质量通常更好。不像其他MP3编码器基于对输出质量的预测进行VBR编码，LAME默认以VBR方法测试实际输出质量，以确保始终达到所需的质量水平。

	另一种常见的MP3编码码控模式设置为CBR，CBR即恒定码率模式（constant bitrate mode）。它通过FFmpeg的参数-b即可设置，在FFmpeg编码过程中，码率几乎不会波动。CBR编码压缩效率并不高，VBR和ABR模式可以为复杂的音乐段落提供更多的比特，为简单的段落节省比特，而CBR则以相同的码率对每一帧进行编码。CBR只推荐在流媒体情况下使用，在这种情况下必须严格执行最高码率。通过LAME对MP3格式的比特存储功能的使用，虽然在幕后仍有一些码率的变化，但它比实际的VBR灵活得多。

	ffmpeg -i input.mp3 -acodec libmp3lame -b:a 64k output.mp3

	执行上述命令行之后，生成编码为MP3的音频编码。以下是转码前与转码后的两个MP3文件的对比：

	Input #0, mp3, from 'input.mp3':

略去部分打印

	 Duration: 00:04:45.99, start: 0.000000, bitrate: 128 kb/s

	 Stream #0:0: Audio: mp3, 44100 Hz, stereo, s16p, 128 kb/s

	Stream mapping:

	 Stream #0:0 -> #0:0 (mp3 (native) -> mp3 (libmp3lame))

	Press [q] to stop, [?] for help

	Output #0, mp3, to 'output.mp3':

略去部分打印

	 Stream #0:0: Audio: mp3 (libmp3lame), 44100 Hz, stereo, s16p, 64 kb/s

	size= 2235kB time=00:04:45.98 bitrate= 64.0kbits/s speed=41.1x

	两个文件均为CBR编码的MP3，并且可以看到编码过程中码率几乎没有波动。

	size= 2235kB time=00:04:45.98 bitrate= 64.0kbits/s speed=43.5x

5.3.3 平均码率编码ABR参数

关于ABR的描述可以参考https://svn.code.sf.net/p/lame/svn/trunk/lame/doc/html/detailed.html。
	ABR
	 [image: 关于ABR的描述可以参考https://svn.code.sf.net/p/lame/svn/trunk/lame/doc/html/detailed.html。]是VBR与CBR混合的产物，即平均码率编码（average bitrate encoding，不是自适应码率，adaptive bitrate）。使用ABR参数之后，编码速度将会比VBR高，但是质量比VBR的编码稍逊一些，比CBR的稍好一些。在FFmpeg中可使用参数abr来设置MP3编码为ABR方式。

	ffmpeg -i input.mp3 --acodec libmp3lame -b:a 64k -abr 1 output.mp3

	执行上面这条命令之后，编码的输出信息如下：

略去部分打印

	 Duration: 00:04:45.99, start: 0.000000, bitrate: 128 kb/s

	 Stream #0:0: Audio: mp3, 44100 Hz, stereo, s16p, 128 kb/s

	Stream mapping:

	 Stream #0:0 -> #0:0 (mp3 (native) -> mp3 (libmp3lame))

	Press [q] to stop, [?] for help

略去部分打印

	 Stream #0:0: Audio: mp3 (libmp3lame), 44100 Hz, stereo, s16p, 64 kb/s

	size= 2270kB time=00:04:45.98 bitrate= 65.0kbits/s speed=42.8x

	原本为64kbit/s码率的CBR方式的MP3音频，因设置abr参数之后，成为ABR方式编码的MP3音频。可以观察编码过程中的输出内容，如下：

	size= 2270kB time=00:04:45.98 bitrate= 65.0kbits/s speed= 42.8x

	当你需要知道文件的最终大小，但仍想让编码器有一些灵活性来决定哪些片段需要更多的比特时，应使用ABR。实际上，它的输出依然是一个普通的VBR文件，所以与所有支持VBR的MP3播放器兼容。从技术角度而言，ABR并不是一种特殊的码控，只是一种LAME特定的编码码控策略，用于产生VBR。

5.4 输出AAC

	AAC（Advanced Audio Coding）和MP3都是音频编码的有损压缩技术。MP3于1993年首次发布，比AAC早4年，现在已经成为流媒体和存储音乐的普遍标准。AAC被设计为MP3的继承者。它摆脱了MP3的固有缺陷，在码率接近的情况下实现了比MP3更好的音质，特别是在低码率的情况下，它在ISO/IEC 13818-7及ISO/IEC 14496-3中被标准化，现在也是苹果设备、YouTube视频流和其他平台的默认标准音频编码格式。

	在音视频流媒体中，无论直播与点播，AAC都是目前最常用的一种音频编码格式，如RTMP直播、HLS直播、RTSP直播、FLV直播、FLV点播、MP4点播文件等，一般都是采用AAC的音频格式。其原因主要在于与MP3相比，AAC的编码效率更高，编码音质更好。AAC相较于MP3的改进主要包含以下内容：

	・支持了更多采样率（8kHz～96kHz，而MP3为16kHz～48kHz），更多的声道数（达48个，MP3在MPEG-1模式下为最多双声道，MPEG-2模式下为5.1声道）及任意的码率和可变帧长度。

	・更高效率的滤波器（AAC使用纯粹的MDCT，MP3则使用较复杂的混和滤波器）。

	・对平稳的信号有更高的编码效率（AAC使用1024/960点区块长度，MP3则为576点），对暂态变化的信号有更高编码准确度（AAC使用128/120点区块长度，MP3则为192点）。

	・对于频率在16kHz的声音频号成分有更好的处理。

	・有额外的模块如噪声移频、后向预测、感知噪声替代等，这些特性能组合成不同的编码规格。

	整体而言，AAC相较于MP3在编码上给予了更多的弹性，并修正了许多在MPEG-1音频编码上的设计限制，这些增加的特性使得更多的编码策略可共存，从而获得更高的压缩率。尽管如此，从普及性上来说，AAC和MP3依然处于共存的状态。另外，AAC标准是一个庞大家族，有多种规格（Profile）以适应不同场合的需要，但也正因为AAC的规格繁多，给很多用户也带来了困扰。目前有两种常见的AAC版本：AAC-LD（低延迟），也被称为AAC-LC（低复杂度）和AAC-HE（高效率），AAC-LD/AAC-LC用于双向通信，它结合了足够高的音频质量和足够低的延迟，以促进通信；AAC-HE（或HE-AAC）用于流媒体音频，通常用于数字广播之类的场景。

	常见的使用AAC编码后的文件存储格式为m4a，它是AAC in MP4文件的一类，当然也可以使用类似ADTS这样的裸格式。iPhone或者iPad中一般录制下来的文件为m4a格式。

	在FFmpeg中可以支持以下两个AAC编码器。

	・原生AAC编码器：FFmpeg本身的AAC编码实现，实现的特性和支持的Profile相对比较少，好处在于不需要额外的第三方AAC编码库。

	・集成第三方的libfdk_aac：第三方的Fraunhofer FDK AAC编解码库，一般认为编码质量好于原生AAC编码库。

	libfdk_aac 音频编码器为非GPL协议，所以使用时需要注意，在预编译时需要采用nonfree的支持，前面章节已有相关介绍。

	还有一个问题需要引起注意，我们对不同音频编解码器进行基准测试的主要参数是在一定码率下的音频质量。然而，对于许多应用来说，延迟是另一个关键参数，根据编解码器的算法特性，它在几毫秒和几百毫秒之间变化。低延迟音频编码的最新研究成果可以显著提高通信、数字麦克风和与视频信号同步的无线扬声器等应用的性能。但是很不幸，音频编解码器通常使用子带（subband）编码，因为这可以直接纳入心理声学模型。使用的子带越多，压缩率越高。高压缩率的目标导致产生具有高子带数量的音频编码器。例如，MPEG-AAC编码器有1024个子带，可切换到128个带。但这种结构导致了很高的编码或解码延迟，使得这样的系统不适合通信应用。基于这个原因，开发了MPEG-AAC低延迟编码器。它通过减少子带的数量（480个而不是1024个）获得较低的延迟。其缺点是，这种数量的减少也导致压缩效率的降低。
论文“A guideline to audio codec delay”对Audio Codec的延迟有一个非常清晰的描述，网址为https://www.iis.fraunhofer.de/ content/dam/iis/de/doc/ame/conference/AES-116-Convention_guideline-to-audio-codec-delay_AES116.pdf。
	基于MDCT编码算法
	 [image: 论文“A guideline to audio codec delay”对Audio Codec的延迟有一个非常清晰的描述，网址为https://www.iis.fraunhofer.de/ content/dam/iis/de/doc/ame/conference/AES-116-Convention_guideline-to-audio-codec-delay_AES116.pdf。]的性质，AAC需要超出源PCM音频样本的数据，以便正确编码和解码音频样本。AAC编码在连续的2048个音频样本集上使用转换，每1024个音频样本应用一次（重叠）。为了对音频正确地进行解码，需要对任何周期的1024个音频样本进行两次转换。因此，编码器在第一个“真正的”音频样本之前至少要添加1024个静默帧样本，实际使用中可能添加得更多。这就是所谓的priming、priming sample或“编码器延迟”。MP3编码格式也有类似问题，所以这些原理的基本描述对MP3也适合。

	・编码器延迟是在编码过程中产生的延迟，以产生正确编码的音频数据包。它通常指添加到AAC码流前面的无声媒体样本（priming sample）的数量。

	・解码器延迟是指在给定的时间指数下重现一个编码的源音频信号所需的pre-roll音频样本的数量。对于AAC来说，这个数字通常是1024，本身与编码算法相关。与编码器延迟相反，后者是由所用的编码器和编码配置决定的。然而，解码器延迟决定了可能的最小编码器延迟（也就是AAC的1024）。

	通常的做法是在AAC码流中传播编码器延迟。当这些音频包再被解码回PCM时，所代表的源波形将被这个编码器延迟量全部抵消。由于编码后的音频包拥有固定数量的音频样本（例如1024个样本），因此需要在最后一个源样本之后增加尾部或“剩余采样”（remainder sample）的无声样本，以便将最终的音频包填充到所需长度。另外，这需要容器格式能明确地表征头部的“编码器延迟”和尾部的“剩余采样”，但实际上，并不是所有的容器格式都能很好地支持它。MP4格式使用Edit List box来表征这个引入的延迟，但很不幸，Edit List box对解码器的支持并不是很好。传统的解决方案一般如下：对编码器延迟的大小做一个隐含的假设，并要求播放引擎在播放开始时从其输出中丢弃这个指定数量的样本，同时也根据需要对剩余样本进行调整。在FFmpeg中，使用AVCodecContext.initial_padding来表征音频编码延迟。

5.4.1 AAC编码器操作

	FFmpeg的中AAC编码器在早期为实验版本，而从2015年12月5日起，FFmpeg中的AAC编码器开始正式使用。所以在使用AAC编码器之前，首先要确定自己的FFmpeg是什么版本，如果是2015年12月5日之前发布的版本，编码时需要使用-strict experimental或者-strict -2来声明AAC为实验版本。下面举几个使用FFmpeg中AAC编码器编码的例子。

	ffmpeg -i input.mp4 -c:a aac -b:a 160k output.aac

	根据这条命令可以看出，编码为AAC音频，码率为160kbit/s，编码生成的输出文件为output. aac文件。

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input.mp4':

	 Duration: 00:00:10.01, start: 0.000000, bitrate: 2309 kb/s

	 Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], 2183 kb/s, 25 fps, 25 tbr, 25k tbn, 50 tbc (default)

	 Stream #0:1(und): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 120 kb/s (default)

	Stream mapping:

	 Stream #0:1 -> #0:0 (aac (native) -> aac (native))

	Press [q] to stop, [?] for help

	Output #0, adts, to 'output.aac':

	 Stream #0:0(und): Audio: aac (LC), 48000 Hz, stereo, fltp, 160 kb/s (default)

	size= 199kB time=00:00:10.00 bitrate= 162.9kbits/s speed=29.1x

	接下来再举一个例子。

	ffmpeg -i input.wav -c:a aac -q:a 2 output.m4a

	从这条命令可以看到，在编码AAC时，同样也用到了qscale参数，这个q在这里设置的有效范围为0.1～2，用于设置AAC音频的VBR质量，效果并不可控。可以设置几个参数看一下效果。

	Input #0, wav, from 'input.wav':

	 Duration: 00:04:13.10, bitrate: 1411 kb/s

	 Stream #0:0: Audio: pcm_s16le ([1][0][0][0] / 0x0001), 44100 Hz, stereo, s16, 1411 kb/s

	Input #1, mov,mp4,m4a,3gp,3g2,mj2, from 'output_0.1.m4a':

	 Duration: 00:04:13.12, start: 0.000000, bitrate: 23 kb/s

	 Stream #1:0(und): Audio: aac (LC) (mp4a / 0x6134706D), 44100 Hz, stereo, fltp, 24 kb/s (default)

	Input #2, mov,mp4,m4a,3gp,3g2,mj2, from 'output_2.0.m4a':

	 Duration: 00:04:13.12, start: 0.000000, bitrate: 186 kb/s

	 Stream #2:0(und): Audio: aac (LC) (mp4a / 0x6134706D), 44100 Hz, stereo, fltp, 186 kb/s (default)

	从以上代码可以看到，一共有3个Input文件。

	・Input #0为原始文件，码率为1411kbit/s。

	・Input #1为设置的q:a为0.1的文件，码率为24kbit/s。

	・Input #2为设置的q:a为2.0的文件，码率为186kbit/s。

	可以使用-q:a设置AAC的输出质量。另外也可以看到，原生AAC编码器控制项不是很多，且没有支持CBR编码模式。

5.4.2 FDK-AAC

	FDK-AAC库是FFmpeg支持的第三方编码库中质量最高的AAC编码库，FDK库是基于定点数字的，只支持16位整数的PCM输入。编码音质的好坏与使用方式同样有着一定的关系。下面介绍libfdk_aac的几种编码模式。

	1. CBR模式

	在CBR编码中，整个文件的码率保持不变，每秒钟的音频都分配相同数量的比特进行编码。在内部，音频数据的帧以定期的、可预测的间隔出现，因此，在给定的音频持续时间内，整个文件的大小是可以预测的。

	如果想用libfdk_aac设定一个恒定的码率，改变编码后的大小，并且可以兼容HE-AAC Profile，则可以根据音频设置的经验设置码率。例如，如果一个声道使用64kbit/s，那么双声道为128kbit/s，5.1环绕立体声为384kbit/s，可以通过b:a参数进行设置。下面举几个例子。

	ffmpeg -i input.wav -c:a libfdk_aac -b:a 128k output.m4a

	根据这条命令可以看出，FFmpeg使用libfdk_aac将input.wav转为恒定码率128kbit/s、编码为aac的output.m4a音频文件。

	ffmpeg -i input.mp4 -c:v copy -c:a libfdk_aac -b:a 384k output.mp4

	根据这条命令可以看出，FFmpeg将input.mp4的视频文件按照原有的编码方式进行输出封装，使用libfdk_aac将音频编码为环绕立体声、384kbit/s码率，并输出封装为output.mp4。

	以上两个例子均为使用libfdk_aac进行AAC编码的案例，使用libfdk_aac可以编码AAC的恒定码率CBR。

	2. VBR模式

	使用VBR模式可以有更好的音频质量，使用libfdk_aac进行VBR模式的AAC编码时，可以设置5个级别。VBR模式以质量为目标，而不是以特定的码率为目标，其中1是最低质量，5是最高质量。

	在VBR编码中，用户选择期望的质量水平或允许的码率范围，如表5-14所示。然后，编码器选择最佳的数据量来代表每一帧音频，试图在整个流中保持选定的编码质量。这种编码模式的主要优点是，用户能够指定最终的编码质量水平，并尽可能地节省空间。但不利之处在于，最终的文件大小是不可预测的。

	表5-14 AAC编码级别参数

	[image:]

	根据表5-14中的内容，第1列为VBR的类型，第2列为每通道编码后的码率范围。第3列中有3种AAC编码信息，分别如下：

	・LC：Low Complexity AAC，低复杂度。这种编码相对来说体积比较大，质量稍差。

	・HE：High-Efficiency AAC，高效率。这种编码相对来说体积稍小，质量好。

	・HEv2：High-Efficiency AAC version 2，高效版本2。这种编码相对来说体积小，质量优。

	关于其发展历程与主要编码工具的差异，Wikipedia给出了一个清晰的图示，如图5-17所示。另外编码Profile设置不同，会涉及AAC解码器能力的兼容问题。

	[image:]

	[image:]

	图5-17 AAC不同Profile的发展历程

	表5-15列出了LC、HE和HEv2的推荐参数。

	表5-15 AAC编码LC、HE和HEv2的推荐参数

	[image:]

	[image:]

	[image:]

	下面是使用VBR将音频压缩为AAC编码的m4a容器的例子。

	ffmpeg -i input.wav -c:a libfdk_aac -vbr 3 output.m4a

	执行命令后，FFmpeg会将input.wav的音频压缩为音频编码为libfdk_aac的output.m4a音频文件。

5.4.3 高质量AAC设置

	根据前文介绍，AAC音频分为LC、HE和HEv2三种。LC的编码设置已经介绍过，下面举例介绍HE与HEv2的设置。

	1. HE音频编码设置

	执行如下命令：

	ffmpeg -i input.wav -c:a libfdk_aac -profile:a aac_he -b:a 64k output.m4a

	执行这条命令行之后，编码后输出output.m4a的信息如下：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'output.m4a':

	 Duration: 00:04:13.22, start: 0.000000, bitrate: 64 kb/s

	 Stream #0:0(und): Audio: aac (HE-AAC) (mp4a / 0x6134706D), 44100 Hz, stereo, fltp, 64 kb/s (default)

	从以上代码可以看出，音频编码为HE-AAC，可见编码参数已通过-profile:a aac_he设置生效。

	2. HEv2音频编码设置

	执行如下命令：

	ffmpeg -i input.wav -c:a libfdk_aac -profile:a aac_he_v2 -b:a 32k output.m4a

	编码后输出output.m4a的信息如下：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'output.m4a':

	 Duration: 00:04:13.26, start: -0.021814, bitrate: 32 kb/s

	 Stream #0:0(und): Audio: aac (HE-AACv2) (mp4a / 0x6134706D), 44100 Hz, stereo, fltp, 32 kb/s (default)

	 Metadata:

	 handler_name : SoundHandler

5.4.4 AAC音频质量对比

	AAC-LC的音频编码可以采用libfdk_aac和FFmpeg内置AAC两种，其质量顺序排列如下：

	・libfdk_aac音频编码质量最优。

	・FFmpeg内置AAC编码次于libfdk_aac。

	注意：在新版本的FFmpeg中，libfaac已经被删除，所以本书并不会继续讲解libfaac相关的使用。

5.5 系统资源使用情况

	音视频转码与音视频转封装的不同在于音视频转码会占用大量计算资源，而转封装主要是将音频数据或者视频数据取出，然后封装成另外一种封装格式。转封装主要占用IO资源，而转码主要占用CPU资源，同时转码也会使用更多的内存资源。下面观察一下视频转码时CPU资源的使用情况。

	首先使用FFmpeg进行转码。

	ffmpeg -re -i input.mp4 -vcodec libx264 -an output.mp4

	执行这条命令行之后，使用系统命令top查看FFmpeg的CPU资源使用情况，如图5-18所示。

	[image:]

	图5-18 FFmpeg编码对CPU资源的使用情况

	从图5-18中可以看到，FFmpeg转码时占用了481.1%的CPU资源，使用了90Mb+的内存。这仅仅是转码，并未进行图像缩放，如果缩放，使用的CPU资源将会更多，因为涉及缩放，其计算资源也会有所增加。不同的编码参数也会影响CPU及内存使用率，前面提到x264编码使用的preset参数模板设置不同，编码时所使用的CPU及内存也会有所不同。我们可以先对画质的要求及资源情况进行评估，然后选择不同的转码参数。

5.6 小结

	第4章介绍了音视频容器封装格式，以及使用FFmpeg进行容器封装格式的转换等。而本章将重点转换到了音视频的编码和转码，介绍了音视频编码转换的基础知识及如何使用FFmpeg进行音视频编码转换。首先，介绍了FFmpeg使用libx264进行H.264软编码的操作，libx264是使用最广泛的开源编码器，在业界影响力巨大，也影响了后来一众编码器。与此同时，H.264编码标准也是使用最为广泛的编码标准。使用好FFmpeg的libx264编码器，对使用好其他编码器有很大的帮助。另外，随着编码标准复杂度的提升及编码密度和功耗的考虑，硬件加速的编解码屡见不鲜，在很多情况下甚至是唯一的选择。我们也新增加了FFmpeg环境下常见硬件的硬编码操作的介绍，包括NVIDIA、Intel、树莓派、苹果系统环境下的硬编码，这样能够帮助读者更好地利用硬件资源，提供高密度、低功耗的编解码操作。但随之而来的问题是，对比软件编码，硬件编码在灵活性、编码质量等方面则有所损失。

	其次，音频编码部分介绍了MP3和AAC编码，介绍如何使用MP3和AAC的多种参数来控制编码多种质量的音频数据。

	最后，我们针对编解码做了资源使用情况的分析。性能问题始终是编解码领域最重要的问题之一，我们简单提及这个问题，并未深入，原因是性能优化本身至少可以用一本书来阐明。这部分的介绍主要是让读者了解编解码和转封装对CPU、内存等的需求。

第6章

流媒体技术

	随着互联网、移动互联网、4G/5G等网络技术的快速发展，人们获取信息的方式先是从纸质媒体转向从网络获取文字、图片等静态媒体，又从静态媒体方式转向音视频流媒体。音视频流媒体又简称为“流媒体”，而处理流媒体的传输、压缩、录制、编辑等操作所使用的开源并强大的工具屈指可数，FFmpeg便是常见的流媒体处理工具之一。

	流媒体是指以连续的方式从一个源头传递和消费多媒体，其在网络环节（指传输节点和通道）中很少或没有中间存储。需要注意，流媒体指的是内容的传输方法，而不是内容本身。在进入正题之前，我们先了解几个基础问题。

	1. 什么是实时流式传输？

	流式传输是人们在互联网上观看视频（包括听音频）时使用的数据传输方法。这是一种一次从远程存储交付少许媒体数据的方式，通过一次在互联网上传输少量（如几秒钟）的媒体数据，客户端设备不必在开始播放之前等待下载整个媒体文件。

	实时流式传输是指流媒体视频通过网络实时发送，无须预先进行录制和存储。如今，电视广播、视频游戏流和社交媒体视频都可以进行实时流式传输。

	常规流式传输和实时流式传输之间的区别可以类比演员背诵独白和即兴演讲之间的区别。前者是预先创建内容，存储下来并转播给观众；后者则是观众在演员创建内容的同时接收内容，就如实时流式传输一样。

	术语“实时流式传输”通常是指广播实时流，即同时传给多个用户的一对多连接。Skype、FaceTime和Google Hangouts Meet等视频会议技术采用的是实时通信（RTC）协议，而不是一对多实时流广播所使用的协议。

	2. 在技术层面，实时流式传输如何工作？

	以下是实时流式传输幕后发生的主要步骤。

	1）采集：实时流式传输始于原始视频数据，即摄像机捕捉的视觉信息。在摄像机所连接的计算设备中，此视觉信息表示为数字数据，换句话说，最终表示为1和0。

	2）编码：对采集到的视频数据进行压缩和编码。通过删除多余的视觉、统计信息来压缩数据。实时流式传输视频数据编码为各种不同设备可以识别的可解释数字格式。常见的视频编码标准包括MPEG2、H.264、H.265、VP8/9、AV1等。

	3）分段：视频包含许多数字信息，这就是为什么下载视频文件要比下载简短的PDF或图像耗费更久的时间。由于一次将所有视频数据通过Internet发送出去需要消耗的时间较长，因此流式传输时视频会被分割成若干个几秒长的小片段。

	4）内容交付网络（CDN）与缓存：实时流一旦完成采集和编码（所有过程仅需几秒甚至几毫秒），就需要提供给成千上万的观众。为了在最小延迟的同时保持高品质，并且将流媒体提供给不同位置的多个用户，需要使用CDN进行分发。CDN是分布式服务器网络，代替源站服务器为用户缓存和提供内容。使用CDN可以实现更快的性能，因为用户请求不再需要直接行进到源站服务器，而是可以通过附近的CDN服务器进行处理。以这种方式处理请求和交付内容还可以减轻源站服务器的工作量。由于CDN服务器遍布世界各地，而不是聚集在单个地理区域内，CDN可以高效地向全球用户提供内容。CDN还将缓存（临时保存）实时流的各个片段，因此大多数用户将从CDN缓存而不是源站服务器获取实时流。即使缓存数据会延迟一段时间，这实际上可以使实时流更接近于实时，因为它削减了来回于源站服务器的往返时间（RTT）。

	5）解码以及视频播放：实时流传送至所有正在观看流媒体的用户，通过每个用户的观看设备接收、解码分段的视频数据。最后，用户设备上的媒体播放器（专门的应用或浏览器内的视频播放器）将数据解释为视觉信息，然后播放。
参见https://github.com/ossrs/srs。
	说明：因本书重点介绍FFmpeg，所以不会介绍与流媒体服务器搭建相关的知识。如果读者对该部分知识有兴趣，可以查看SRS
	 [image: 参见https://github.com/ossrs/srs。]或者nginx/nginx-rtmp-module等。搭建流媒体的相关知识可以从互联网直接获取，按照本章中提到的协议进行关键字搜索即可。

6.1 录制与发布RTMP流

	在流媒体中，RTMP直播为实时直播中最为常见的一种。由于是实时直播，精彩画面错过了就永远不会再出现了。为了解决这个问题，可以考虑将实时直播的RTMP流录制下来。

	RTMP相关协议经过不断演化实际上已经变成了一个协议族，包括RTMP、RTMPS、RTMPE、RTMFP等，其差别主要在于是否加密、使用隧道，以及是否使用UDP或者TCP来传输等。但狭义下的RTMP是本书的重点，它的全称是Real Time Messaging Protocol，即实时消息传送协议。它最初由Macromedia开发，后被Adobe收购，作为Flash播放器和服务器之间音视频数据传输的私有协议，最初这个协议主要工作在TCP之上，默认使用端口1935。协议中的基本数据单元被称为消息（Message），传输的过程中消息会被分割为更小的消息块（Chunk）单元，最后将分割后的消息块通过TCP传输到接收端，接收端再将接收到的消息块恢复成流媒体数据。需要注意，RTMP的协议格式与FLV容器格式有千丝万缕的联系。

	RTMP主要有以下几个优点：

	・专为流媒体开发的协议。

	・最初和FLV的生态相得益彰（虽然现在FLV相关技术已经日薄西山，但当时它的影响力巨大）。

	・RTMP的延迟相对较低，一般延时为1～3秒，对于延迟不是特别敏感的场景，其延迟是可以接受的。

	当然RTMP并非尽善尽美，它也有不足的地方。一方面是它基于TCP传输，导致链路抖动时并不能很好地使用带宽，且使用非公共端口，可能会被防火墙阻拦；另一方面是它是Adobe私有协议，对于浏览器生态并不友好。目前业界一直在探索各种方向以替换该协议，主要的原因是Adobe拥有该协议的版权，但又放弃了该协议的发展，在对新Codec及其他特性的支持上也停滞不前。在下行分发领域，RTMP面临着HLS、MPEG-DASH等基于HTTP传输协议的竞争，在上行领域也面临一些新的技术方案比如DASH-IF Live Media Ingest Protocol、WebRTC-HTTP Ingestion Protocol（WHIP）等协议的竞争。不过即便这样，从市场占有率来说，RTMP依旧是值得研究的技术之一，它也是第一个被广泛使用的流媒体协议。

6.1.1 RTMP参数说明

	下面介绍FFmpeg拉取RTMP直播流可以使用的参考参数，其基本的URL格式如下：

	rtmp://[username:password@]server[:port][/app][/instance][/playpath]

	其基本格式如图6-1所示。RTMP的URL中比较重要的字段是app和playpath部分，图6-1中app设置为telvue- rtmp，而playpath设置为fmle。

	[image:]

	图6-1 RTMP URL基本格式及意义

	FFmpeg的RTMP支持的参数较多，主要如表6-1所示。

	表6-1 FFmpeg操作RTMP的参数

	[image:]

	[image:]

6.1.2 RTMP参数举例

	相关参数已经在上面列出，接下来根据例子进行设置，并分析其作用。

	1. rtmp_app参数

	使用rtmp_app参数可以设置RTMP的推流发布点。

	拉流录制的命令如下：

	ffmpeg -rtmp_app live -i rtmp://publish.chinaffmpeg.com -c copy -f flv output.flv

	发布流的命令如下：

	ffmpeg -re -i input.mp4 -c copy -f flv -rtmp_app live rtmp://publish.chinaffmpeg.com

	执行这条命令时，FFmpeg会给出错误提示，如下：

	[rtmp @ 0x7fd0816016e0] Server error: identify stream failed.

	rtmp://publish.chinaffmpeg.com: Unknown error occurred

	输出的内容中错误提示如下：

	Server error: identify stream failed.

	这个错误是因为尚未设置stream项所致，但设置app是成功的。如果需要确定设置rtmp_app的结果正确与否，可以通过FFmpeg设置loglevel，打开FFmpeg的log选项来查看RTMP的path及fname的设置。如下所示：

	[rtmp @ 000002c09754ee80] Type answer 3

	[rtmp @ 000002c09754ee80] Server version 13.14.10.13

	[rtmp @ 000002c09754ee80] Proto = rtmp, path = /live, app = live, fname =

	[rtmp @ 000002c09754ee80] Window acknowledgement size = 2500000

	[rtmp @ 000002c09754ee80] Max sent, unacked = 2500000

	[rtmp @ 000002c09754ee80] New incoming chunk size = 1024

	[rtmp @ 000002c09754ee80] Releasing stream...

	[rtmp @ 000002c09754ee80] FCPublish stream...

	从以上log信息可以看到，在RTMP的Connect命令中，设置了链接live发布点的信息，但在发出play时，设置的信息为空。FFmpeg的调试信息用fname/path这两项检查，所以返回前面看到的错误提示。发布流（推流）为publish时提示错误。从以上执行结果及log信息可以确认，rtmp_app设置已生效，但并未设置playpath。

	2. rtmp_playpath参数

	设置rtmp_app时看到提示“identify stream failed”错误，可以使用rtmp_playpath参数来解决该错误。下面先举一个推流的例子：

	ffmpeg -re -i input.mp4 -c copy -f flv -rtmp_app live -rtmp_playpath class rtmp:// publish.chinaffmpeg.com

	这条命令执行后，将会推流成功，因为设置了rtmp_app与rtmp_playpath两个参数，分别发布点live与流名称class。执行后结果如下：

	Input #0, flv, from 'demo.flv':

	 Metadata:

	 Duration: 00:06:31.50, start: 0.069000, bitrate: 1923 kb/s

	 Stream #0:0: Video: h264 (High), yuv420p(progressive), 1280x720 [SAR 1:1 DAR 16:9], 1742 kb/s, 29 fps, 29 tbr, 1k tbn

	 Stream #0:1: Audio: aac (LC), 48000 Hz, stereo, fltp, 171 kb/s

	Output #0, flv, to 'rtmp://localhost:1935/live/rfBd56ti2SMtYvSgD5xAV0YU99zampta7Z7S575KLkIZ9PYk':

	 Stream #0:0: Video: h264 (High) ([7][0][0][0] / 0x0007), yuv420p(progressive), 1280x720 [SAR 1:1 DAR 16:9], q=2-31, 1742 kb/s, 29 fps, 29 tbr, 1k tbn

	 Stream #0:1: Audio: aac (LC) ([10][0][0][0] / 0x000A), 48000 Hz, stereo, fltp, 171 kb/s

	Stream mapping:

	 Stream #0:0 -> #0:0 (copy)

	 Stream #0:1 -> #0:1 (copy)

	Press [q] to stop, [?] for help

	看到这个信息为链接成功，推流（发布流）成功。流发布成功后，可以以类似的方式测试拉取RTMP流。

	ffmpeg -rtmp_app live -rtmp_playpath class -i rtmp://publish.chinaffmpeg.com -c copy -f flv output.flv

	这条命令执行后，将会成功地从RTMP服务器中拉取直播流，并保存为output.flv，因为设置了rtmp_app与rtmp_playpath参数。执行效果如下：

	Input #0, flv, from 'rtmp://publish.chinaffmpeg.com':

 省略部分打印

	 Stream #0:0: Video: h264 (High) ([7][0][0][0] / 0x0007), yuv420p(progressive), 1280x714 [SAR 1:1 DAR 640:357], q=2-31, 2576 kb/s, 25 fps, 25 tbr, 1k tbn, 1k tbc

	 Stream #0:1: Audio: aac (LC) ([10][0][0][0] / 0x000A), 48000 Hz, stereo, fltp, 127 kb/s

	Stream mapping:

	 Stream #0:0 -> #0:0 (copy)

	 Stream #0:1 -> #0:1 (copy)

	Press [q] to stop, [?] for help

	frame=273 fps=34 q=-1.0 size=4073kB time=00:00:10.80 bitrate=3088.5kbits/s speed=1.36

	能够成功地推流与拉流证明设置rtmp_app与rtmp_playpath起到了作用。

	如果认为设置rtmp_app与rtmp_playpath麻烦，可以省略这两个参数，直接将参数设置在RTMP的链接URL中，这是建议的方式。

	ffmpeg -i input.mp4 -c copy -f flv rtmp://publish.chinaffmpeg.com/live/class

	发布流可以通过这种方式直接发布，其中live为发布点，class为流标识。这条命令执行完成之后，可以看到输出信息如下：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input.mp4':

 省略部分打印

	Output #0, flv, to 'rtmp://publish.chinaffmpeg.com/live/class':

	 Stream #0:0(und): Video: h264 (High) ([7][0][0][0] / 0x0007), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], q=2-31, 2183 kb/s, 25 fps, 25 tbr, 1k tbn, 25k tbc (default)

	 Stream #0:1(und): Audio: aac (LC) ([10][0][0][0] / 0x000A), 48000 Hz, stereo, fltp, 120 kb/s (default)

	Stream mapping:

	 Stream #0:0 -> #0:0 (copy)

	 Stream #0:1 -> #0:1 (copy)

	从输出的内容中可以看到，推流成功，并且推流的信息与使用rtmp_app和rtmp_playpath组合的相同，可以通过抓包工具分析验证或者打开FFmpeg的loglevel来确认。

	推流成功后，可以拉流录制看一下。

	ffmpeg -i rtmp://publish.chinaffmpeg.com/live/class -c copy -f flv output.flv

	与推流的链接相同，将发布点与流名称同时放在URL中进行拉流录制。输出结果如下：

	Input #0, flv, from 'rtmp://publish.chinaffmpeg.com/live/class':

 省略部分打印

	Output #0, flv, to 'output.flv':

	 Stream #0:0: Video: h264 (High) ([7][0][0][0] / 0x0007), yuv420p(progressive), 1280x714 [SAR 1:1 DAR 640:357], q=2-31, 2576 kb/s, 25 fps, 25 tbr, 1k tbn, 1k tbc

	 Stream #0:1: Audio: aac (LC) ([10][0][0][0] / 0x000A), 48000 Hz, stereo, fltp, 127 kb/s

	Stream mapping:

	 Stream #0:0 -> #0:0 (copy)

	 Stream #0:1 -> #0:1 (copy)

	Press [q] to stop, [?] for help

	至此，rtmp_app与rtmp_playpath参数介绍完毕。

	3. rtmp_pageurl、rtmp_swfurl、rtmp_tcurl参数

	在RTMP的Connect命令中包含了很多Object，这些Object中有一个pageUrl，例如通过页面的flashplayer播放。而使用FFmpeg发起播放时，默认不会在Connect命令中携带pageUrl字段。FFmpeg可以使用rtmp_pageurl来设置这个字段，以做标识，这个标识与HTTP请求中的referer防盗链基本上可以认为作用相同，在RTMP服务器中可以根据这个信息进行referer防盗链操作。使用FFmpeg的rtmp_pageurl参数可以设置pageUrl，例如设置一个http://www.chinaffmpeg.com：

	ffmpeg -rtmp_pageurl "http://www.chinaffmpeg.com" -i rtmp://publish.chinaffmpeg.com/ live/class

	执行这条命令后，使用抓包工具可以看到Connect命令中包含了pageUrl一项，值为http:// www.chinaffmpeg.com。这个值通过ffmpeg -rtmp_pageurl设置生效。

	按照这个方式，还可以设置swfUrl参数以及tcUrl的值。常规的RTMP推流与播放直播流时，这些参数均可以设为默认，只有在限制使用HTML页面中的swf播放器，或者指定必须使用某一个HTML页面播放时，这些参数的用处才比较大。

6.2 录制与发布RTSP流

https://datatracker.ietf.org/doc/html/rfc7826。https://datatracker.ietf.org/doc/html/rfc2326。
	提到直播流媒体，RTSP（Real Time Streaming Protocol）曾经为最常见的直播方式，这从它的名字中也可以看出来。虽然互联网中已经大多数转向RTMP、HTTP+FLV、HLS、MPEG-DASH等方式，但依然还是有些场景在使用RTSP，如安防领域。所以这里介绍一下RTSP。RTSP标准已经发展到2.0
	 [image: https://datatracker.ietf.org/doc/html/rfc7826。]版本，但FFmpeg并未支持，FFmpeg当前支持的仍然是RTSP1.0
	 [image: https://datatracker.ietf.org/doc/html/rfc2326。]。下面介绍一下FFmpeg中RTSP支持的参数。RTSP本身定义了信令，其传输协议并未确定。在当前的实现中，大部分情况下都使用RTP来传输数据，但实际上，仍然有Real Data Transport（RDT）这样的私有传输协议被使用。RTSP是一个典型的CS架构，其基本交互流程如图6-2所示。

	[image:]

	图6-2 RTSP基本交互流程

6.2.1 RTSP demuxer参数介绍

	在使用FFmpeg处理RTSP之前，首先需要了解RTSP都有哪些参数，如表6-2所示。执行ffmpeg -h demuxer=RTSP命令后会输出RTSP支持的参数。

	问题：这里可以看到，RTSP是以demuxer实现的，而RTMP是以protocol实现的。读者可以考虑一下这两者之间的差异是什么。

	表6-2 FFmpeg操作RTSP demuxer的参数

	[image:]

	[image:]

	从参数列表中看出，RTSP可以有多种传输方式，不仅可以通过UDP，还可以通过TCP、HTTP隧道等（由于互联网都是基于HTTP的，使用HTTP隧道有时可以大大减少穿越防火墙的困扰）。下面根据上述参数进行举例说明。

6.2.2 RTSP demuxer参数使用举例

	使用RTSP拉流时，时常会遇到因为采用UDP方式而导致拉流丢包异常。所以当链路不可靠，而实际又对可靠性要求比较高的时候，可以采用TCP方式拉流。但需要注意，虽然TCP保证了可靠性，但在网络抖动，特别是有丢包的场景下，TCP链路的可用带宽会下降很多。

	1. 以TCP方式录制RTSP直播流

	FFmpeg默认使用的拉取RTSP流方式为UDP传输方式，为了避免丢包导致的花屏、绿屏、灰屏、马赛克等问题，可以考虑将UDP改为TCP方式。

	ffmpeg -rtsp_transport tcp -i rtsp://47.90.47.25/test.ts -c copy -f mp4 output.mp4

	输出如下：

	Input #0, rtsp, from 'rtsp://47.90.47.25/test.ts':

	 Duration: N/A, start: 1.441667, bitrate: N/A

	 Program 1

	 Stream #0:0: Video: h264 (High) ([27][0][0][0] / 0x001B), yuv420p(progressive), 640x360 [SAR 1:1 DAR 16:9], 24 fps, 24 tbr, 90k tbn, 48 tbc

	 Stream #0:1(und): Audio: aac (LC) ([15][0][0][0] / 0x000F), 48000 Hz, stereo, fltp, 6 kb/s

	Output #0, mp4, to 'output.mp4':

	 Stream #0:0: Video: h264 (High) ([33][0][0][0] / 0x0021), yuv420p(progressive), 640x360 [SAR 1:1 DAR 16:9], q=2-31, 24 fps, 24 tbr, 90k tbn, 90k tbc

	 Stream #0:1(und): Audio: aac (LC) ([64][0][0][0] / 0x0040), 48000 Hz, stereo, fltp, 6 kb/s

	Stream mapping:

	 Stream #0:0 -> #0:0 (copy)

	 Stream #0:1 -> #0:1 (copy)

	Press [q] to stop, [?] for help

	frame=204 fps=45 q=-1.0 Lsize=1286kB time=00:00:08.42 bitrate=1250.5kbits/s speed=1.88x

	从输出的内容可以看到，FFmpeg正在从RTSP服务器中读取test.ts数据，并且将其录制到本地文件output.mp4中。

	在RTSP录制流建立连接时，可以通过抓取网络传输的包看到交互内容。内容如下：

	OPTIONS rtsp://47.90.47.25:554/test.ts RTSP/1.0

	CSeq: 1

	User-Agent: Lavf57.71.100

	RTSP/1.0 200 OK

	CSeq: 1

	Date: Thu, Jul 20 2017 11:20:50 GMT

	Public: OPTIONS, DESCRIBE, SETUP, TEARDOWN, PLAY, PAUSE, GET_PARAMETER, SET_PARAMETER

	以上内容为RTSP标准中查询RTSP服务器所支持的方法。从列表中可以看到，该RTSP支持OPTIONS、DESCRIBE、SETUP、TEARDOWN、PLAY、PAUSE、GET_PARAMETER、SET_ PARAMETER方法。查询完成之后，继续进入下一步。

	DESCRIBE rtsp://47.90.47.25:554/test.ts RTSP/1.0

	Accept: application/sdp

	CSeq: 2

	User-Agent: Lavf57.71.100

	RTSP/1.0 200 OK

	CSeq: 2

	Date: Thu, Jul 20 2017 11:32:24 GMT

	Content-Base: rtsp://47.90.47.25/test.ts/

	Content-Type: application/sdp

	Content-Length: 391

	v=0

	o=- 1500550344674887 1 IN IP4 47.90.47.25

	s=MPEG Transport Stream, streamed by the LIVE555 Media Server

	i=test.ts

	t=0 0

	a=tool:LIVE555 Streaming Media v2017.05.29

	a=type:broadcast

	a=control:*

	a=range:npt=0-

	a=x-qt-text-nam:MPEG Transport Stream, streamed by the LIVE555 Media Server

	a=x-qt-text-inf:test.ts

	m=video 0 RTP/AVP 33

	c=IN IP4 0.0.0.0

	b=AS:5000

	a=control:track1

	从协议中的内容可以看到，FFmpeg与服务器之间又发起了DESCRIBE操作，且使用了SDP格式来描述信令相关信息。RTSP服务器返回了流数据的描述，数据为视频数据，编码为H.264格式，通过RTP进行传输。接下来进入下一步。

	SETUP rtsp://47.90.47.25/test.ts/ RTSP/1.0

	Transport: RTP/AVP/TCP;unicast;interleaved=0-1

	CSeq: 3

	User-Agent: Lavf57.71.100

	RTSP/1.0 200 OK

	CSeq: 3

	Date: Thu, Jul 20 2017 11:32:24 GMT

	Transport: RTP/AVP/TCP;unicast;destination=218.241.251.147;source=47.90.47.25;interleaved=0-1

	Session: 216B4503;timeout=65

	从协议内容中可以看到，这一步为设置（SETUP）操作，建立会话，以后的交互都将通过这个会话（Session）进行标识。得到Session之后继续进入下一步。

	PLAY rtsp://47.90.47.25/test.ts/ RTSP/1.0

	Range: npt=0.000-

	CSeq: 4

	User-Agent: Lavf57.71.100

	Session: 216B4503

	RTSP/1.0 200 OK

	CSeq: 4

	Date: Thu, Jul 20 2017 11:32:24 GMT

	Range: npt=0.000-

	Session: 216B4503

	RTP-Info: url=rtsp://47.90.47.25/test.ts/track1;seq=7095;rtptime=3592490952

	得到Session之后，带着这个Session发起PLAY操作，收到RTSP服务器的OK状态，即可以进入接收视频数据这一步，也就是播放操作或者录制操作等。如果希望退出播放或者停止录制，则可以使用TEARDOWN操作。

	TEARDOWN rtsp://47.90.47.25/test.ts/ RTSP/1.0

	CSeq: 5

	User-Agent: Lavf57.71.100

	Session: 216B4503

	RTSP/1.0 200 OK

	CSeq: 5

	Date: Thu, Jul 20 2017 11:32:26 GMT

	从协议内容中可以看到，接收数据的时候使用了TEARDOWN，服务器关闭了Session，整个会话结束。

	2. 设置User-Agent参数

	为了在访问的时候区分是否是自己访问的流，可以通过user-agent设置一个容易辨识的User- Agent做标识即可。下面是一个设置User-Agent进行访问的例子。

	ffmpeg -user_agent "ChinaFFmpeg-Player" -i rtsp://input:554/live/1/stream.sdp -c copy -f mp4 -y output.mp4

	执行这条命令之后即设置了User-Agent，抓包后并分析过程时可以看到包中的User-Agent已经设置生效。

	OPTIONS rtsp://47.90.47.25:554/test.ts RTSP/1.0

	CSeq: 1

	User-Agent: ChinaFFmpeg-Player

	RTSP/1.0 200 OK

	CSeq: 1

	Date: Thu, Jul 20 2017 11:35:12 GMT

	Public: OPTIONS, DESCRIBE, SETUP, TEARDOWN, PLAY, PAUSE, GET_PARAMETER, SET_PARAMETER

	从协议内容中可以看到，User-Agent已经被设置为ChinaFFmpeg-Player，以后访问RTSP的时候如果加上这个User-Agent，即可判断为是本次访问。

6.2.3 RTSP demuxer/muxer的一些小说明

	因为RSTP demuxer可以支持UDP或者TCP传输数据，当通过UDP接收数据时，解封装器会尝试对收到的数据包重新排序（因为它们可能不按顺序到达，或者数据包完全丢失）。这可以通过将最大的解封装延迟设置为0来禁用该功能，这样可以控制RTSP demuxer带来的延迟（通过设置AVFormatContext的max_delay字段）。下面是一个通过UDP观看RTSP流，且设置最大重排延迟为0.5秒的例子。

	ffplay -max_delay 500000 -rtsp_transport udp rtsp://server/video.mp4

	另外，当用ffplay观看多码率的Real-RTSP流时，可以用-vst n和-ast n选项分别选择要处理的视频和音频流，并可以通过v键和a键实时切换。
FFmpeg也有一个rtmp的“监听”选项，所以它可以通过这种方式从一个客户端接收RTMP流。
	除了主动拉RTSP的流以外，RTSP demuxer也支持被动监听
	 [image: FFmpeg也有一个rtmp的“监听”选项，所以它可以通过这种方式从一个客户端接收RTMP流。]模式，这样使得FFmpeg可以作为一个代理，接收RTSP的推流并转推其他格式。下面是一个被动接收RTSP流的例子。

	ffmpeg -rtsp_flags listen -i rtsp://localhost/live.sdp test.flv

	在熟悉了FFmpeg的RTSP demuxer之后，FFmpeg的RTSP muxer的选项和功能基本上就没有什么问题了，这里不详述。

6.3 录制HTTP流

	在流媒体服务当中，HTTP服务最为常见，尤其是点播。当然，直播也支持HTTP服务，例如使用HTTP传输FLV、TS直播流，或者使用HTTP传输使用M3U8及TS文件的HLS格式等。

6.3.1 HTTP参数说明

	在FFmpeg中进行流媒体的传输，无论是直播还是点播，均可以采用HTTP。而FFmpeg既可以作为播放器，也可以作为服务器使用，针对HTTP有很多参数可以使用。FFmpeg中HTTP支持的参数如表6-3所示。

	▼表6-3 FFmpeg操作HTTP的参数

	[image:]

	▲[5] icy起初被称为“I Can Yell”，它是一个简单的协议，使用HTTP分发流媒体音频内容，同时在HTTP头中看到很多“icy”开头的标签。有时也称为ICY协议。

	[image:]

	[image:]

	关于FFmpeg的HTTP参数均已在表中列出，例如设置HTTP请求时的HTTP头、UserAgent信息等。上述参数均是FFmpeg作为播放器或服务器时的常用参数。

6.3.2 HTTP参数举例

	从参数列表中可以看到，FFmpeg的HTTP既可以作为客户端使用，又可以作为服务端使用，但作为客户端使用的场景更多，所以本小节专门针对客户端使用进行举例。

	1. seekable参数举例

	在使用FFmpeg打开直播或者点播文件时，可以通过seek进行播放进度移动、定位等操作。

	注意：对于seek的操作，需要HTTP服务器端的支持。

	ffmpeg -ss 300 -seekable 0 -i http://bbs.chinaffmpeg.com/test.ts -c copy output.mp4

	当seekable设置为0时，FFmpeg的参数ss指定seek的时间位置。而因为seekable参数是0，所以会一直处于阻塞状态。下面这条命令则会出现另一种情况。

	ffmpeg -ss 30 -seekable 1 -i http://bbs.chinaffmpeg.com/test.ts -c copy -y output.mp4

	seekable设置为1，命令执行后输出如下：

	Input #0, mpegts, from 'http://bbs.chinaffmpeg.com/test.ts':

	 Duration: 02:22:50.15, start: 1.441667, bitrate: 1066 kb/s

	 Program 1

	 Stream #0:0[0x100]: Video: h264 (High) ([27][0][0][0] / 0x001B), yuv420p(progressive), 640x360 [SAR 1:1 DAR 16:9], 24 fps, 24 tbr, 90k tbn, 48 tbc

	 Stream #0:1[0x101](und): Audio: aac (LC) ([15][0][0][0] / 0x000F), 48000 Hz, stereo, fltp, 178 kb/s

	Output #0, mp4, to 'output.mp4':

	 Stream #0:0: Video: h264 (High) ([33][0][0][0] / 0x0021), yuv420p(progressive), 640x360 [SAR 1:1 DAR 16:9], q=2-31, 24 fps, 24 tbr, 90k tbn, 90k tbc

	 Stream #0:1(und): Audio: aac (LC) ([64][0][0][0] / 0x0040), 48000 Hz, stereo, fltp, 178 kb/s

	Stream mapping:

	 Stream #0:0 -> #0:0 (copy)

	 Stream #0:1 -> #0:1 (copy)

	Press [q] to stop, [?] for help

	frame= 634 fps= 82 q=-1.0 size= 2419kB time=00:00:26.66 bitrate= 743.1kbits/s speed=3.46x

	因为seekable设置为1，FFmpeg可以对HTTP服务进行seek操作，自然不会有任何异常。

	2. headers参数举例

	在使用FFmpeg拉取HTTP数据时，很多时候需要自己设置HTTP的Header，如使用HTTP传输时在Header中设置referer字段等操作。下面举一个设置referer参数的例子。

	ffmpeg -headers "referer: http://bbs.chinaffmpeg.com/index.html" -i http://play.chinaffmpeg.com/live/class.flv -c copy -f flv -y output.flv

	这条命令执行后，即可在HTTP传输时在头中增加referer字段，使用Wireshark抓包可以看到详细信息。

	GET /live/class.flv HTTP/1.1

	User-Agent: Lavf/57.71.100

	Accept: */*

	Range: bytes=0-

	Connection: close

	Host: play.chinaffmpeg.com

	Icy-MetaData: 1

	referer: http://bbs.chinaffmpeg.com/index.html

	HTTP/1.1 200 OK

	Server: gosun-cdn-server/1.0.3

	Date: Wed, 19 Jul 2017 07:44:36 GMT

	Content-Type: video/x-flv

	Transfer-Encoding: chunked

	Connection: close

	session_id: 5d39f1d55180620d5003881609164da4

	C4H-Cache: sr006.gwbn-bjbj-01.c4hcdn.cn

	Access-Control-Allow-Origin: *

	如抓包信息中所示，在HTTP的Header中增加了referer字段，referer的值为http://bbs. chinaffmpeg.com/index.html。可见设置的HTTP的headers信息已经成功。

	3. user_agent参数设置

	在使用FFmpeg进行HTTP连接时，HTTP服务器端会对连接的客户端进行记录与区分，例如使用的是IE浏览器还是FireFox浏览器，又或者是Chrome浏览器，均可以记录。在流媒体中，常见的User-Agent还包括Android的StageFright与iOS的QuickTime等。而FFmpeg在进行HTTP连接时，所使用的User-Agent也有自己的特殊标识。FFmpeg连接HTTP时采用的默认User-Agent如下：

	GET /live/class.flv HTTP/1.1

	User-Agent: Lavf/57.71.100

	Accept: */*

	Range: bytes=0-

	Connection: close

	Host: play.chinaffmpeg.com

	Icy-MetaData: 1

	从协议包中可以看到，FFmpeg使用的默认User-Agent为Lavf。在使用FFmpeg连接HTTP时，为了标明FFmpeg是自己的，可以设置参数user_agent，从而起到区分的作用。

	ffmpeg -user_agent "LiuQi's Player" -i http://bbs.chinaffmpeg.com/1.flv

	命令执行后，User-Agent即被设置为LiuQi’s Player。执行后的效果如下：

	GET /live/class.flv HTTP/1.1

	User-Agent: LiuQi’s Player

	Accept: */*

	Range: bytes=0-

	Connection: close

	Host: play.chinaffmpeg.com

	Icy-MetaData: 1

	从协议包中可以看到，执行效果与预期相同，User-Agent设置成功。

	4. HTTP拉流录制

	粗略了解了HTTP参数后，接下来即可对HTTP服务器中的流媒体进行录制。不仅可以录制，还可以进行转封装，例如从HTTP传输的FLV直播流录制为HLS（M3U8）、MP4、FLV等，只要录制的封装格式支持流媒体中包含的音视频编码，就可以进行拉流录制。下面是拉取不同HTTP中的流录制FLV的一些例子。

	・拉取FLV直播流录制为FLV。

	ffmpeg -i http://bbs.chinaffmpeg.com/live.flv -c copy -f flv output.flv

	・拉取TS直播流录制为FLV。

	ffmpeg -i http://bbs.chinaffmpeg.com/live.ts -c copy -f flv output.flv

	・拉取HLS直播流录制为FLV。

	ffmpeg -i http://bbs.chinaffmpeg.com/live.m3u8 -c copy -f flv output.flv

	通过上述3个例子可以看到，转封装录制的输出相同，输入略有差别，但均为HTTP传输协议的直播流。

6.4 录制与发布UDP/TCP流

	FFmpeg不仅支持RTMP、HTTP这类高层协议，同样支持UDP、TCP这类较为底层的协议，而且可以支持UDP、TCP流媒体的录制与发布。下面是FFmpeg中TCP与UDP的相关支持参数。

6.4.1 TCP与UDP参数

	对于TCP与UDP操作，FFmpeg可以支持很多参数进行组合，如表6-4、表6-5所示。可以通过命令行ffmpeg --help full或者ffmpeg -h protocol=udp、ffmpeg -h protocol= udp查看FFmpeg支持的UDP与TCP的参数。

	▼表6-4 TCP参数列表

	[image:]

	▼表6-5 UDP参数列表

	[image:]

	[image:]

	从参数列表中可以看到，FFmpeg既支持TCP、UDP作为客户端，又支持其作为服务器端。下面举几个使用UDP、TCP的例子。

6.4.2 TCP/UDP参数使用举例

	使用FFmpeg既可以进行TCP的监听，也可以进行TCP链接请求，使用TCP监听与请求可以为对称方式。下面举几个例子。

	1. TCP监听接收流

	根据列表中介绍的TCP端口监听模式，使用方式如下：

	ffmpeg -listen 1 -f flv -i tcp://127.0.0.1:1234/live/stream -c copy -f flv output.flv

	执行命令后，FFmpeg会进入端口监听模式，等待客户端连接到本地的1234端口。

	2. TCP请求发布流

	FFmpeg通过TCP请求发布流的使用方式如下：

	ffmpeg -re -i input.mp4 -c copy -f flv tcp://127.0.0.1:1234/live/stream

	前面介绍的TCP监听端口为1234，这里请求的端口即为1234，并且输出的格式指定为FLV，因为TCP监听接收流时指定了接收FLV格式的流。这条命令执行后的输出如下：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input.mp4':

省略部分输出

	Output #0, flv, to 'tcp://127.0.0.1:1234/live/stream':

	 Stream #0:0(und): Video: h264 (High) ([7][0][0][0] / 0x0007), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], q=2-31, 2183 kb/s, 25 fps, 25 tbr, 1k tbn, 25k tbc (default)

	 Stream #0:1(und): Audio: aac (LC) ([10][0][0][0] / 0x000A), 48000 Hz, stereo, fltp, 120 kb/s (default)

	Stream mapping:

	 Stream #0:0 -> #0:0 (copy)

	 Stream #0:1 -> #0:1 (copy)

	Press [q] to stop, [?] for help

	frame= 128 fps= 25 q=-1.0 size= 1544kB time=00:00:05.08 bitrate=2489.8kbits/s speed= 1x

	输出成功，推流成功，推流格式为FLV，推流地址为tcp://127.0.0.1:1234/live/stream。

	当发布流成功后，在端口监听一端同样也会有数据的输出。因为在前面介绍端口监听时，输入为FLV格式，输出为output.flv，所以可以在监听一端看到输出信息。

	Input #0, flv, from 'tcp://127.0.0.1:1234/live/stream':

	 Duration: 00:00:00.00, start: 0.000000, bitrate: N/A

	 Stream #0:0: Video: h264 (High), yuv420p(progressive), 1280x714 [SAR 1:1 DAR 640:357], 2183 kb/s, 25 fps, 25 tbr, 1k tbn, 50 tbc

	 Stream #0:1: Audio: aac (LC), 48000 Hz, stereo, fltp, 120 kb/s

	File 'output.flv' already exists. Overwrite ? [y/N] y

	Output #0, flv, to 'output.flv':

	 Stream #0:0: Video: h264 (High) ([7][0][0][0] / 0x0007), yuv420p(progressive), 1280x714 [SAR 1:1 DAR 640:357], q=2-31, 2183 kb/s, 25 fps, 25 tbr, 1k tbn, 1k tbc

	 Stream #0:1: Audio: aac (LC) ([10][0][0][0] / 0x000A), 48000 Hz, stereo, fltp, 120 kb/s

	Stream mapping:

	 Stream #0:0 -> #0:0 (copy)

	 Stream #0:1 -> #0:1 (copy)

	Press [q] to stop, [?] for help

	frame= 250 fps= 76 q=-1.0 Lsize= 2826kB time=00:00:09.98 bitrate=2318.6kbits/s speed=3.02x

	当监听TCP时指定格式与TCP客户端连接所发布的格式相同时均正常，如果TCP监听的输入格式与TCP客户端连接时所发布的格式不同，将会出现解析格式异常。例如将请求发布流时的格式改为MPEG-TS格式，监听端将无法正常解析格式而处于“无动于衷”的状态。

	3. 监听端口超时

	在监听端口时，默认处于持续监听状态，通过使用listen_timeout可以设置指定时间长度的监听超时。例如设置5秒超时时间，到达超时时间则退出监听。

	time ffmpeg -listen_timeout 5000 -listen 1 -f flv -i tcp://127.0.0.1:1234/live/stream -c copy -f flv output.flv

	命令执行后输出信息如下：

	tcp://127.0.0.1:1234/live/stream: Operation timed out

	real 0m5.350s

	user 0m0.011s

	sys 0m0.010s

	从输出的内容中可以看到，超时时间为5秒，5秒未收到任何请求则自动退出监听。

	4. TCP拉流超时参数

	使用TCP拉取直播流时常常会遇到TCP服务器端没有数据却不主动断开连接，导致客户端持续处于连接状态，通过设置timeout参数可以解决这个问题。例如，拉取一个TCP服务器中的流数据，超过20秒没有数据则退出。实现方式如下：

	time ffmpeg -timeout 20000000 -i tcp://192.168.100.179:1935/live/stream -c copy -f flv output.flv

	这条命令设置超时时间为20秒，连接TCP拉取端口1935的数据，如果超过20秒没有收到数据则自动退出。命令执行后的效果如下：

	tcp://192.168.100.179:1935/live/stream: Operation timed out

	real 0m20.988s

	user 0m0.010s

	sys 0m0.016s

	从输出的内容中可以看到，命令执行耗时时长为20秒，设置超时时间生效。

	5. TCP传输buffer大小设置

	在TCP参数列表中可以看到send_buffer_size与recv_buffer_size参数，这两个参数的作用为设置TCP传输时接收和发送buffer的大小，buffer设置得越小，传输越频繁，其开销越大，但同时，延迟会小一些。

	ffmpeg -re -i input.mp4 -c copy -send_buffer_size 256 -f flv tcp://192.168.100.179:1234/live/stream

	执行这条命令后输出速度将会变慢，因为数据发送的buffer大小变成了256，数据发送的频率变大，并且次数变多，网络开销也变大，所以速度变慢。命令执行后相关的输出信息如下：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input.mp4':

	 Duration: 00:45:02.06, start: 0.000000, bitrate: 2708 kb/s

	 Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], 2576 kb/s, 25 fps, 25 tbr, 25k tbn, 50 tbc (default)

	 Stream #0:1(und): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 127 kb/s (default)

	Output #0, flv, to 'tcp://47.90.47.25:1234/live/stream':

	 Stream #0:0(und): Video: h264 (High) ([7][0][0][0] / 0x0007), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], q=2-31, 2576 kb/s, 25 fps, 25 tbr, 1k tbn, 25k tbc (default)

	 Stream #0:1(und): Audio: aac (LC) ([10][0][0][0] / 0x000A), 48000 Hz, stereo, fltp, 127 kb/s (default)

	Stream mapping:

	 Stream #0:0 -> #0:0 (copy)

	 Stream #0:1 -> #0:1 (copy)

	Press [q] to stop, [?] for help

	从FFmpeg执行过程的内容中可以看到速度降低了，不仅仅是输出速度降低了，输出帧率也降低了。验证的情况如下，直接用time命令可以看到，设置send_buffer_size为256前后的传输时长对照如图6-3、图6-4所示。

	[image:]

	▲图6-3 send_buffer_size使用默认值的传输时长

	[image:]

	▲图6-4 send_buffer_size使用256的传输时长

	可以看到，设置send_buffer_size为256之后，其传输时长远大于默认情况下的时长。在接收TCP数据时同样可以使用recv_buffer_size设置读取buffer的大小，在这里就不再列举更加详细的示例，参考使用send_buffer_size的方式进行验证即可。

	6. UDP连接指定本地端口

	使用FFmpeg的UDP传输数据时，默认会由系统分配本地端口，使用localport参数时可以设置监听本地端口。

	ffmpeg -re -i input.mp4 -c copy -localport 23456 -f flv udp://192.168.100.179:1234/live/stream

	命令执行后可以看到相关输出如下：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input.mp4':

	 Duration: 00:00:10.01, start: 0.000000, bitrate: 2309 kb/s

	 Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], 2183 kb/s, 25 fps, 25 tbr, 25k tbn, 50 tbc (default)

	 Stream #0:1(und): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 120 kb/s (default)

	Output #0, flv, to 'udp://192.168.100.179:1234/live/stream':

	 Stream #0:0(und): Video: h264 (High) ([7][0][0][0] / 0x0007), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], q=2-31, 2183 kb/s, 25 fps, 25 tbr, 1k tbn, 25k tbc (default)

	 Stream #0:1(und): Audio: aac (LC) ([10][0][0][0] / 0x000A), 48000 Hz, stereo, fltp, 120 kb/s (default)

	Stream mapping:

	 Stream #0:0 -> #0:0 (copy)

	 Stream #0:1 -> #0:1 (copy)

	Press [q] to stop, [?] for help

	frame=141 fps=25 q=-1.0 size=1720kB time=00:00:05.60 bitrate=2516.1kbits/s speed= 1x

	输出时可以使用netstat查看，也可以使用Wireshark抓取UDP包进行确认。UDP的Source Port已经成功设置为23456，可见localport参数设置生效。UDP传输在不可控的网络场景下面临丢包、乱序等问题，这使得它并不适合在这些场景下使用。如果必须用在这些场景下，可以使用RTP或者带FEC功能的UDP/RTP（RTP with SMPTE 2022 FEC）传输来解决。
SRT提供类似于TCP的连接和控制、可靠传输。然而它在应用层实现，使用UDP作为底层传输层。它支持数据包恢复，同时保持低延迟（默认为120毫秒）。SRT还支持使用AES进行加密，该协议来源于UDT项目，利用类似的方法保证可靠地提供连接管理、序列号管理、确认和丢包重传，且使用选择性和即时性（基于NACK）的重传。RIST是一个开源的、开放规范的传输协议，旨在通过有损网络（包括互联网）以低延迟进行高质量可靠的视频传输。它和SRT想解决的问题类似。其业界进展和技术讨论的网址位于https://www.rist.tv。
	除了上面提及的UDP、RTP传输方式以外，如Andrew Tanenbaum所说的“The nice thing about standards is that there are so many to choose from. And if you do not like any of them, just wait a year or two”。一些新的基于UDP的传输协议陆续出现，典型的如SRT（Secure Reliable Transport）
	 [image: SRT提供类似于TCP的连接和控制、可靠传输。然而它在应用层实现，使用UDP作为底层传输层。它支持数据包恢复，同时保持低延迟（默认为120毫秒）。SRT还支持使用AES进行加密，该协议来源于UDT项目，利用类似的方法保证可靠地提供连接管理、序列号管理、确认和丢包重传，且使用选择性和即时性（基于NACK）的重传。]和RIST（Reliable Internet Stream Transport）
	 [image: RIST是一个开源的、开放规范的传输协议，旨在通过有损网络（包括互联网）以低延迟进行高质量可靠的视频传输。它和SRT想解决的问题类似。其业界进展和技术讨论的网址位于https://www.rist.tv。]等协议，一方面，这些新的协议解决了基于UDP的可靠性问题，实现乱序重排，并使得链路传输的延迟很低，背后无一例外是使用了基于NACK的重传。另一方面，它们带来了诸如多链路、加密、NAT穿越等新特性。如果大家有兴趣，可以参考相应链接。

6.4.3 TCP/UDP使用小结

	FFmpeg的TCP与UDP传输常见于TCP或者UDP的网络裸传输场景，例如很多编码器常用的传输方式为UDP传输MPEG-TS流，可以通过FFmpeg进行相关的功能支持。TCP同理。不过使用FFmpeg进行TCP与UDP传输的功能还在不断更新中，可以根据本节介绍的方法持续关注与尝试。另外，一般而言，除非已经明确知晓要使用TCP或UDP这种比较底层协议的场景，更多情况下还是建议使用前面介绍的上层流媒体传输协议。

6.5 多路流输出

	早期FFmpeg在转码后输出直播流时并不支持一次编码后同时输出多路直播流，需要使用管道方式输出。而在新版本的FFmpeg中已经支持tee文件封装及协议输出，可以使用tee进行多路流输出。本节介绍以管道方式输出多路流与以tee协议输出方式输出多路流。

6.5.1 管道方式输出多路流

	在前面章节介绍过使用FFmpeg进行编码与转封装，编码消耗的资源比较多，转封装相对较少。而在很多时候只需要转一次编码并输出多个不同的封装，早期FFmpeg本身并不支持这么做，尤其是一次转码输出多路RTMP流等操作，而是使用系统管道的方式进行操作。方式如下：

	ffmpeg -i input -acodec aac -vcodec libx264 -f flv - | ffmpeg -f mpegts -i - -c copy output1 -c copy output2 -c copy output3

	从命令格式中可以看到，音频编码为AAC，视频编码为libx264，输出格式为FLV，然后输出为“-”，它代表标准输出（Standard Output），输出之后通过管道传给另一条FFmpeg命令。另一条FFmpeg命令直接执行对Codec的copy即可实现一次编码、多路输出。

	ffmpeg -i input.mp4 -vcodec libx264 -acodec aac -f flv - | ffmpeg -f flv -i - -c copy -f flv rtmp://publish.chinaffmpeg.com/live/stream1 -c copy -f flv rtmp://publish.chinaffmpeg.com/live/stream2

	这条命令执行后，将会在RTMP服务器192.168.100.179中包含两路直播流，一路为stream1，另外一路为stream2，两路直播流的信息相同。下面用FFmpeg验证一下。

	ffmpeg -i rtmp://publish.chinaffmpeg.com/live/stream1 -i rtmp://publish.chinaffmpeg.com/live/stream2

	命令执行后效果如下：

	Input #0, flv, from 'rtmp://publish.chinaffmpeg.com/live/stream1':

	 Duration: 00:00:00.00, start: 0.080000, bitrate: N/A

	 Stream #0:0: Audio: aac (LC), 48000 Hz, stereo, fltp, 128 kb/s

	 Stream #0:1: Video: h264 (High), yuv420p(progressive), 1280x714 [SAR 1:1 DAR 640:357], 25 fps, 25 tbr, 1k tbn, 50 tbc

	Input #1, flv, from 'rtmp://publish.chinaffmpeg.com/live/stream2':

	 Duration: 00:00:00.00, start: 0.080000, bitrate: N/A

	 Stream #1:0: Audio: aac (LC), 48000 Hz, stereo, fltp, 128 kb/s

	 Stream #1:1: Video: h264 (High), yuv420p(progressive), 1280x714 [SAR 1:1 DAR 640:357], 25 fps, 25 tbr, 1k tbn, 50 tbc

	如输出内容所示，两路直播流信息基本一样，因为在编码推流时采用的是一次编码、多路输出的方式。

6.5.2 tee封装格式输出

	FFmpeg支持tee封装格式输出，可以使用-f tee方式指定输出格式。下面看一下tee封装格式一次编码、多路输出的方式。

	ffmpeg -re -i input.mp4 -vcodec libx264 -acodec aac -map 0 -f tee "[f=flv]rtmp://publish.chinaffmpeg.com/live/stream1 | [f=flv]rtmp:// publish.chinaffmpeg.com/live/stream2"

	命令执行后，FFmpeg只会执行一次编码即可输出tee封装格式，格式中包含两个FLV格式的RTMP流，一路为stream1，另一路为stream2。执行后输出信息如下：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input.mp4':

	 Duration: 00:45:02.06, start: 0.000000, bitrate: 2708 kb/s

	 Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], 2576 kb/s, 25 fps, 25 tbr, 25k tbn, 50 tbc (default)

	 Stream #0:1(und): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 127 kb/s (default)

	Stream mapping:

	 Stream #0:0 -> #0:0 (h264 (native) -> h264 (libx264))

	 Stream #0:1 -> #0:1 (aac (native) -> aac (native))

	Press [q] to stop, [?] for help

	[libx264 @ 0x7fa130001800] using SAR=1/1

	[libx264 @ 0x7fa130001800] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.2 AVX

	[libx264 @ 0x7fa130001800] profile High, level 3.1

	Output #0, tee, to '[f=flv]rtmp://publish.chinaffmpeg.com/live/stream1 | [f=flv]rtmp://publish.chinaffmpeg.com/live/stream2':

	 Stream #0:0(und): Video: h264 (libx264), yuv420p(progressive), 1280x714 [SAR 1:1 DAR 640:357], q=-1--1, 25 fps, 25 tbn, 25 tbc (default)

	 Stream #0:1(und): Audio: aac (LC), 48000 Hz, stereo, fltp, 128 kb/s (default)

	frame= 266 fps= 22 q=28.0 size=N/A time=00:00:10.77 bitrate=N/A dup=2 drop=0 speed=0.908x

	从输出内容中可以看到，使用tee封装格式推多路RTMP流成功。接下来可以验证服务器端是否存在两路相同的直播RTMP流。

	ffmpeg -i rtmp://publish.chinaffmpeg.com/live/stream1 -i rtmp://publish.chinaffmpeg.com/live/stream2

	命令执行后效果如下：

	Input #0, flv, from 'rtmp://publish.chinaffmpeg.com/live/stream1':

	 Duration: 00:00:00.00, start: 0.080000, bitrate: N/A

	 Stream #0:0: Audio: aac (LC), 48000 Hz, stereo, fltp, 128 kb/s

	 Stream #0:1: Video: h264 (High), yuv420p(progressive), 1280x714 [SAR 1:1 DAR 640:357], 25 fps, 25 tbr, 1k tbn, 50 tbc

	Input #1, flv, from 'rtmp://publish.chinaffmpeg.com/live/stream2':

	 Duration: 00:00:00.00, start: 0.080000, bitrate: N/A

	 Stream #1:0: Audio: aac (LC), 48000 Hz, stereo, fltp, 128 kb/s

	 Stream #1:1: Video: h264 (High), yuv420p(progressive), 1280x714 [SAR 1:1 DAR 640:357], 25 fps, 25 tbr, 1k tbn, 50 tbc

	经过验证，确认使用tee推流成功，在流媒体服务器中存在两路直播流。

6.5.3 tee协议输出多路流

	FFmpeg在3.1.3版本之后支持tee多协议输出，使用方式比前面介绍的FFmpeg配合管道与tee封装格式更简单。下面详细举个例子：

	ffmpeg -re -i input.mp4 -vcodec libx264 -acodec aac -f flv "tee:rtmp://publish.chinaffmpeg.com/live/stream1|rtmp://publish.chinaffmpeg.com/live/stream2"

	命令执行后，FFmpeg执行了一次编码，然后输出为tee协议格式。tee中包含了两个子链接，全部为RTMP，输出两路RTMP流，一路为stream1，另一路为stream2。

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input.mp4':

省略部分输出

	Stream mapping:

	 Stream #0:0 -> #0:0 (h264 (native) -> h264 (libx264))

	 Stream #0:1 -> #0:1 (aac (native) -> aac (native))

	Press [q] to stop, [?] for help

	[libx264 @ 0x7f9bfb87aa00] using SAR=1/1

	[libx264 @ 0x7f9bfb87aa00] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.2 AVX

	[libx264 @ 0x7f9bfb87aa00] profile High, level 3.1

	Output #0, flv, to 'tee:rtmp://publish.chinaffmpeg.com/live/stream1|rtmp://publish.chinaffmpeg.com/live/stream2':

	 Stream #0:0(und): Video: h264 (libx264) ([7][0][0][0] / 0x0007), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], q=-1--1, 25 fps, 1k tbn, 25 tbc (default)

	 Stream #0:1(und): Audio: aac (LC) ([10][0][0][0] / 0x000A), 48000 Hz, stereo, fltp, 128 kb/s (default)

	如输出内容所示，推流成功。两路直播流相同与否，可以通过验证FFmpeg配合管道的方式或验证tee封装支持的方式进行检测，结果将会是相同的。

6.6 DASH流输出

	除了HLS和HTTP+FLV以外，还有一种也很流行的直播方式是DASH。本节将重点介绍使用FFmpeg支持DASH生成。MPEG-DASH是一种流式传输方法，DASH代表“基于HTTP的动态自适应流式传输”。由于其基于HTTP，任何源服务器都可以配置提供MPEG-DASH流式传输。MPEG-DASH类似于HLS，后者是另一种流式传输协议，MPEG-DASH将视频分解成更小的片段，并以不同的质量级别对这些片段进行编码。这使得它可以流式传输不同质量级别的视频，并可以从一种质量级别切换到另一种质量级别。

	类似HLS，DASH的工作分为以下几步。

	1）编码和分割：源服务器将视频文件分割成几秒时长的小片段。服务器还会创建一个索引文件，就像视频片段的目录。然后对这些片段进行编码，即以多种设备可以解析的方式进行格式化。MPEG-DASH允许使用任何编码标准，这是相对于HLS的一个优势。

	2）交付：当用户开始观看流媒体时，已编码的视频片段被通过网络推送到客户端设备。在几乎所有情况下，内容分发网络（CDN）都能更高效地分发流媒体。

	3）解码和播放：当用户的设备接收到流数据时，它会解码并播放视频。视频播放器会自动切换到较低或较高质量的图像以适应网络条件。例如，当用户当前的带宽极低时，播放器将播放较少带宽、较低质量级别的视频。

	1. 自适应码率流式传输

	自适应码率流式传输是一种在网络条件变化时在流中间调整视频质量的能力，包括MPEG- DASH、HLS和HDS在内的多种流式传输协议允许自适应码率流式传输。

	自适应码率流式传输之所以可行，是因为源服务器以多种不同的质量级别对视频片段进行编码。这发生在编码和分段过程中。视频播放器可以在视频播放过程中从一种质量级别切换到另一种，而不会中断播放。这可以防止在网络带宽突然减小时视频出现卡顿甚至完全停止播放的情况。

	2. MPEG-DASH与HLS的关系

	HLS是当今另一种广泛使用的流式传输协议，MPEG-DASH和HLS在许多方面相似。这两种协议都在HTTP上运行，使用TCP作为它们的传输协议，它们将视频分成附带索引文件的片段，并提供自适应码率流式传输。

	但是，这两种协议有几个关键区别。

	・编码格式：MPEG-DASH允许使用任何编码标准。而HLS的视频编码格式需要使用H.264或H.265。

	・设备支持：HLS是唯一受Apple设备支持的格式。iPhone、MacBook和其他Apple产品无法直接播放通过MPEG-DASH传输的视频，需要使用第三方插件或者播放器来支持。

	・片段长度：在2016年以前二者之间的差异较大，当时HLS的默认片段长度为10秒。如今，HLS的默认长度为6秒，但可以调整。MPEG-DASH片段的长度通常为2～10秒，但最佳长度是2～4秒。不过目前MPEG-DASH和HLS都在低延迟方面发力，预计后期两者在延迟方面差异不大。

	・标准化：MPEG-DASH是一种国际标准。HLS由Apple开发，最终以RFC的方式演化，不过主导权仍然在Apple。

	下面介绍FFmpeg的DASH参数。

6.6.1 参数介绍

	使用ffmpeg -h muxer=dash可以得到DASH的参数列表，如表6-6所示。下面看一下DASH都有哪些相关操作的参数。

	表6-6 FFmpeg生成DASH的参数

	[image:]

	从列表可以看到，FFmpeg对DASH的封装操作支持的参数稍微多一些，例如除了支持多个切片文件的方式，还支持单文件模式、timeline模式，以及设置切片名等操作。下面举例说明DASH封装操作常见参数的使用方法。

6.6.2 参数举例

	1. window_size与extra_window_size参数举例

	FFmpeg支持window_size与extra_window_size参数，设置列表中的切片个数与列表之外切片的保留个数。设置方式如下：

	ffmpeg -re -i input.mp4 -c:v copy -acodec copy -f dash -window_size 4 -extra_window_size 5 index.mpd

	命令执行之后会生成文件索引列表index.mpd，文件列表长度为4个切片，切片之外会保留5个切片。在DASH直播格式中，音视频是分开切片的，即视频是一路切片，音频是一路切片，也即音频切片文件有9个，视频切片文件有9个，其中包含了2个初始化信息切片、1个索引文件，可以参考如下信息：

.

	├──chunk-stream0-00204.m4s

	├──chunk-stream0-00205.m4s

	├──chunk-stream0-00206.m4s

	├──chunk-stream0-00207.m4s

	省略部分文件

	├──chunk-stream1-00209.m4s

	├──chunk-stream1-00210.m4s

	├──chunk-stream1-00211.m4s

	├──chunk-stream1-00212.m4s

	├──index.mpd

	├──init-stream0.m4s

	└──init-stream1.m4s

	0 directories, 21 files

	2. single_file参数举例

	FFmpeg支持生成DASH时将切片列表中的文件写入一个文件，使用single_file参数即可。参考命令如下：

	ffmpeg -re -i input.mp4 -c:v copy -acodec copy -f dash -window_size 4 -extra_window_size 5 -single_file 1 index.mpd

	命令执行之后，在目录中将生成3个文件：1个索引文件、1个音频文件和1个视频文件。参考信息如下：

.

	├──index-stream0.m4s

	├──index-stream1.m4s

	└──index.mpd

	0 directories, 3 files

6.7 HDS流输出

	HDS（HTTP Dynamic Streaming）协议目前处于一个萎缩的状态，但其基本原理和HLS、MPEG-DASH等接近，使用FFmpeg可以生成HDS切片。本节HDS的介绍可以作为一个参考信息。

6.7.1 参数说明

	使用ffmpeg -h muxer=hds可以得到HDS的参数列表，如表6-7所示。

	如列表所示，FFmpeg中做HDS格式封装包含4个参数，分别为HDS切片信息窗口大小、HDS切片信息窗口之外保留的切片文件个数、最小切片时间、在HDS封装结束时删除所有文件。下面是对这些参数的举例。

	表6-7 FFmpeg生成HDS的参数

	[image:]

6.7.2 HDS使用举例

	由于FFmpeg生成HDS文件与HLS类似，可以生成点播文件列表，也可以生成直播文件列表；可以保留历史文件，也可以刷新历史文件窗口大小。这些均可以通过参数进行控制。

	1. window_size参数控制文件列表大小

	设置HDS为直播模式时，需要实时更新列表，那么可以通过window_size参数控制文件列表窗口大小。例如HDS文件列表中只保存4个文件，设置window_size参数即可。下面举个例子：

	ffmpeg -i input -c copy -f hds -window_size 4 output

	以上命令执行之后，会生成output目录。目录下面包含以下3种文件。

	・index.f4m：索引文件，主要为F4M参考标准中mainfest、metadata相关信息等。

	・stream0.abst：文件流相关描述信息。

	・stream0Seg1-Frag：相似规则文件切片，文件切片中均为mdat信息。

	生成的output目录信息如下：

	output

	├──index.f4m

	├──stream0.abst

	├──stream0Seg1-Frag1

	├──stream0Seg1-Frag2

	├──stream0Seg1-Frag3

	├──stream0Seg1-Frag4

	└──stream0Seg1-Frag5

	0 directories, 7 files

	可以看到设置的窗口大小已经生效。如果不设置window_size来限制窗口大小，使用命令如下：

	ffmpeg -i input -c copy -f hds output

	生成的文件列表如下：

	output

	├──index.f4m

	├──stream0.abst

	├──stream0Seg1-Frag1

	├──stream0Seg1-Frag10

	省略部分文件

	├──stream0Seg1-Frag7

	├──stream0Seg1-Frag8

	└──stream0Seg1-Frag9

	0 directories, 26 files

	使用window_size控制列表大小生效，但默认不控制生成列表的大小。

	2. extra_window_size参数控制文件个数

	在控制window_size之后，与HLS切片有类似的情况，列表之外的文件会有一些残留，通过使用extra_window_size可以控制残留文件的个数。将extra_window_size设置为1，则会在window_ size之外多留一个历史文件。执行下面命令试一下。

	ffmpeg -re -i input.mp4 -c copy -f hds -window_size 4 -extra_window_size 1 output

	命令执行之后，在output目录生成HDS文件，并且比window_size规定的窗口大小多1个文件。执行效果如下：

	output

	├──index.f4m

	├──stream0.abst

	├──stream0Seg1-Frag57

	├──stream0Seg1-Frag58

	├──stream0Seg1-Frag59

	├──stream0Seg1-Frag60

	└──stream0Seg1-Frag61

	0 directories, 7 files

	从如上内容可以看到，在output目录中生成了index.f4m索引文件及5个切片文件，其中有4个文件为window_size中的列表文件实体文件，多出来的一个切片文件为extra_window_size规定的保留文件。下面将extra_window_size设置为5个，则目录中将会有9个切片文件。

	ffmpeg -re -i input.mp4 -c copy -f hds -window_size 4 -extra_window_size 5 output

	命令执行后效果如下：

	output

	├──index.f4m

	├──stream0.abst

	├──stream0Seg1-Frag88

	省略部分文件

	└──stream0Seg1-Frag96

	0 directories, 11 files

	如输出的目录所示，extra_window_size设置成功。

	3. 其他参数

	remove_at_exit参数在FFmpeg退出时会删除所有生成的文件，而min_frag_duration参数在设置得比较小或使用codec copy时不会有效果，需要在重新编码时将GoP间隔设置得比min_frag_ duration时间短才行。

6.8 小结

	FFmpeg对流媒体的支持非常广泛，本章重点介绍了RTMP、RTSP、TCP、UDP、HLS、DASH、HDS相关的支持情况，主要以推流、生成切片等为主，并对FFmpeg支持的HTTP传输参数做了简略的分析。阅读本章之后，你将对流媒体协议有一个基本的了解，并能够使用工具进行常规的媒体协议分析。流媒体是一个非常庞大的话题，希望本章内容可以为读者提供一些基础的参考。

第7章

bitstream过滤器

	在使用FFmpeg处理音视频流的时候，通常有一套介于编解码器输出与封装或传输协议之间的数据和信息的封装约定，这类数据和信息的处理通常不需要消耗太多计算空间和时间，但是又被编解码器与封装或传输协议所需要，这类内容通常被称为bitstream。本章将重点介绍bitstream过滤器相关技术背景、参数与使用。

	FFmpeg对bitstream过滤器的定义：bitstream过滤器作用于编码后的流数据，在不进行解码的情况下执行bitstream级别的修改。

	这里需要对以下几个FFmpeg内部容易引起误解的概念做进一步的说明。

	・libavcodec内部的parser。

	・libavcodec内部的bitstream过滤器。

	・libavfilter内部的各种Audio、Video滤镜。

	我们先理解libavcodec内部的parser和bitstream过滤器的区别。

	举例说明。FFmpeg视频解码器通常通过调用avcodec_send_packet、avcodec_receive_ frame获取一帧被解码的数据。因此，输入被期望为“一个完整压缩图像或者一个到多个完整的音频帧”的码流数据。
起始码（start code）其实有两种模式：3字节模式（00 00 01）或者4字节模式（00 00 00 01）。为了简化问题，我们暂时只考虑3字节起始码这种情况。
	让我们考虑从文件（即以磁盘上的字节数组的方式）到一个完整的压缩图像的问题。对于“原始”格式（Annex B格式）的H.264（习惯上以.h264/.bin作为文件后缀）数据文件，单个的NAL单元数据（SPS/ PPS头码流或CABAC编码的帧数据）以NAL单元的序列连接起来，每个NAL单元有一个起始码
	 [image: 起始码（start code）其实有两种模式：3字节模式（00 00 01）或者4字节模式（00 00 00 01）。为了简化问题，我们暂时只考虑3字节起始码这种情况。]，其中第1字节用来获取NAL单元类型（为了防止NAL数据本身有00 00 01数据，数据部分被RBSP转义了，带上了防竞争码），所以一个H.264帧解析器可以简单地在起始码标记处切割文件，搜索以“00 00 01”开始的连续数据包，直到下一次出现“00 00 01”。然后解析NAL单元类型和片头，以找到每个数据包属于哪一帧，并返回由一组NAL单元组成的一个完整的压缩帧，作为H.264解码器的输入。

	但是，MP4文件中H.264数据的存储方式是不同的（有时这里也被称为AVCC格式）。可以想象，如果封装格式中已经有了长度标记，其实就可以用来分割帧了，并不需要特殊的起始码，那么“00 00 01”这样的起始码可以被认为是多余的，MP4就是这样的。因此，为了节省每一帧（准确讲是NALU，而不一定是帧）的几字节，MP4删除了“00 00 01”前缀。另外，MP4通常还把PPS/SPS放在文件头部，而不是在第1帧前预置，这些也不使用“00 00 01”前缀。所以，如果把MP4文件输入H.264解码器中，而这些解码器又希望所有的NAL单元要有起始码，它就不会工作。

	而h264_mp4toannexb码流过滤器解决了这个问题，它识别文件头，并且提取里面的PPS/SPS（FFmpeg称之为extradata），用起始码“00 00 01”预置SPS/PPS部分及每个NAL单元，并在输入H.264解码器之前将它们连接在一起。

	读者可能觉得libavcodec内部的parser（解析器）和bitstream过滤器之间的区别非常细微，确实是这样的。在官方的定义中，解析器接收一串输入数据并将其分割成完整的压缩帧，而不丢弃任何数据或增加任何数据。可以这样理解，解析器所做的唯一的事情就是解析码流，在码流中确定数据包的边界；而bitstream过滤器则被允许修改数据（需要注意，并非所有的bitstream过滤器都会修改数据。关于H.264的AVCC格式和Annex B格式会在7.2节做更为细致的说明，所以如果不是很理解AVCC格式和Annex B格式，先理解bitstream过滤器的作用即可）。

	AVFilter中的Video或者Audio等滤镜与bitstream过滤器的区别则非常明显，因为它们的输入是未压缩的视频或音频数据，即大部分情况下，滤镜作用在原始未压缩的YUV或者PCM数据之上。

7.1 aac_adtstoasc过滤器

	AAC 音频依据流式传输或者存储的需求存在多种格式，其中一种是ADTS（Audio Data Transport Stream），还有一种是ASC（Audio Specific Config）。ADTS通常应用于直播传输流，文件的每一帧前面都包含ADTS头信息；而ASC通常存储在MP4格式中，在全局头部有一个配置，所以比ADTS更节省空间。

7.1.1 ADTS格式

	ADTS在MPEG-2（ISO-13318-7，2003）中定义。这种格式的特征是码流有一个同步字，解码可以在这个流中的任何位置开始。它类似于MP3数据流格式。简单来说，ADTS可以在任意帧解码，也就是说它的每一帧都有头信息。

	MPEG-TS既支持以LATM格式存储AAC，也支持以ADTS格式存储AAC。MPEG-TS直接存储ADTS格式的AAC的例子如图7-1所示。

	[image:]

	图7-1 AAC的ADTS格式

	每一帧的ADTS头部都包含音频的采样率、声道数目、帧长度等信息，这样解码器才能解析读取。依据ADTS头部是否存在CRC数据，ADTS头部长度可以为7或者9字节。头部信息分为以下两部分：

	・前面为固定头信息（ADTS Fixed Header）

	・后面是可变头信息（ADTS Variable Header）

	固定头信息中的数据每一帧都相同，而可变头信息则在帧与帧之间变化。ADTS头部信息的具体细节如表7-1所示。如果以每个字符代表1位，它的表示如下（括号内部表示可选的2字节的CRC数据）：

	AAAAAAAA AAAABCCD EEFFFFGH HHIJKLMM MMMMMMMM MMMOOOOO OOOOOOPP (QQQQQQQQ QQQQQQQQ)

	表7-1 ADTS头部信息说明

	[image:]

	▲[2] MPEG-4以统一的方式处理不同的音频格式，每种格式都被分配一个独特的音频对象类型（Audio Object Type，AOT）。

	[image:]

7.1.2 ASC格式

	ADTS封装一般用在裸ADTS封装中，或者在MPEG2-TS内用于流式传输。而对于FLV、MOV/MP4及相关的3GP格式M4A，一般使用LATM（Low-overhead Audio Transport Multiplex）格式的封装，其核心是MPEG-4 Audio Specific Config（ASC）。ASC结构在ISO-14496-3 Audio中描述，一般存储在封装容器的独立模块中，作为AAC全局元数据。例如FLV的第一个音频Tag包含ASC，MP4的ESDS（Element Stream Descriptors）box也包含ASC。ASC的完整格式比较复杂，也分为一个固定的部分和AOT特定相关的部分。其简化版本的格式如下：

	5 bits: audio object type

	if (audio object type == 31)

	 6 bits + 32: audio object type

	4 bits: frequency index

	if (frequency index == 15)

	 24 bits: frequency

	4 bits: channel configuration

	var bits: AOT Specific Config

	由上面可以看到，ASC由两部分组成，第一部分即通用部分，包含大多数MPEG-4音频对象类型所共有的信息，第二部分包含特定于音频对象类型的信息（例如帧长）。对于AAC-LC和HE-AAC，第二部分在标准中被称为GASC，一个结构示意如图7-2所示。

	[image:]

	图7-2 Audio Specific Config结构示意
ISO/IEC 14496-3，即MPEG-4第3部分，目前是第5版。其内容庞杂，初看上去，内容超过1500页，其原因是它本身包括各种音频编码技术：有损音频编码（HVXC、CELP）、通用音频编码（AAC、TwinVQ、BSAC）、无损音频压缩（MPEG-4 SLS、音频无损编码、MPEG-4 DST）、文本-语音接口（TTSI）、结构化音频（使用SAOL、SASL、MIDI）和许多其他音频合成和编码技术。
	Audio Object Type在前面介绍ADTS的时候已经解释过，Sampling Frequency Index是采样率的索引，Channel Configuration是声道数的索引，具体取值可以参考ISO-14496-3
	 [image: ISO/IEC 14496-3，即MPEG-4第3部分，目前是第5版。其内容庞杂，初看上去，内容超过1500页，其原因是它本身包括各种音频编码技术：有损音频编码（HVXC、CELP）、通用音频编码（AAC、TwinVQ、BSAC）、无损音频压缩（MPEG-4 SLS、音频无损编码、MPEG-4 DST）、文本-语音接口（TTSI）、结构化音频（使用SAOL、SASL、MIDI）和许多其他音频合成和编码技术。]。

	MP4和FLV分别存储ASC和AAC ES。

	当需要在不同封装容器之间转封装时，可能会涉及ASC与ADTS的互相转换。例如从FLV文件或者MP4容器拆分出AAC，一般会生成带ADTS的AAC，这样的AAC才能被解码。如果从FLV和MP4中解封装AAC并直接保存在本地，这样的AAC ES文件是无法播放的，因为缺少7字节的ADTS头部。从MPEG-TS转封装为MP4时，需要通过aac_adtstoasc过滤器提取ASC，并删除AVPacket的ADTS头部。

7.2 mp4toannexb过滤器

	在封装、传输HEVC（H.265）/AVC（H.264）编码的数据时，通常有两种编码存储格式，一种是HEVC（H.265）/AVC（H.264）参考标准的Annex B（附录B）的存储格式，另一种是MP4方式的存储格式，也叫AVCConfiguration格式。Annex B存储格式常见于实时传输流中，例如MPEG-TS格式，而点播文件MP4中常见的是MP4/AVCC存储格式。如果要将MP4格式中的HEVC（H.265）/ AVC（H.264）编码视频数据抽出来，存储成MPEG-TS格式或者HEVC（H.265）/AVC（H.264）裸流格式，需要使用hevc_mp4toannexb/h264_mp4toannexb过滤器为HEVC（H.265）/AVC（H.264）编码数据增加对应的参数头，以确保HEVC（H.265）/AVC（H.264）编码数据能够被正常解码出来。在旧版本的FFmpeg中，将视频文件格式转换成MPEG-TS或H.265、H.264格式时，需要手动执行hevc_mp4toannexb/h264_mp4toannexb过滤器操作，但是为了使用方便，新版本FFmpeg将mp4toannexb相关过滤器集成到将视频数据写入文件的过程中自动处理。

	我们先详细了解一下Annex B和AVCC格式的差异，这样能帮助我们对这个过滤器有更多的理解。我们只介绍了H.264的Annex B和AVCC格式，因为H.265与之类似，可以直接参考相关知识，这里不再叙述。

7.2.1 Annex B格式

	在许多视频编解码器中，视频的每个顶层单元都有一个预定义的字节序列作为前缀，称为起始码。这个起始码作为顶层单元之间的一个强有力的分隔符，一般是3或4字节长。它的内容已经被规范化，选择这些规范化内容的原因是它出现在压缩视频中的可能性非常低（准确地说，是在熵编码之后这样的数据序列非常少见）。例如，在H.264中，一个典型的起始码是3或者4字节，如00 00 01或00 00 00 01。

	一个算术编码器产生这样一个低熵序列的可能性其实非常低。因此，在原始H.264输入文件中寻找这种序列的解析器可以迅速将该序列分割成顶层单元，而不必解析这些单元的内容。不过，起始码有一个问题，它们不能单独工作。事实上，我们无法保证起始码序列不会偶然出现在一个编码输出流中。现实问题是AVC/H.264和HEVC/H.265都不能保证防止NAL数据中不出现起始码。让我们想象一下，一个解码器在寻找起始码时碰到一个包含在NAL数据中的00 00 01，在这种情况下，解码器可能会崩溃。

	为了防止起始码出现在编码的码流中，编码器必须插入所谓的“防竞争码”，即0x03。换句话说，用0x00000301替换每个出现在NAL中的0x000001。解析器没有办法将这种意外的00 00 01与真正的起始码区分开来，这就是为什么需要另一种机制，以转义这种“意外”出现在码流中的起始码，这种机制被称为“防竞争”（emulation prevention）。从形式上看，这种后处理操作被称为从RBSP（原始字节序列有效载荷）到SODB（数据位串）的转换。显然，作为一个预处理步骤，解码器反过来还要删除防竞争码（即用0x000001替换0x00000301），这个操作被称为从SODB转换到RBSP。

	为了确定NALU的长度，从一个字节流开始（它将有一个起始码），跳到下一个起始码，然后计算中间的字节数。

7.2.2 AVCC格式

	AVCC非常简单，不需要添加任何起始码，只需要在NALU前加上它的长度（一般最常见是使用4字节编码，但实际上使用NALULengthSizeMinusOne字段来定义其真实使用几字节）。事实上，AVCC格式在丢失了起始码的时候，也失去了轻松恢复同步的可能性。想象一下，如果在压缩的H.264视频流中看到“00 00 01”，就知道它是一个起始码；但是现在，怎么找到一个正确的开头变得有些棘手。在原来的情况下，一个失去同步的解码器可以简单地等待这个“00 00 01”序列在其输入端出现，然后从那里继续解码；而AVCC格式失去同步之后，则会麻烦许多。

	用AVCC进行同步恢复涉及的问题要麻烦许多，而且很可能是无解的。然而，这在实际情况中并没有成为一个真实的问题。另外需要提及一句，虽然AVCC格式不使用起始码，但在NALU的数据部分依然插入了防竞争码0x03，这样做是为了同时简化编码器和解码器的工作，否则编解码器还要知道对应的bitstream到底使用了何种封装格式，虽然这时防竞争码其实并没有什么意义。

	除了不使用起始码而使用长度字段，AVCC还使用一个全局的头部，在FFmpeg中，通常被叫做extradata或者sequence header。其基本结构如下：

bits

	8 version (always 0x01)

	8 avc profile (sps[0][1])

	8 avc compatibility (sps[0][2])

	8 avc level (sps[0][3])

	6 reserved (all bits on)

	2 NALULengthSizeMinusOne // 这个值是（前缀长度-1），如果值是3，那么前缀就是4

	3 reserved (all bits on)

	5 number of SPS NALUs (usually 1) // SPS NALUs数目

	repeated once per SPS:

	 16 SPS size

	 variable SPS NALU data

	8 number of PPS NALUs (usually 1) // PPS NALUs数目

	repeated once per PPS:

	 16 PPS size

	 variable PPS NALU data

	我们会注意到SPS和PPS现在是带外存储的，即与ES分开。这种数据的存储和传输是容器格式所定义的。一个AVCC在MP4文件中的例子如图7-3所示。

	[image:]

	图7-3 MP4 AVCC

7.2.3 hevc_mp4toannexb/h264_mp4toannexb的使用

	下面看一下hevc_mp4toannexb/h264_mp4toannexb过滤器的使用。

	如果自己手动设置mp4toannexb参数的话，FFmpeg向文件写入视频数据时不会再次自动添加Annex B数据。

	ffmpeg -i input.mp4 -c copy -bsf:v hevc_mp4toannexb -v verbose output.hevc

	这条命令行执行后，输出的内容如下：

	Stream mapping:

	Stream #0:0 -> #0:0 (copy)

	Press [q] to stop, [?] for help

	No more output streams to write to, finishing.

	frame= 910 fps=448 q=-1.0 Lsize= 67680kB time=00:00:18.12 bitrate=30597.8kbits/s speed=8.91x

	video:67680kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.000000%

	Input file #0 (input.mp4):

	Input stream #0:0 (video): 910 packets read (69301469 bytes);

	Total: 910 packets (69301469 bytes) demuxed

	Output file #0 (output.hevc):

	Output stream #0:0 (video): 910 packets muxed (69304099 bytes);

	Total: 910 packets (69304099 bytes) muxed

	[AVIOContext @ 0x7fc45ef4c440] Statistics: 0 seeks, 265 writeouts

	[AVIOContext @ 0x7fc45ed06280] Statistics: 69347035 bytes read, 2 seeks

	如果不手动设置mp4toannexb参数，FFmpeg向文件写入视频数据时会自动转换为Annex B数据，原因是FFmpeg的新版本会在Muxer中判定是否需要自动插入mp4toannexb这样的bitstream过滤器的操作，从而使得手动插入bitstream过滤器的需要被大大降低了。

	ffmpeg -i input.mp4 -c copy -v verbose output.hevc

	这条命令执行后，输出内容如下：

	Stream mapping:

	 Stream #0:0 -> #0:0 (copy)

	Press [q] to stop, [?] for help

	Automatically inserted bitstream filter 'hevc_mp4toannexb'; args=''

	No more output streams to write to, finishing.

	frame= 910 fps=299 q=-1.0 Lsize= 67680kB time=00:00:18.12 bitrate=30597.8kbits/s speed=5.96x

	video:67677kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.003795%

	Input file #0 (input.mp4):

	 Input stream #0:0 (video): 910 packets read (69301469 bytes);

	 Total: 910 packets (69301469 bytes) demuxed

	Output file #0 (output.hevc):

	 Output stream #0:0 (video): 910 packets muxed (69301469 bytes);

	 Total: 910 packets (69301469 bytes) muxed

	[AVIOContext @ 0x7fe87846c3c0] Statistics: 0 seeks, 265 writeouts

	[AVIOContext @ 0x7fe87851ed40] Statistics: 69347035 bytes read, 2 seeks

	从输出的内容中可以看到，多了一条“Automatically inserted bitstream filter 'hevc_mp4toannexb'; args=''”。无论是H.265还是H.264视频数据，FFmpeg均可以手动添加mp4toannexb以转换为Annex B格式，当然也可以由FFmpeg自动转换。

7.3 h264_metadata过滤器

	这个过滤器会在H.264视频流中嵌入metadata信息，例如增加SEI信息、插入或者删除AUD标签、处理显示方向等。

7.3.1 h264_metadata参数说明

	h264_metadata支持的参数如表7-2所示。

	表7-2 FFmpeg的h264_metadata参数

	[image:]

	[image:]

	[image:]

7.3.2 h264_metadata参数举例

	下面通过举例对h264_metadata参数进行详细说明。

	1. aud参数

	有些播放器比较严格，AUD不能多也不能少。另外，如果是MPEG-TS封装，很多播放器严格要求AUD存在。还有的播放器因为实现上的缺陷，不支持AUD。所以FFmpeg提供了aud参数的插入和删除模式。下面看一下使用方法。

	aud插入模式如下：

	ffmpeg -i input.h264 -vcodec libx264 -r:v 5 -t 1 -bsf:v h264_metadata=aud=1 output_ insert.h264

	aud删除模式如下：

	ffmpeg -i input.h264 -vcodec libx264 -r:v 5 -t 1 -bsf:v h264_metadata=aud=2 output_ remove.h264

	用Elecard Stream Analyzer查看一下output_insert.h264和output_remove.h264的内容，能够看到AUD相关信息在用了删除模式后被删除了，如图7-4所示。

	[image:]

	图7-4 AUD相关信息删除前后

	2. sample_aspect_ratio采样宽高比参数

	有些视频在播放的时候会出现明显的图像扭曲，比如图像变得特别“瘦”，或者变得特别“胖”，这些都可以通过sample_aspect_ratio参数来调整。例如，视频比例原来是4∶3，使用宽屏后调整到16∶9，就有可能出现扭曲。

	ffmpeg -i input.h264 -vcodec libx264 -r:v 5 -t 1 -bsf:v h264_metadata=sample_aspect_ ratio=16/9 output.h264

	效果验证有两种方式，一种是通过ffprobe的streams参数查看sample_aspect_ratio信息，另外一种就是直接播放来看效果，设置sample_aspect_ratio参数后的图像变得拉伸扭曲，如图7-5所示。

	[image:]

	图7-5 图像拉伸扭曲

	3. video_format视频制式参数

	video_format参数主要是设置VUI中的video_format字段，这个字段是用来做视频制式参考用的，参数对应的制式如表7-3所示，也可以参考H.264标准中附录表E-2。

	表7-3 video_format的值与含义

	[image:]

	例如，将video_format设置为2，那么这个视频将会被识别为NTSC制式。

	ffmpeg -i input.h264 -vcodec libx264 -t 1 -bsf:v h264_metadata=video_format=2 output.h264

	制式可以用ffprobe查看，也可以用mediainfo查看，如图7-6所示，视频流是AVC(NTSC)，video_format参数设置生效。

	[image:]

	图7-6 mediainfo显示视频制式信息

	4. colour_primaries参数

	colour_primaries参数主要用来设置色彩原色，关于色彩原色在H.264标准的表E-3中有详细描述，内容如表7-4所示。

	表7-4 colour_primaries取值说明

	[image:]

	[image:]

	[image:]

	例如，将视频的色彩原色参数colour_primaries设置为4，那么视频原色将会被识别为BT.470M。

	ffmpeg -i input.mp4 -c copy -bsf:v h264_metadata=colour_primaries=4 output.mp4

	为了确认设置成功，可以用ffprobe查看一下对应的参数，也可以用ffmpeg直接查看input部分的流信息。

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'output.mp4':

	 Metadata:

	 major_brand : isom

	 minor_version : 512

	 compatible_brands: isomiso2avc1mp41

	 encoder : Lavf58.38.100

	 Duration: 00:00:08.00, start: 0.000000, bitrate: 316 kb/s

	 Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p(tv, unknown/bt470m/ unknown), 352x288 [SAR 1:1 DAR 11:9], 314 kb/s, 15 fps, 15 tbr, 15360 tbn, 30 tbc (default)

	 Metadata:

	 handler_name : VideoHandler

	从输出的流内容中可以看到视频的编码是H.264，图像格式是yuv420p，色彩原色是bt470m，可以说明参数设置生效。相关信息用ffprobe的show_streams参数也可查询到。

	5. sei_user_data SEI数据参数

	sei_user_data可以设置用户自定义的SEI数据，使用方法比较简单，通过UUID加字符串的方式即可。比如用UUID工具生成一个UUID，也可以自己生成一个UUID，例如UUID值是31DA5C95-1F94-4DC2-89C2-AB65EDDE21BE，添加的字符串是FFmpeg，那么sei_user_data的参数可以如下设置。

	ffmpeg -i input.mp4 -c copy -bsf:v h264_metadata=sei_user_data=31DA5C95-1F94-4DC2- 89C2-AB65EDDE21BE+FFmpeg output.h264

	命令执行后，即将UUID+FFmpeg字符串插入H.264数据的SEI段落中，生成的H.264的内容如下。

	000002b0: 1731 da5c 95f0 404d c290 20ab 65ed de21 .1.\..@M.. .e..!

	000002c0: be46 466d 7065 6700 8000 0001 6588 8401 .FFmpeg.....e...

	数据大小是23（0x17）字节，从0x31到0xbe是UUID内容，与前面的UUID完全相符，然后紧接着的是字符串FFmpeg。

	6. crop_left、crop_right、crop_top和crop_bottom剪切参数

	这4个参数均为视频图像剪切参数，设置的信息将会被写入SPS参数集，而播放器播放视频的时候可以直接根据SPS中的这4个剪切信息进行剪切展示，以避免剪切视频导致重新编码压缩。举例如下：

	ffmpeg -i input.mp4 -c copy -bsf:v h264_metadata=crop_left=80 output.mp4

	使用crop_left参数将左边部分从0至80像素宽度的位置剪切掉，input.mp4与output.mp4的对比如图7-7所示。

	[image:]

	图7-7 剪切前后图像对比

	而input.mp4与output.mp4的Stream信息内容对比如下：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input.mp4'：

	Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p, 352x288 [SAR 1:1 DAR 11:9], 314 kb/s, 15 fps, 15 tbr, 15360 tbn, 30 tbc (default)

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'output.mp4':

	Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p, 272x288 [SAR 1:1 DAR 17:18], 314 kb/s, 15 fps, 15 tbr, 15360 tbn, 30 tbc (default)

	从输出的input.mp4和output.mp4的Stream信息可以看到，input.mp4的分辨率是352×288，而output.mp4的分辨率是272×288，与所设置的crop信息完全相符。

7.3.3 其他Codec的metadata过滤器

	HEVC的设置metadata参数的bitstream过滤器是hevc_metadata，AV1的设置metadata参数的过滤器是av1_metadata，大多数的参数与h264_metadata的相同，但是因为Codec的参考标准信息不同，具体参数上会略有不同。通过ffmpeg -h bsf=hevc_metadata和ffmpeg -h bsf=av1_metadata可以得到详细的参数信息。

7.4 其他常用bitstream过滤器

7.4.1 dump_extra

	FFmpeg会将视频的PPS、SPS、VPS等信息记录在extradata中，有些特定场景下，为了使得PPS、SPS、VPS等信息能够以更加密集、冗余的方式传递，可以考虑用dump_extra参数将extradata写入每一帧的头部。例如在实时视频传输与播放场景中，为了能够更好地保证视频播放的正常，可以将extradata以默认的方式写入每一个关键帧头部。查看效果举例如下：

	ffmpeg -f lavfi -i testsrc2=1280x720 -map 0 -flags:v +global_header -c:v libx264 -bsf:v dump_extra=freq=e -bf 0 -t 5 -y out.ts

	这个例子的主要作用是在视频的每一帧前面插入extradata数据，使用的参数是dump_extra= freq=e，或者dump_extra=freq=all，如图7-8所示。如果在每一个关键帧前面插入extradata数据的话，可以将freq的参数设置为k或keyframe。

	ffmpeg -f lavfi -i testsrc2=1280x720 -map 0 -flags:v +global_header -c:v libx264 -g 25 -r:v 25 -bsf:v dump_extra=freq=k -bf 0 -t 5 -y out.ts

	[image:]

	图7-8 每一帧前面插入extradata

	这个例子执行后，生成的out.ts文件中将会有5个关键帧，每个关键帧前面都会有extradata，而不是所有的帧前面都有extradata，如图7-9所示。

	[image:]

	图7-9 关键帧前面插入extradata

7.4.2 trace_headers

	当我们学习分析视频编码相关参数信息时，很多时候是通过一些专业工具分析的。FFmpeg同样提供了一个对编码出来的码流进行分析的工具trace_headers。在使用时，通过bitstream的trace_headers参数将参数集信息打印出来，例如如果需要获得PPS、SPS信息，trace_header会将PPS、SPS的每个字段打印出来。举个例子说明会更清晰一些。

	ffmpeg -i input.ts -c copy -bsf:v trace_headers -y output.ts

	命令执行后，PPS、SPS的信息输出如下：

	[AVBSFContext @ 0x7fda874027c0] Extradata

	[AVBSFContext @ 0x7fda874027c0] Sequence Parameter Set

	[AVBSFContext @ 0x7fda874027c0] 0 forbidden_zero_bit 0 = 0

	[AVBSFContext @ 0x7fda874027c0] 1 nal_ref_idc 11 = 3

	[AVBSFContext @ 0x7fda874027c0] 3 nal_unit_type 00111 = 7

	[AVBSFContext @ 0x7fda874027c0] 8 profile_idc 01100100 = 100

	[AVBSFContext @ 0x7fda874027c0] 16 constraint_set0_flag 0 = 0

	[AVBSFContext @ 0x7fda874027c0] 17 constraint_set1_flag 0 = 0

	[AVBSFContext @ 0x7fda874027c0] 18 constraint_set2_flag 0 = 0

	[AVBSFContext @ 0x7fda874027c0] 19 constraint_set3_flag 0 = 0

	[AVBSFContext @ 0x7fda874027c0] 20 constraint_set4_flag 0 = 0

	[AVBSFContext @ 0x7fda874027c0] 21 constraint_set5_flag 0 = 0

	[AVBSFContext @ 0x7fda874027c0] 22 reserved_zero_2bits 00 = 0

	[AVBSFContext @ 0x7fda874027c0] 24 level_idc 00001011 = 11

	[AVBSFContext @ 0x7fda874027c0] 32 seq_parameter_set_id 1 = 0

	[AVBSFContext @ 0x7fda874027c0] 33 chroma_format_idc 010 = 1

	[AVBSFContext @ 0x7fda874027c0] 36 bit_depth_luma_minus8 1 = 0

	[AVBSFContext @ 0x7fda874027c0] 37 bit_depth_chroma_minus8 1 = 0

	[AVBSFContext @ 0x7fda874027c0] 38 qpprime_y_zero_transform_bypass_flag 0 = 0

	[AVBSFContext @ 0x7fda874027c0] 39 seq_scaling_matrix_present_flag 0 = 0

	[AVBSFContext @ 0x7fda874027c0] 40 log2_max_frame_num_minus4 1 = 0

	[AVBSFContext @ 0x7fda874027c0] 41 pic_order_cnt_type 011 = 2

	[AVBSFContext @ 0x7fda874027c0] 44 max_num_ref_frames 00100 = 3

 略去部分dump内容

	[AVBSFContext @ 0x7fda874027c0] Picture Parameter Set

	[AVBSFContext @ 0x7fda874027c0] 0 forbidden_zero_bit 0 = 0

	[AVBSFContext @ 0x7fda874027c0] 1 nal_ref_idc 11 = 3

	[AVBSFContext @ 0x7fda874027c0] 3 nal_unit_type 01000 = 8

	[AVBSFContext @ 0x7fda874027c0] 8 pic_parameter_set_id 1 = 0

	[AVBSFContext @ 0x7fda874027c0] 9 seq_parameter_set_id 1 = 0

	[AVBSFContext @ 0x7fda874027c0] 10 entropy_coding_mode_flag 1 = 1

	[AVBSFContext @ 0x7fda874027c0] 11 bottom_field_pic_order_in_frame_present_flag 0 = 0

	[AVBSFContext @ 0x7fda874027c0] 12 num_slice_groups_minus1 1 = 0

	[AVBSFContext @ 0x7fda874027c0] 13 num_ref_idx_l0_default_active_minus1 011 = 2

	[AVBSFContext @ 0x7fda874027c0] 16 num_ref_idx_l1_default_active_minus1 1 = 0

 略去部分dump内容

	信息打印出来后，可以将这些信息与对应的参考标准中相关字段进行对照理解，如果自己在编写PPS、SPS等NALU解析器的时候遇到问题，同样可以用这样的方式进行比较，确定自己解析出来的PPS、SPS等NALU信息是否正确。从这一点来说，trace_headers是一个非常好的码流分析工具。

	trace_headers目前已经支持了AV1、H.264、H.265、(M)JPEG、MPEG-2和VP9等，根据编译FFmpeg时的配置信息，可能只有其中的某些子集可用。

7.4.3 filter_units

	在做视频流处理的时候，有时需要透传或者删除一些NALU信息，在FFmpeg中可以通过filter_units参数进行控制。filter_units主要包含两个参数，一个是pass_types，专门用来透传NALU的信息；另一个是remove_types，专门用来删除NALU信息。具体的NALU type的值，需要自主阅读具体的编码参考标准文档。本节以H.264（ISO-14496-Part 10）举例，看一下NALU type的描述表格，如表7-5所示。

	表7-5 NALU type说明

	[image:]

	[image:]

	得到对应的NALU type值之后，可以先查看输入的视频编码相关信息，如图7-10所示。

	[image:]

	图7-10 视频编码相关信息

	如果希望将这个H.264视频流的AUD信息删除，可以通过remove_type操作。根据参考标准可知AUD信息对应的NALU type值为9，那么参数应该设置为filter_units=remove_type=9。

	ffmpeg -i input.h264 -c copy -bsf:v 'filter_units=remove_types=9' -y output.h264

	生成的output.h264的视频流信息如图7-11所示。

	[image:]

	图7-11 删除AUD信息后的视频流图

	从图7-11中可以看到，视频流中的AUD已经被全部删除。如果想要删除多个NALU type的话，可以使用符号“|”进行分隔。例如：

	ffmpeg -i input.h264 -c copy -bsf:v 'filter_units=remove_types=1|2|3|9' -y output.h264

	执行后的output.h264的视频流信息如图7-12所示。

	[image:]

	图7-12 删除多个NALU type的视频流图

	从图7-12可以看到，该视频流中已经没有AUD与NALU type为1、2、3相关的包。还有一种方式，可以将参数filter_units=remove_types=1|2|3|9写成filter_units=remove_ types=1-3|9，其中“-”可以理解为从1至3的所有值，代表一个区间，当然也包含2，这种写法常用于连续值中。

7.5 小结

	FFmpeg的bitstream过滤器是一组强大的工具集合，特别是在需要解决编码出来的流和容器格式之间的流的编辑工作这类问题的时候，它使得我们可以灵活地对bitstream进行各种操作。本章还提供了诸如trace_headers这类强大的工具，使得我们分析、诊断问题的工具更加多样化，甚至可以作为一个简化版本的码流分析工具，但使用好它的前提是要深入了解不同的bitstream格式。

第8章

滤镜使用

	在FFmpeg中除了具有强大的封装解封装、编解码、缩放功能以外，还有一个非常强大的组件——滤镜（AVFilter）。AVFilter组件经常被用来进行多媒体处理与编辑，FFmpeg中包括多种滤镜。

8.1 滤镜表达式使用

	FFmpeg通过libavutil/eval.h实现了对算术表达式的支持，这使得FFmpeg的滤镜在使用上更为灵活，具备了初步的“可编程”能力，可以视为一个简单的领域特定语言（domain-specific language），但需要注意其并非图灵完备。滤镜的表达式中包含了常量、一元、二元和函数表达式，相关功能如表8-1～表8-7所示。

	▼表8-1 常量

	[image:]

	▼表8-2 一元表达式

	[image:]

	▼表8-3 二元表达式

	[image:]

	▼表8-4 关系表达式函数

	[image:]

	▼表8-5 数学表达式函数

	[image:]

	[image:]

	[image:]

	▼表8-6 条件表达式函数

	[image:]

	▼表8-7 其他表达式函数

	[image:]

	FFmpeg 的表达式可以由多个表达式通过分号组合成一个新的表达式：“expr1;expr2”，新的表达式将会分别对expr1、expr2求值，并将expr2的结果作为新表达式的结果返回。

	FFmpeg的表达式常用于滤镜中，实现时间控制、动态调整等。例如时间控制：第1~2秒透明度调整为50%。

	ffmpeg -i input.mp4 -filter_complex "color=c=black:s=1920x1080:d=5[v0];[0:v]format=rgba,colorchannelmixer=aa=0.5:enable='between(t,1,2)',[v0]overlay=x='(main_w-overlay_w)/2':y='(main_h-overlay_h)/2'[v1]" -map [v1] -t 5 -c:v h264 -an between.mp4

	动态选择帧：选择2帧，每隔2秒选择一帧。

	ffmpeg -i input.mp4 -f image2 -vframes 1 -vf "select=(isnan(prev_selected_t)+gte(t-prev_selected_t\,2)),tile=1x2" select.jpg

8.2 滤镜描述格式

	在使用FFmpeg的滤镜处理音视频特效之前，首先了解一下滤镜（Filter）的基本格式。

8.2.1 滤镜基本排列方式

	为了便于理解Filter的使用方法，下面用最简单的方式来描述使用Filter时的参数排列方式。

	[输入流或标记名]滤镜参数[临时标记名];[输入流或标记名]滤镜参数[临时标记名];......

	文字描述的排列方式很明确。接下来举一个简单的例子：输入两个文件，一个为视频input.mp4，一个为图片logo.png，将图片进行缩放后放在视频的左上角。

	ffmpeg -i input.mp4 -i logo.png -filter_complex "[1:v]scale=176:144[logo];[0:v][logo]overlay=x=0:y=0"output.mp4

	从上述命令可以看到，它将logo.png的图像流缩放为176×144的分辨率，定义了一个临时标记名logo，然后将缩放后的图像[logo]铺在输入视频input.mp4的视频流[0:v]的左上角。

8.2.2 时间内置变量

	在使用Filter时，不免会遇到根据时间轴进行操作的需求。在使用FFmpeg的Filter时可以使用与时间相关的内置变量，如表8-8所示。

	表8-8 FFmpeg滤镜的基本内置变量

	[image:]

	在下面的实例中将会使用到这些变量，读者可以根据具体的使用示例加深理解。

8.3 视频水印操作

	在FFmpeg中可以为视频添加水印，水印既可以是文字，也可以是图片，用于为视频增加标记等。下面看一下FFmpeg添加水印的多种方式。

8.3.1 文字水印示例

	在视频中增加文字水印的要求比较多，需要有文字的字库处理相关文件，在编译FFmpeg时需要支持FreeType、FontConfig、iconv，系统中要有需要的字库。在FFmpeg中增加纯字母水印可以使用drawtext滤镜进行支持，drawtext的滤镜参数如表8-9所示。

	表8-9 FFmpeg文字滤镜参数

	[image:]

	使用drawtext可以根据前面介绍过的参数进行加水印设置，例如将文字的水印添加在视频的左上角的命令如下：

	ffmpeg -i input.mp4 -vf "drawtext=fontsize=100:fontfile=FreeSerif.ttf:text='hello world':x=20:y=20" output.mp4

	这条命令执行之后，在output.mp4视频的左上角即可增加“hello world”文字水印，为了将文字展示得更清楚一些，将文字大小设置为100像素。

	上述的文字水印为纯黑色，会显得比较突兀。为了使文字更加柔和，可以通过drawtext滤镜的fontcolor参数调节颜色。例如，将字体的颜色设置为绿色。

	ffmpeg -i input.mp4 -vf "drawtext=fontsize=100:fontfile=FreeSerif.ttf:text='hello world':fontcolor=green" output.mp4

	命令执行之后，文字水印变为绿色，如图8-1所示。

	[image:]

	图8-1 drawtext设置水印字体颜色效果

	如果想调整文字水印显示的位置，调整x与y参数的数值即可。文字水印还可以增加一个框，然后给框加背景色。

	ffmpeg -i input.mp4 -vf "drawtext=fontsize=100:fontfile=FreeSerif.ttf:text='hello world':fontcolor=green:box=1:boxcolor=yellow" output.mp4

	命令执行后，视频左上角显示文字水印，水印背景色为黄色，如图8-2所示。

	[image:]

	图8-2 drawtext设置文字背景色水印效果

	有时希望以本地时间作为文字水印，可以在drawtext滤镜中配合一些特殊用法完成。

	ffmpeg -re -i input.mp4 -vf "drawtext=fontsize=60:fontfile=FreeSerif.ttf:text='%{localtime:%Y\-%m\-%d%H-%M-%S}':fontcolor=green:box=1:boxcolor=yellow" output.mp4

	在text中显示本地当前时间，格式为年、月、日、时、分、秒，如图8-3所示。

	[image:]

	图8-3 drawtext设置本地时间水印效果

	在个别场景中，需要时而显示水印，时而不显示水印，这种方式同样可以配合drawtext滤镜进行处理，使用drawtext与enable配合即可。例如，每3秒钟显示一次文字水印。

	ffmpeg -re -i input.mp4 -vf "drawtext=fontsize=60:fontfile=FreeSerif.ttf:text='test':fontcolor=green:box=1:boxcolor=yellow:enable=lt(mod(t,3),1)" output.mp4

	这条命令执行之后，即可每隔3秒钟闪烁一下文字水印。由于是一个动态展示的视频，所以在这里就不抓图展示了。有时候文字水印中会有中文字符，此时系统需要有中文字库与中文编码支持，才能够将中文水印加入视频中。

	ffmpeg -re -i input.mp4 -vf "drawtext=fontsize=50:fontfile=/Library/Fonts/Songti.ttc:text='文字水印测试':fontcolor=green:box=1:boxcolor=yellow" output.mp4

	命令执行之后即可以将中文水印加入视频中，并且中文字符的字体为宋体，效果如图8-4所示。

	[image:]

	图8-4 drawtext设置中文水印效果

8.3.2 图片水印示例

	在FFmpeg中，除了可以给视频加文字水印之外，还可以给视频加图片水印、视频跑马灯等。本小节将重点介绍为视频添加图片水印。为视频添加图片水印可以使用 movie 滤镜的参数，如表8-10所示。

	表8-10 FFmpeg的movie滤镜参数

	[image:]

	在FFmpeg中加入图片水印的方式有两种，一种是通过movie指定水印文件路径，另外一种是通过filter读取输入文件的流并指定为水印。这里重点介绍读取movie图片文件作为水印。下面举个例子。

	ffmpeg -i input.mp4 -vf "movie=logo.png[wm];[in][wm]overlay=30:10[out]" output.mp4

	命令执行后会将logo.png水印打入input.mp4视频中，显示在x坐标为30、y坐标为10的位置，如图8-5所示。

	由于logo.png图片的背景色是白色的，所以显示起来比较生硬，如果水印图片是透明背景的，效果将会更好。下面找一张透明背景色的图片试一下，如图8-6所示。

	透明水印的效果好一些。当只有纯色背景的logo图片时，可以考虑使用movie与colorkey滤镜，配合做成半透明效果。例如：

	ffmpeg -i input.mp4 -vf "movie=logo.png,colorkey=black:1.0:1.0[wm]; [in][wm]overlay=30:10[out]" output.mp4

	[image:]

	▲图8-5 设置图片水印效果

	[image:]

	▲图8-6 设置图片为透明水印的效果

	命令执行后，将会根据colorkey设置的颜色值、相似度、混合度与原片混合为半透明水印，效果如图8-7所示。

	[image:]

	图8-7 设置图片为半透明水印的效果

8.4 画中画操作

	在使用FFmpeg处理流媒体文件时，有时需要制作画中画的效果。在 FFmpeg 的滤镜中，可以将多个视频流、多个多媒体采集设备、多个视频文件合并到一个界面中，生成画中画的效果，这可以通过overlay进行操作。在前面包括以后的滤镜使用中，与视频操作相关的处理大多数会与overlay滤镜配合使用，尤其是用在图层处理与合并场景中。overlay的参数如表8-11所示。

	表8-11 FFmpeg滤镜overlay的基本参数

	[image:]

	从参数列表中可以看到，主要参数并不多，但实际上在overlay滤镜的使用中，有很多组合的参数可以使用，还有一些内部变量可以使用，例如overlay图层的宽高、坐标等。下面举几个画中画的例子。

	ffmpeg -i input.mp4 -vf "movie=sub.mp4,scale=480x320[test];[in][test] overlay [out]" -vcodec libx264 output.flv

	上述命令执行后会将sub.mp4视频文件缩放成宽480、高320的视频，然后显示在视频input. mp4中x坐标为0、y坐标为0的位置。命令行执行后生成的output.flv的效果如图8-8所示。

	[image:]

	图8-8 设置画中画效果

	图 8-8 为显示画中画的最基本方式，如果希望子视频显示在指定位置，例如显示在画面的右下角，则需要用到overlay中x坐标与y坐标的内部变量。

	ffmpeg -i input.mp4 -vf "movie=sub.mp4,scale=480x320[test];[in][test] overlay=x=main_w-480:y=main_h-320 [out]" -vcodec libx264 output.flv

	根据命令可以分析出，子视频将会定位在主画面的最右边减去子视频宽度、最下边减去子视频高度的位置，生成的视频播放效果如图8-9所示。

	[image:]

	图8-9 设置画中画子画面指定位置的效果

	以上两种视频画中画处理均为静态位置处理，使用overlay还可以配合正则表达式进行跑马灯式的画中画处理，只要动态改变子画面的x坐标与y坐标即可。

	ffmpeg -i input.mp4 -vf "movie=sub.mp4,scale=480x320[test];[in][test] overlay=x='if(gte(t,2), -w+(t-2)*20, NAN)':y=0[out]" -vcodec libx264 output.flv

	命令行执行之后子视频将会从主视频的左侧渐入，然后在主视频中从左向右移动，效果如图8-10所示。

	[image:]

	图8-10 设置移动画中画效果

	视频画中画的基本处理至此介绍完毕，重点学习了overlay滤镜的使用。

8.5 视频多宫格处理

	除了画中画显示，还有一种场景为多宫格方式呈现视频，每个宫格除了可以输入视频文件，还可以输入视频流、采集设备等。从前面章节中可以知道，进行视频图像处理时overlay滤镜为关键画布，可以通过FFmpeg建立一个画布，也可以使用默认的画布。如果想进行多宫格方式展示，可以自行建立一个足够大的画布。下面看一下多宫格展示的例子。

	ffmpeg -i 1.avi -i 2.avi -i 3.avi -i 4.avi -filter_complex "nullsrc=size=640x480 [base]; \

	[0:v] setpts=PTS-STARTPTS, scale=320x240 [upperleft]; \

	[1:v]setpts=PTS-STARTPTS, scale=320x240 [upperright]; \

	[2:v] setpts=PTS-STARTPTS, scale=320x240 [lowerleft]; \

	[3:v]setpts=PTS-STARTPTS, scale=320x240 [lowerright]; \

	[base][upperleft]overlay=shortest=1 [tmp1]; \

	[tmp1][upperright]overlay=shortest=1:x=320 [tmp2]; \

	[tmp2][lowerleft]overlay=shortest=1:y=240 [tmp3]; \

	[tmp3][lowerright]overlay=shortest=1:x=320:y=240" \

	-c:v libx264 output.flv

	命令行执行后，将会通过nullsrc创建一个overlay画布，大小为宽640像素、高480像素。使用[0:v][1:v][2:v][3:v]将输入的4个视频流取出，分别进行缩放处理，处理成宽320、高240的视频，然后基于nullsrc生成的画布进行视频平铺。平铺的整体情况如图8-11所示。

	根据命令中定义的upperleft、upperright、lowerleft、lowerright进行不同位置的平铺，平铺的整体步骤如图8-12所示。

	[image:]

	▲图8-11 平铺示意图

	[image:]

	▲图8-12 平铺画面滤镜处理步骤

	命令执行后最终画面展现形式如图8-13所示。

	[image:]

	图8-13 多宫格处理后效果图

	如果需要展示直播视频流的多宫格形式，将avi文件更改为直播流地址即可。

8.6 视频字幕操作

	为视频添加字幕的方式大概可以分为两种：将字幕编码进视频流和在封装容器中加入字幕流。将字幕编码进视频流的方式与为视频增加水印的方式基本相似，而在封装容器中加入字幕流的方式则需要封装容器中支持加入字幕流。下面看一下如何使用FFmpeg为视频文件增加字幕。

8.6.1 ASS字幕流写入视频流

	使用FFmpeg可以将字幕写入视频流，通过ASS滤镜即可。首先需要将视频流进行解码，再将ASS字幕写入视频流，然后编码压缩再进行容器封装。字幕文件的内容格式大致如下：

	[Script Info]

	[V4+ Styles]

	Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour,OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding

	Style:*Default,微软雅黑,21,&H00FFFFFF,&H0000FFFF,&H2D804000,&H32000000,-1,0,0,0,100,100,0,0,0,2,1,2,5,5,5,134

	Style:logo,微软雅黑,21,&H00FFFFFF,&HF0000000,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,2,1,2,5,5,5,134

	[Events]

	Format: Layer, Start, End, Style, Actor, MarginL, MarginR, MarginV, Effect, Text

	Dialogue:0,0:00:00.91,0:00:02.56,*Default,NTP,0000,0000,0000,,前情提要\N{\1c&HFFFFFF&}{\3a&H82&\4c&H030303&}{\fnArial Black}{\fs20}{\b1}{\fe0}{\shad1}{\3c&H030303&}{\4c&H030303&}Previously on "the Vampire Diaries"...

	Dialogue:0,0:00:02.59,0:00:05.47,*Default,NTP,0000,0000,0000,,Elena很享受她的生活吧\N{\1c&HFFFFFF&}{\3a&H82&\4c&H030303&}{\fnArial Black}{\fs20}{\b1}{\fe0}{\shad1}{\3c&H030303&}{\4c&H030303&}Does Elena enjoy her life?

	Dialogue:0,0:00:05.50,0:00:06.66,*Default,NTP,0000,0000,0000,,我听说过你\N{\1c&HFFFFFF&}{\3a&H82&\4c&H030303&}{\fnArial Black}{\fs20}{\b1}{\fe0}{\shad1}{\3c&H030303&}{\4c&H030303&}I've heard about you...

	打开的文件中的内容为字幕文件的片段，内容格式为ASS字幕格式。下面将字幕写入视频流中。

	ffmpeg -i input.mp4 -vf ass=t1.ass -f mp4 output.mp4

	命令执行之后即可向input.mp4中增加ASS字幕，将加入字幕的视频流保存到output.mp4文件中。输入与输出文件的情况如下：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input.mp4':

	 Duration: 00:00:50.01, start: 0.000000, bitrate: 2616 kb/s

	 Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], 2484 kb/s, 25 fps, 25 tbr, 25k tbn, 50 tbc (default)

	 Stream #0:1(und): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 126 kb/s (default)

	Input #1, mov,mp4,m4a,3gp,3g2,mj2, from 'output.mp4':

	 Duration: 00:00:50.04, start: 0.000000, bitrate: 2625 kb/s

	 Stream #1:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], 2490 kb/s, 25 fps, 25 tbr, 12800 tbn, 50 tbc (default)

	 Stream #1:1(und): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 128 kb/s (default)

	从Input信息中可以看到，输入与输出的封装容器格式基本相同，均为一个视频流、一个音频流，并未包含字幕流，因为字幕流已经通过ASS容器写入视频流中，效果如图8-14所示。

	[image:]

	图8-14 带字幕的视频效果图

	从播放效果可以看到，字幕流已经写入视频文件中，在播放时可以看到这些字幕。

8.6.2 ASS字幕写入封装容器

	前面已经介绍过，在视频播放时显示字幕，除了可以将字幕加入视频编码中，还可以在视频封装容器中增加字幕流，只要封装容器格式支持字幕流即可。下面利用FFmpeg将ASS字幕流写入mkv封装容器中，并以字幕流的形式存在。

	ffmpeg -i input.mp4 -i t1.ass -acodec copy -vcodec copy -scodec copy output.mkv

	命令行执行后，会将input.mp4中的音频流、视频流及t1.ass中的字幕流在不改变编码的情况下封装入output.mkv文件中，这样在output.mkv文件中将会包含3个流，分别为视频流、音频流及字幕流。如果input.mp4中或者输入的视频文件原本带有字幕流，但希望使用t1.ass字幕流时，可以通过map功能指定封装对应的字幕流进入output.mkv中。例如：

	ffmpeg -i input.mp4 -i t1.ass -map 0:0 -map 0:1 -map 1:0 -acodec copy -vcodec copy -scodec copy output.mkv

	上述命令分别将第1个输入文件的第1个流和第2个流，与第2个输入文件的第1个流写入output.mkv中。输入信息如下：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input.mp4':

	 Duration: 00:00:50.01, start: 0.000000, bitrate: 2616 kb/s

	 Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], 2484 kb/s, 25 fps, 25 tbr, 25k tbn, 50 tbc (default)

	 Stream #0:1(und): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 126 kb/s (default)

	Input #1, ass, from 'input.ass':

	 Duration: N/A, bitrate: N/A

	 Stream #1:0: Subtitle: ass

	命令行执行后生成的文件信息如下：

	Input #0, matroska,webm, from 'output.mkv':

	 Duration: 00:00:50.01, start: 0.000000, bitrate: 2616 kb/s

	 Stream #0:0: Video: h264 (High), yuv420p(progressive), 1280x714 [SAR 1:1 DAR 640:357], 25 fps, 25 tbr, 1k tbn, 50 tbc (default)

	 Stream #0:1: Audio: aac (LC), 48000 Hz, stereo, fltp (default)

	 Stream #0:2: Subtitle: ass

	如上所示，MKV文件中共3个流，其中包含视频流、音频流及字幕流，通过mplayer播放视频时可以看到字幕流封装之后的效果，如图8-15所示。

	[image:]

	图8-15 播放器播放视频流与字幕流的效果

	从图8-15中可以看到，字幕流被播放器成功加载并播放出来。至此，为视频添加字幕介绍完毕。

8.7 视频3D化处理

	随着3D视频的出现，3D视频获得了越来越多的应用场景。当前，常见的3D视频的实现方式有两种，一种是红蓝眼镜3D视频，一种是左右眼3D视频（另外还有一种祼眼3D，需要使用特殊的显示屏或者特殊的视角设定设备，以便让人眼产生立体感），前者观看时需要配戴专用的红蓝眼镜或者黄蓝眼镜，后者则需要配戴专门的3D眼镜。在有些情况下，需要将红蓝眼镜3D视频和左右眼3D视频进行互相转换，FFmpeg提供了stereo3d滤镜及hstack滤镜两种方式以实现不同的3D效果。

8.7.1 stereo3d处理3D视频

	FFmpeg滤镜stereo3d的参数如表8-12所示。

	表8-12 FFmpeg滤镜stereo3d的参数

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	参数介绍完毕，接下来看一个例子，将一个左右眼的3D视频转变为黄蓝眼镜和红蓝眼镜观看的视频。

8.7.2 3D图像转换示例

	左右眼3D视频图像中，常见的是左右排列的视频图像，通过hstack滤镜转换如下：

	ffplay -vf "split=2[v1][v2],[v1][v2]hstack" input.mp4

	左右排列的视频图像的效果如图8-16所示。

	[image:]

	图8-16 左右眼3D效果

	如果使用黄蓝眼镜，看这样的视频同样是左右效果但不是3D效果。可以通过stereo3d滤镜转换后再使用黄蓝眼镜观看。

	ffplay -vf "stereo3d=sbsl:aybd" input.mp4

	命令执行后，会将原片的左右排列效果合并为黄蓝合并排列效果，视频播放效果会更有立体感。如果使用红蓝眼镜观看视频，可以用红蓝输出参数。

	ffplay -vf "stereo3d=sbsl:arbg" input.mp4

	左右转换为黄蓝排列效果如图8-17所示。

	[image:]

	图8-17 黄蓝眼镜3D视频效果

	图8-17中看到视频的宽度变小，但是图像更具立体感，戴上黄蓝眼镜观看处理过的视频将呈现3D效果。

8.8 视频截图操作

	在视频播放时经常见到一个功能，就是将鼠标移动到播放器进度条上时，播放器会弹出一个与进度条进度对应的缩略图。还有一个场景，当在主播平台中打开首页时，会列出主播当前窗口的缩略图。还有一个场景应用，如特殊场景检测，当主播直播视频时，定期截取主播窗口的当前图像，并上传至特殊场景检测系统进行鉴别等。上述几个场景均要用到截图功能。本节重点介绍使用FFmpeg进行定时视频截图。使用FFmpeg截图有很多种方式，常见的是使用vframe参数与fps滤镜。下面介绍vframe参数与fps滤镜两种方式。

8.8.1 vframes参数截取一张图片

	通过将FFmpeg参数ss与vframes结合起来，即可获取指定时间位置的视频图像缩略图。下面看一个例子。

	ffmpeg -i input.flv -ss 00:00:7.435 -vframes 1 out.png

	命令行执行之后，FFmpeg会定位到input.flv的第7秒位置，获得对应的视频帧，然后将图像转码并封装成PNG图像。过程如下：

	Input #0, flv, from 'input.flv':

	 Duration: 00:00:50.12, start: 0.000000, bitrate: 2614 kb/s

	 Stream #0:0: Video: h264 (High), yuv420p(progressive), 1280x714 [SAR 1:1 DAR 640:357], 2484 kb/s, 25 fps, 25 tbr, 1k tbn, 50 tbc

	 Stream #0:1: Audio: aac (LC), 48000 Hz, stereo, fltp, 126 kb/s

	Stream mapping:

	Stream #0:0 -> #0:0 (h264 (native) -> png (native))

	Press [q] to stop, [?] for help

	Output #0, image2, to 'out.png':

	 Stream #0:0: Video: png, rgb24, 1280x714 [SAR 1:1 DAR 640:357], q=2-31, 200 kb/s, 25 fps, 25 tbn, 25 tbc

	frame= 1 fps=0.0 q=-0.0 Lsize=N/A time=00:00:00.04 bitrate=N/A speed=0.0612x

8.8.2 fps滤镜定时获得图片

	在直播场景中，有时需要定义每隔一段时间从视频中截取图像以生成图片，例如为进度条做缩略图，这可以通过fps参数实现。下面看一下FFmpeg的fps滤镜是如何在一定间隔时间获得图片的。

	ffmpeg -i input.flv -vf fps=1 out%d.png

	命令执行之后，将会每隔1秒生成一张PNG图片。

	ffmpeg -i input.flv -vf fps=1/60 img%03d.jpg

	命令执行之后，将会每隔1分钟生成一张JPEG图片。

	ffmpeg -i input.flv -vf fps=1/600 thumb%04d.bmp

	命令执行之后，将会每隔10分钟生成一张BMP图片。

	以上3种方式均为按照时间截取图片。如果希望按照关键帧截取图片，可以使用select来截取。

	ffmpeg -i input.flv -vf "select='eq(pict_type,PICT_TYPE_I)'" -vsync vfr thumb%04d.png

	命令执行之后，FFmpeg将会判断图像类型是否为I帧，如果是I帧则会生成一张PNG图像。

8.9 音频流滤镜操作

	除了操作视频，FFmpeg还可以对音频进行操作，例如拆分声道、合并多声道为单声道、调整声道布局及调整音频采样率等。在FFmpeg中，可以通过amix、amerge、pan、channelsplit、volume、volumedetect等滤镜进行常用的音频操作。本节对音频滤镜进行详细介绍。

8.9.1 双声道合并单声道

	在音频转换时常常会遇见音频声道的改变，例如将双声道合并为单声道。通过ffmpeg -layouts参数可以查看音频的声道布局支持情况，将双声道合并为单声道操作则是将stereo转变为mono模式，如图8-18所示。

	[image:]

	图8-18 双声道合并为单声道原理图

	如果要使用FFmpeg实现图8-18的操作，执行如下命令即可：

	ffmpeg -i input.aac -ac 1 output.aac

	input.aac的音频原为双声道，命令执行之后会被转为单声道。执行后的对比信息如下：

	Input #0, aac, from 'input.aac':

	Duration: 00:00:50.82, bitrate: 127 kb/s

	Stream #0:0: Audio: aac (LC), 48000 Hz, stereo, fltp, 127 kb/

	Output #0, adts, to 'output.aac':

	Metadata:

	encoder : Lavf57.71.100

	Stream #0:0: Audio: aac (LC), 48000 Hz, mono, fltp, 69 kb/s

	从信息中可以看到，input.aac的音频是双声道stereo布局方式，即FL与FR两个声道，通过ac将双声道转为单声道mono布局，输出为output.aac。对于原本双声道的音频，左耳和右耳可以分别听到不同声源的声音，调整后，声音布局改变为中央布局，左耳与右耳听到的是相同声源的声音。

8.9.2 双声道提取

	使用FFmpeg可以提取多声道的音频并输出至新音频文件或者多个音频流，以便于后续的编辑等。双声道音频提取的方式如图8-19所示。

	[image:]

	图8-19 双声道提取多个单声道音频文件原理图

	从提取方式中可以看到，将音频为stereo的布局提取为两个mono流，左声道一个流，右声道一个流。命令格式如下，这可以使用FFmpeg的map_channel参数实现。

	ffmpeg -i input.aac -map_channel 0.0.0 left.aac -map_channel 0.0.1 right.aac

	也可以使用pan滤镜实现。

	ffmpeg -i input.aac -filter_complex "[0:0]pan=1c|c0=c0[left];[0:0]pan=1c|c0=c1[right]" -map "[left]" left.aac -map "[right]" right.aac

	命令执行后，会将布局格式为stereo的input.aac转换为两个mono布局的left.aac与right.aac。

	Input #0, aac, from 'input.aac':

	Duration: 00:00:50.82, bitrate: 127 kb/s

	Stream #0:0: Audio: aac (LC), 48000 Hz, stereo, fltp, 127 kb/s

	Input #1, aac, from 'left.aac':

	Duration: 00:00:49.21, bitrate: 73 kb/s

	Stream #1:0: Audio: aac (LC), 48000 Hz, mono, fltp, 73 kb/s

	Input #2, aac, from 'right.aac':

	Duration: 00:00:49.21, bitrate: 73 kb/s

	Stream #2:0: Audio: aac (LC), 48000 Hz, mono, fltp, 73 kb/s

	从上面信息可以看到，input.aac为stereo，而left.aac与right.aac为mono。

8.9.3 双声道转双音频流

	FFmpeg不但可以将双声道音频提取出来生成两个音频文件，还可以将双声道音频提取出来转为一个音频文件的两个音频流，每个音频流为一个声道，转换方式如图8-20所示。

	[image:]

	图8-20 左右声道音频转为多音频流原理图

	根据这个原理举个例子。

	ffmpeg -i input.aac -filter_complex channelsplit=channel_layout=stereo output.mka

	命令通过channelsplit滤镜将stereo布局方式的音频分开，切分成两个音频流。切分前后的音频效果如下：

	Input #0, aac, from 'input.aac':

	Duration: 00:00:50.82, bitrate: 127 kb/s

	Stream #0:0: Audio: aac (LC), 48000 Hz, stereo, fltp, 127 kb/s

	Output #0, matroska, to 'output.mka':

	Stream #0:0: Audio: ac3 ([0] [0][0] / 0x2000), 48000 Hz, mono, fltp, 96 kb/s

	Stream #0:1: Audio: ac3 ([0] [0][0] / 0x2000), 48000 Hz, mono, fltp, 96 kb/s

	如上信息所示，文件output.mka中的音频为两个stream，默认情况下大多数播放器会播放第1个音频stream而第2个将不会被播放，指定播放对应stream的除外。

8.9.4 单声道转双声道

	使用FFmpeg可以将单声道转换为多声道，即当只有中央声道或者只有mono布局时，才可以通过FFmpeg转换为stereo布局，转换方式如图8-21所示。

	[image:]

	图8-21 单声道转双声道音频原理图

	对前面章节提到的从stereo布局转出来的mono布局的音频文件left.aac进行生成，命令行如下：

	ffmpeg -i left.aac -ac 2 output.m4a

	命令执行后，会从left.aac中将布局为mono的音频转换为stereo布局的音频文件output.m4a，输入与输出信息如下：

	Input #0, aac, from 'left.aac':

	Duration: 00:00:49.21, bitrate: 73 kb/s

	Stream #0:0: Audio: aac (LC), 48000 Hz, mono, fltp, 73 kb/s

	Output #0, ipod, to 'output.m4a':

	Stream #0:0: Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 128 kb/s

	从以上信息可以看到，输入的left.aac中音频为mono布局，而输出的文件output.m4a中的音频布局则为stereo。除了使用ac参数，还可以使用amerge滤镜进行处理，命令行如下：

	ffmpeg -i left.aac -filter_complex "[0:a][0:a]amerge=inputs=2[aout]" -map "[aout]" output.m4a

	命令执行后的效果与使用ac的效果相同。当然，这么执行之后的双声道并不是真正的双声道，而是由单声道处理成的双声道，效果不会比原来的单声道更好。

8.9.5 两个音频源合并双声道

	前面提到将单mono声道处理为双声道，如果将输入单mono声道转换为stereo双声道为伪双声道，可以考虑将两个音频源合并为双声道，这相对来说更容易理解一些。两个音频源输入转为双声道的原理如图8-22所示。

	[image:]

	图8-22 两个音频源转为双声道原理图

	输入两个布局为mono的音频源，合并为一个布局为stereo双声道的音频流，输出到output文件。命令举例如下：

	ffmpeg -i left.aac -i right.aac -filter_complex "[0:a][1:a]amerge=inputs=2[aout]" -map "[aout]" output.mka

	命令执行后，会将left.aac与right.aac两个音频为mono布局的AAC合并为一个布局为stereo的音频流，输出至output.mka文件。输入文件与输出文件信息如下：

	Input #0, aac, from 'left.aac':

	Duration: 00:00:49.21, bitrate: 73 kb/s

	Stream #0:0: Audio: aac (LC), 48000 Hz, mono, fltp, 73 kb/s

	Input #1, aac, from 'right.aac':

	Duration: 00:00:49.21, bitrate: 73 kb/s

	Stream #1:0: Audio: aac (LC), 48000 Hz, mono, fltp, 73 kb/s

	Input #2, matroska,webm, from 'output.mka':

	Duration: 00:00:50.05, start: 0.000000, bitrate: 193 kb/s

	Stream #2:0: Audio: ac3, 48000 Hz, stereo, fltp, 192 kb/s (default)

	从3个Input信息看，输入的两路mono转换为stereo了，输出音频为AC3，也可以通过acodec aac指定为输出AAC编码的音频。

8.9.6 多个音频合并为多声道

	除了双声道音频，FFmpeg还可以支持多声道音频，通过ffmpeg -layouts即可看到声道布局有很多种，常见的多声道除了双声道，还有一种是5.1方式的多声道。

	由6个mono布局的音频流合并为一个多声道（5.1声道）的音频流的原理图如图8-23所示。如果希望实现这样的效果，可以使用如下命令：

	ffmpeg -i front_left.wav -i front_right.wav -i front_center.wav -i lfe.wav -i back_left.wav -i back_right.wav -filter_complex "[0:a][1:a][2:a][3:a][4:a][5:a]amerge=inputs=6[aout]" -map "[aout]" output.wav

	[image:]

	图8-23 多文件输入转单流多声道原理图

	命令执行之后，将会生成一个5.1布局的音频，效果如下：

	Input #0, wav, from 'output.wav':

	Metadata:

	encoder : Lavf57.71.100

	Duration: 00:00:50.03, bitrate: 4608 kb/s

	Stream #0:0: Audio: pcm_s16le ([1][0][0][0] / 0x0001), 48000 Hz, 5.1, s16, 4608 kb/s

	多音频输入合并后生成5.1布局的音频，码率为4608kbit/s。

8.10 音频音量探测

	在播放音频时，有时需要根据音频的音量绘制出音频的波形。本节重点介绍音频音量与音频波形相关的滤镜操作。

8.10.1 音频音量获得

	要使用FFmpeg获得音频的音量分贝及音频相关的一些信息，可以使用滤镜volumedetect。下面举个例子。

	ffmpeg -i output.wav -filter_complex volumedetect -c:v copy -f null /dev/null

	命令执行之后，输出信息如下：

	Input #0, wav, from 'output.wav':

	 Duration: 00:00:50.03, bitrate: 4608 kb/s

	 Stream #0:0: Audio: pcm_s16le ([1][0][0][0] / 0x0001), 48000 Hz, 5.1, s16, 4608 kb/s

	[Parsed_volumedetect_0 @ 0x7fd34dc10b00] n_samples: 0

	Output #0, null, to '/dev/null':

	 Stream #0:0: Audio: pcm_s16le, 48000 Hz, 5.1, s16, 4608 kb/s

	size=N/A time=00:00:50.02 bitrate=N/A speed= 419x video:0kB audio:28140kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: unknown

	[Parsed_volumedetect_0 @ 0x7fd34df00000] n_samples: 14407680

	[Parsed_volumedetect_0 @ 0x7fd34df00000] mean_volume: -16.6 dB

	[Parsed_volumedetect_0 @ 0x7fd34df00000] max_volume: -0.9 dB

	[Parsed_volumedetect_0 @ 0x7fd34df00000] histogram_0db: 6

	[Parsed_volumedetect_0 @ 0x7fd34df00000] histogram_1db: 186

	[Parsed_volumedetect_0 @ 0x7fd34df00000] histogram_2db: 2898

	[Parsed_volumedetect_0 @ 0x7fd34df00000] histogram_3db: 10842

	[Parsed_volumedetect_0 @ 0x7fd34df00000] histogram_4db: 25656

	从输出信息中可以看到，mean_volume为得到的音频音量的平均大小，即-16.6dB。

8.10.2 绘制音频波形

	在一些应用场景中需要用到音频的波形图，随着音频分贝的增大，波形越强烈，可以通过showwavespic滤镜来绘制音频的波形图。下面举几个例子，首先看一下使用FFmpeg绘制简单的音频波形图。

	ffmpeg -i output.wav -filter_complex "showwavespic=s=640x120" -frames:v 1 output.png

	命令行执行后会生成一个宽高为640×120的output.png图片，图片内容为音频波形，如图8-24所示。

	[image:]

	图8-24 音频波形图

	8.9.6节中介绍了5.1布局方式的多声道音频，如果希望看到每一个声道的音频波形图，可以使用showwavespic与split_channels滤镜，配合绘制出多声道的波形图。命令如下：

	ffmpeg -i output.wav -filter_complex "showwavespic=s=640x240:split_channels=1" -frames:v 1 output.png

	因为5.1布局方式有6个声道，所以生成的图片的宽高会有些改变，高度应设置得大一些。这条命令执行之后会提取音频的每一个声道，然后绘制出如图8-25所示波形图。

	[image:]

	图8-25 5.1声道布局音频波形图

8.11 生成测试元数据

	FFmpeg不但可以处理音视频文件，还可以生成音视频文件，即通过lavfi设备虚拟音视频源数据。下面简单介绍几个常见的案例。

8.11.1 生成音频测试流

	在FFmpeg中，可以通过lavfi虚拟音频源的abuffer、aevalsrc、anullsrc、flite、anoisesrc、sine滤镜并生成音频流。下面举几个例子。

	ffmpeg -f lavfi -i anullsrc=r=44100:cl=stereo -acodec aac -y output.aac

	命令行执行后，FFmpeg会根据lavfi设备输入的anullsrc中定义的采样率、格式，以及声道布局，通过AAC编码生成AAC音频文件。下面再举一个例子。

	ffmpeg -f lavfi -i "aevalsrc=sin(420*2*PI*t)|cos(430*2*PI*t):c=FC|BC" -acodec libfdk_aac output.aac

	命令执行之后，通过aevalsrc生成音频，编码双通道，输出到output.aac文件中。下面使用前面提到过的波形查看方式来查看音频波形，如图8-26所示。

	[image:]

	图8-26 aevalsrc生成数据波形图的效果

	从图8-26中可以看到，生成的音频波动比较均匀。

	以上为anullsrc与aevalsrc两种方式的使用示例，还可以用类似的方式使用flite、anoisesrc、sine等虚拟音频输入设备并生成音频流。

8.11.2 生成视频测试流

	在使用FFmpeg测试流媒体时，如果没有视频文件，可以通过FFmpeg虚拟设备虚拟出来一个输入视频流。FFmpeg可以虚拟多种视频源，如allrgb、allyuv、color、haldclutsrc、nullsrc、rgbtestsrc、smptebars、smptehdbars、testsrc、testsrc2和yuvtestsrc。常见的视频源测试举例如下：

	ffmpeg -f lavfi -i testsrc=duration=5.3:size=qcif:rate=25 -vcodec libx264 -r:v 25 output.mp4

	命令执行之后，FFmpeg会根据testsrc生成长度为5.3秒、图像大小为QCIF分辨率、帧率为25fps的视频图像数据，并编码为H.264，然后输出到output.mp4视频文件。生成的MP4文件视频效果如图8-27所示。

	ffmpeg -f lavfi -i testsrc2=duration=5.3:size=qcif:rate=25 -vcodec libx264 -r:v 25 output.mp4

	命令执行之后，会根据testsrc2生成一个视频图像，内容包括时间、条状彩条等，其他参数与testsrc相同。命令执行后生成的output.mp4文件内容如图8-28所示。

	[image:]

	▲图8-27 MP4文件视频效果

	[image:]

	▲图8-28 testsrc2生成的视频效果

	ffmpeg -f lavfi -i color=c=red@0.2:s=qcif:r=25 -vcodec libx264 -r:v 25 output.mp4

	上面命令执行后，会使用color作为视频源，图像内容为纯红色，编码为H.264，编码出来后生成的output.mp4视频内容如图8-29所示。

	ffmpeg -f lavfi -i "nullsrc=s=256x256, geq=random(1)*255:128:128" -vcodec libx264 -r:v 25 output.mp4

	上面命令执行后，会使用nullsrc作为视频源，生成宽高为256×256、数据位随机的雪花视频，效果如图8-30所示。

	[image:]

	▲图8-29 color生成纯色视频效果

	[image:]

	▲图8-30 nullsrc生成雪花视频效果

	其他视频源的生成方式可以参考上述命令，不赘述。

8.12 音视频倍速处理

	在音视频处理中，经常会使用倍速播放，如2倍速、4倍速播放等。倍速播放的常用方式有跳帧播放与不跳帧播放两种。跳帧处理方式的用户体验稍差一些，本节中重点介绍不跳帧的倍速播放。在不跳帧倍速播放时，音频和视频将会很平滑地快速或者慢速播放。下面了解FFmpeg处理倍速播放的两个滤镜：atempo与setpts。

8.12.1 atempo音频倍速处理

	在FFmpeg的音频处理滤镜中，atempo是用来处理倍速的滤镜，能够控制音频的播放速度。这个滤镜只有一个参数：tempo，这个参数的值设置为浮点型，取值范围为0.5～2，0.5则是原来速度的一半的速度，调整为2则是2倍速。下面举两个测试例子。

	1. 半速处理

	ffmpeg -i input.wav -filter_complex "atempo=tempo=0.5" -acodec aac output.aac

	命令执行之后，FFmpeg将会输出如下执行信息：

	Input #0, aac, from 'input_audio.aac':

	 Duration: 00:00:50.82, bitrate: 127 kb/s

	 Stream #0:0: Audio: aac (LC), 48000 Hz, stereo, fltp, 127 kb/s

	Stream mapping:

	Stream #0:0 (aac) -> atempo

	atempo -> Stream #0:0 (aac)

 略去部分信息

	 Stream #0:0: Audio: aac (LC), 48000 Hz, stereo, fltp, 128 kb/s

	size= 1600kB time=00:01:39.94 bitrate= 131.1kbits/s speed=31.8

	从命令执行后的内容中可以看到，输出时长time约为输入时长duration的2倍。处理后的output.aac可以通过播放器播放，效果会比源音频慢一半。

	2. 2倍速处理

	ffmpeg -i input.wav -filter_complex "atempo=tempo=2.0" -acodec aac output.aac

	命令执行之后，FFmpeg将会输出如下执行信息：

	Input #0, aac, from 'input_audio.aac':

	 Duration: 00:00:50.82, bitrate: 127 kb/s

	 Stream #0:0: Audio: aac (LC), 48000 Hz, stereo, fltp, 127 kb/s

	Stream mapping:

	Stream #0:0 (aac) -> atempo

	atempo -> Stream #0:0 (aac)

 略去部分信息

	 Stream #0:0: Audio: aac (LC), 48000 Hz, stereo, fltp, 128 kb/s

	size= 400kB time=00:00:24.98 bitrate= 131.2kbits/s speed=30.4x

	从以上输出的内容中可以看到，输出时长time约为输入时长duration的1/2。处理后的output.aac可以通过播放器播放，效果会比源音频快一倍。

8.12.2 setpts视频倍速处理

	在FFmpeg的视频处理滤镜中，通过setpts能够实现视频倍速播放。这个滤镜只有一个参数expr，这个参数用来描述时间戳相关信息。setpts的常用值如表8-13所示。

	表8-13 FFmpeg滤镜setpts参数

	[image:]

	下面是使用PTS值控制播放速度的两个例子。

	1. 半速处理

	ffmpeg -re -i input.mp4 -filter_complex "setpts=PTS*2" output.mp4

	命令执行之后FFmpeg将会输出如下信息：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input_video.mp4':

	 Duration: 00:00:50.00, start: 0.080000, bitrate: 2486 kb/s

	 Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], 2484 kb/s, 25 fps, 25 tbr, 25k tbn, 50 tbc (default)

	Stream mapping:

	Stream #0:0 (h264) -> setpts

	setpts -> Stream #0:0 (libx264)

 略去部分内容

	 Stream #0:0: Video: h264 (libx264) ([33][0][0][0] / 0x0021), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], q=-1--1, 25 fps, 12800 tbn, 25 tbc (default)

	frame= 2497 fps= 37 q=-1.0 Lsize= 19256kB time=00:01:39.76 bitrate=1581.2kbits/s dup=1248 drop=0 speed=1.49x

	如以上输出内容所示，输出的视频output.mp4的时长约为input.mp4的duration的2倍，因为是半速的视频，所以用播放器播放output.mp4时将会看到速度比原视频慢一半的运动效果。

	2. 2倍速处理

	ffmpeg -i input.mp4 -filter_complex "setpts=PTS/2" output.mp4

	命令执行之后FFmpeg将会输出如下信息：

	Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'input_video.mp4':

	 Duration: 00:00:50.00, start: 0.080000, bitrate: 2486 kb/s

	 Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], 2484 kb/s, 25 fps, 25 tbr, 25k tbn, 50 tbc (default)

	Stream mapping:

	Stream #0:0 (h264) -> setpts

	setpts -> Stream #0:0 (libx264)

 略去部分内容

	 Stream #0:0: Video: h264 (libx264) ([33][0][0][0] / 0x0021), yuv420p, 1280x714 [SAR 1:1 DAR 640:357], q=-1--1, 25 fps, 12800tbn, 25 tbc (default)

	frame=627 fps= 24 q=-1.0 Lsize=9988kB time=00:00:24.96 bitrate=3277.9kbits/s dup=0 drop=622 speed=0.947x

	如以上输出内容所示，输出的视频output.mp4的时长约为input.mp4的duration的一半。因为是2倍速的视频，所以用播放器播放output.mp4时将会看到速度比原视频快一倍的运动效果。

8.13 云剪辑常用技术

	在短视频盛行的当下，很多大厂提供了基于PC端浏览器的云端音视频编辑服务（以下简称云剪辑），以帮助音视频创作者更方便、快捷地创作。创作者在浏览器上操作并预览效果，然后通过云端服务器生成所见即所得的作品。整个创作过程通过浏览器和云端编码器配合实现，浏览器端通常需要使用MSE播放器、Canvas、WebGL等技术集合，云端则可以通过FFmpeg及filter实现对应预览效果，并支持浏览器受限的功能。接下来介绍一些云剪辑服务中常用的技术。

8.13.1 定格帧

	云剪辑服务中的定格帧功能即浏览器指定一个画面固定不动一段时间，这就要求浏览器播放器和云端画面定位策略保持一致。以Chrome浏览器的MSE播放器为例，一般情况下MSE根据指定时间通过currentTime定位某个画面，而MSE的currentTime使用向下取舍的方式定位画面，对应的云端处理需要select（帧选择）、reverse（帧逆序）两个滤镜联合使用来实现，其中select表达式获取素材指定时间之前的所有帧，再通过reverse倒序获取序列帧，最后取第1帧即为浏览器对应预览的定格帧。比如浏览器定位素材第10秒的画面，对应的FFmpeg命令如下：

	ffmpeg -i input.mp4 -vf 'select=if(isnan(prev_selected_pts)\,1\,lte(t\, 10)),reverse' -an -frames 1 output.png

	实际环境中的素材可能是长达几小时的视频，如果定位末尾某个时间点，就需要倒序几乎整个视频，会占用大量内存和计算资源。这个问题可以通过使用trim（截取）滤镜提前截取小范围的视频内容，再做定格帧处理来解决。比如浏览器定位素材第3600秒的画面，截取指定时间点附近的2秒视频内容，对应的FFmpeg命令如下：

	ffmpeg -i input.mp4 -vf 'trim=3599:3601,select=if(isnan(prev_selected_pts)\,1\,lte(t\, 3600)),reverse' -an -frames 1 output.png

8.13.2 透明视频兼容处理

	云剪辑服务一般支持创作者上传和导入素材，这就要求云剪辑服务支持多种封装格式及音视频编码的素材，包括png、qtrle、prores等带有alpha透明通道的编码格式。由于前端浏览器对音视频素材的支持有限，比如Chrome浏览器主要支持H264、VP8、VP9等编码格式，虽然VP8、VP9编码支持透明通道，但是从技术成熟度、生态环境和场景兼容等方面考虑，浏览器通过H264编码支持透明视频是优先的选择方案。由于H264编码不支持通道，需要同时提供浏览器两部分内容：视频素材的画面内容和对应的透明信息，浏览器端使用Canvas合并两部分内容后显示达到支持透明素材的效果。下面举例说明通过手动生成一个透明素材。

	手动生成透明视频对应的FFmpeg命令如下：

	ffmpeg -filter_complex "color=0x000000@0x00:s=1280x720:d=10,format=rgba,drawtext=fontcolor=white:fontsize=100:x=w/2:y=h/2:text='FFmpeg':fontcolor=green" -c:v png alpha.mov

	效果如图8-31所示。

	获取素材的透明信息对应的FFmpeg命令如下：

	ffmpeg -i alpha.mov -vf "format=rgba,geq=r='alpha(X,Y)':g='alpha(X,Y)':b='alpha(X,Y)'" -c:v h264 -an mask_simple.mp4

	效果如图8-32所示。

	[image:]

	▲图8-31 透明素材

	[image:]

	▲图8-32 素材透明信息

	为了减少云端的并发访问压力，可以把素材视频内容和画面合并到一个视频里面，然后由浏览器确定获取和识别规则即可。合并信息需要使用split滤镜，提前将视频拆分为3路视频流：一路为背景，一路为视频内容，一路获取素材透明信息；然后使用vstack滤镜对视频内容和透明信息做上下布局，最后对3路视频流做混合即可。对应的FFmpeg命令如下：

	ffmpeg -i alpha.mov -filter_complex "[0:v]format=rgba,split=3[v0][v1][v2];[v0]drawbox=c=black@1:replace=1:t=fill[bg];[bg][v1]overlay[v3];[v2]geq=r='alpha(X,Y)':g='alpha(X,Y)':b='alpha(X,Y)',[v3]vstack[vo]" -map [vo] -c:v h264 -an mask_complex.mp4

	效果如图8-33所示。

	根据素材的视频内容和透明信息，浏览器就可以实现透明素材的叠加效果，如图8-34所示。

	[image:]

	▲图8-33 素材视频内容和透明信息混合

	[image:]

	▲图8-34 透明素材叠加效果

8.13.3 隔行交错视频兼容处理

	在云剪辑服务中，有时创作者上传的视频是隔行交错视频。在逐行设备中直接使用隔行交错视频会出现水纹或重影的边缘锯齿现象（如图 1-26 所示），导致视频画质下降。所以在云剪辑服务中需要对视频扫描方式进行检测，如果为隔行交错视频则需要做反交错处理，转换为逐行视频才能继续使用。使用FFmpeg实现视频扫描方式检测和反交错处理的方法如下。

	首先，视频扫描方式检测可以使用FFmpeg滤镜idet，对应的FFmpeg命令如下：

	ffmpeg -i interlace.mp4 -vf idet -frames:v 10 -an -f null -

	idet滤镜检测结果示例如下：

	[Parsed_idet_0 @ 0x7fa974c08700] Repeated Fields: Neither: 11 Top: 0 Bottom: 0

	[Parsed_idet_0 @ 0x7fa974c08700] Single frame detection: TFF: 11 BFF: 0 Progressive: 0 Undetermined: 0

	[Parsed_idet_0 @ 0x7fa974c08700] Multi frame detection: TFF: 11 BFF: 0 Progressive: 0 Undetermined: 0

	检测结果中TFF、BFF、Progressive关键字分别代表隔行上场优先、隔行下场优先和逐行。如果TFF或BFF结果非0则视频为隔行交错视频。另外视频扫描方式也可以根据FFmpeg滤镜showinfo获取的视频帧信息的扫描模式字段进行判断，只是showinfo的输出信息中还有很多其他内容，不如idet直观。

	接下来对隔行交错的视频做反交错处理，一般使用FFmpeg滤镜yadif。对应的FFmpeg命令示例如下：

	ffmpeg -i bg.jpg -i interlace.mp4 -filter_complex '[1:v]yadif,scale=1280x720,[0:v]overlay[vo]' -map [vo] -c:v h264 progressive.mp4

	另外，FFmpeg还有由其他算法或神经网络实现的反交错滤镜bwdif、estdif和nnedi等，可以根据具体的应用场景选择使用。

8.13.4 HDR视频兼容处理

HDR视频定义见维基百科：https://en.wikipedia.org/wiki/High-dynamic-range_television。
	随着视频技术的发展，支持更丰富色彩的HDR视频
	 [image: HDR视频定义见维基百科：https://en.wikipedia.org/wiki/High-dynamic-range_television。]的应用越来越常见。由于HDR视频是新技术标准，需要专门的显示设备支持，因此在云剪辑服务中为了兼容低端设备，需要对HDR视频做色调映射处理，转换为SDR视频，避免在低端显示设备上出现画面颜色偏差问题。

	首先，使用ffprobe检测HDR视频。命令如下：

	ffprobe -show_streams -v error hdr.mp4|grep -E 'color_transfer|color_space |color_primaries'

	检测结果示例如下：

	color_space=bt2020nc

	color_transfer=arib-std-b67

	color_primaries=bt2020

	其中的色彩原色color_primaries对应的值为bt2020、传输特性color_transfer对应的值为smpte2084或arib-std-b67、色域color_space对应的值为bt2020nc的视频为HDR视频。

	接下来对HDR视频做兼容处理，使用FFmpeg的zscale和tonemap滤镜把HDR视频转换为SDR视频。对应的FFmpeg命令示例如下：

	ffmpeg -i bg.jpg -i hdr.mp4 -filter_complex '[1:v]zscale=transfer=linear,tonemap=hable,zscale=transfer=709:p=709:t=709:m=709,format=yuv420p[v1];[v1][0:v]overlay[vo]' -map [vo] -c:v h264 -c:a copy sdr.mp4

	其中tonemap滤镜用于色调映射处理，zscale滤镜对HDR视频做线性处理并设置SDR显示相关的meta信息。

	另外，FFmpeg还有支持GPU显卡的色调映射滤镜onemap_opencl和tonemap_vaapi，可以根据具体的应用场景选择使用。

8.13.5 雪碧图和WebVTT

	雪碧图是指按照一定的时间间隔对视频抽取多张图片，并把所有图片根据一定的排列规则拼成一张大图。在云剪辑服务中，通常使用雪碧图以便用户快速定位视频内容，浏览器根据排列规则按时间线横向展示视频内容，类似点播平台预览效果。雪碧图可以使用FFmpeg内置的select和tile滤镜组合生成，例如10分34秒的视频，按5秒间隔，共需要抽取127张图，按固定10列生成13行雪碧图。对应的FFmpeg命令如下：

	ffmpeg -i input.mp4 -f image2 -vframes 1 -vf "select=(isnan(prev_selected_t)+gte(t-prev_selected_t\,5)),scale=180:101,crop=180:100,tile=10x13,format=pix_fmts=rgb24" sprite.jpg

	其中scale滤镜用来减小雪碧图文件大小，crop滤镜用来避免缩放导致的黑边，效果如图8-35所示。

	[image:]

	图8-35 简单雪碧图

	上述方式简单方便，非常适用于短视频。在视频时长比较长，同时对视频细节要求更严苛的场景，就需要小的时间间隔，比如1秒，但会因为抽图过多而导致雪碧图文件很大，增加雪碧图加载时长，影响创作者体验。这种情况可以通过扩展WebVTT字幕格式来解决。WebVTT是一种文本数据的字幕格式，现已被多数浏览器支持。字幕格式如下：

	WEBVTT

	00:00:00.000 --> 00:00:05.000

	WEBVTT第一行字幕

	00:00:05.000 --> 00:00:10.000

	WEBVTT第二行字幕

	00:00:10.000 --> 00:00:15.000

	WEBVTT第三行字幕

	通过扩展WebVTT文本内容，可以把视频的雪碧图拆分为多个雪碧图，比如固定的1秒间隔，10列10行排列，并修改WebVTT文本内容为雪碧图截图信息，例如截图时间、截图地址、定位等信息。在预览雪碧图时，浏览器只需要加载VTT文件，以及分时加载其中的雪碧图，可实现很好的预览效果。同时也避免了使用单一雪碧图时每次加载都需要计算展示图片位置的过程，减轻了浏览器计算压力。扩展后的雪碧图WebVTT内容如下：

	WEBVTT

	00:00:00.000 --> 00:00:01.000

	13819724604497149114379_sprite_1.jpg#xywh=0,0,180:100

	00:00:01.000 --> 00:00:02.000

	13819724604497149114379_sprite_1.jpg#xywh=180,0,180:100

	00:00:02.000 --> 00:00:03.000

	13819724604497149114379_sprite_1.jpg#xywh=360,0,180:100

	00:00:10.000 --> 00:00:11.000

	13819724604497149114379_sprite_1.jpg#xywh=0,100,180:100

	00:01:40.000 --> 00:01:41.000

	13819724604497149114379_sprite_2.jpg#xywh=0,0,180:100

8.13.6 缩略图

	云剪辑服务会为素材提供缩略图，以便创作者更方便地识别素材。简单的方式是直接根据时间截取素材的某一帧作为素材缩略图。但这种方法很容易得到与素材无关的缩略图，甚至是黑场。FFmpeg内置的thumbnail滤镜可以从给定的连续序列帧中按指定量分组做直方图统计平均分析，选取其中最具有代表性的一帧作为缩略图。对应的FFmpeg命令如下：

	ffmpeg -i input.mp4 -vf thumbnail,scale=300:200 -frames:v 1 output.png

8.13.7 复杂项目渲染

	在云剪辑服务中，创作者使用浏览器创建项目时会使用不同的素材及同一个素材中的不同内容，并为使用的素材添加各种效果和变换滤镜，然后云端对创作者的项目内容进行渲染并输出视频。如果使用FFmpeg命令实现云端渲染，可以直接使用filter_complex参数完成。对应的FFmpeg命令如下：

	ffmpeg -i 1_0.mp4 -ss 10 -i 0_0.mp4 -filter_complex "color=c=black:s=1080x1920:d=20.400[v0];[0:v]fifo,format=rgba,colorchannelmixer=aa=0.000,[v0]overlay=x='(main_w-overlay_w)/2':y='(main_h-overlay_h)/2':enable='between(t,0.000,20.400)'[v1];[1:v]fifo,trim=10,[v1]overlay=x='(main_w-overlay_w)/2':y='(main_h-overlay_h)/2':enable='between(t,0.000,20.400)'[v2]" -map [v2] -pix_fmt yuv420p -r 30 -crf 18 -movflags faststart -use_editlist 1 -metadata comment=[tid=610223814484943921066729][type=tran] output.mp4

	上述渲染方式存在一个问题，由于项目中的素材和对应的效果、变换滤镜数量比较多，渲染的命令行长度会变得很长，很容易超出系统的命令行长度限制，导致渲染失败。FFmpeg提供的filter_complex_script参数和movie滤镜可以很好地解决这个问题，其中filter_complex_script用来指定一个包含滤镜组合内容的文本文件，movie滤镜支持设置输入素材，把输入素材和滤镜内容都保存在滤镜脚本的文本文件中，这就大大缩短了 FFmpeg 命令的长度。例如可以将下列滤镜写到complex.flt文件中。

	color=c=black:s=1080x1920:d=20.400[v0];movie=1_0.mp4,fifo,format=rgba,colorchannelmixer=aa=0.000,[v0]overlay=x='(main_w-overlay_w)/2':y='(main_h-overlay_h)/2':enable='between(t,0.000,20.400)'[v1];movie=0_0.mp4,fifo,[v1]overlay=x='(main_w-overlay_w)/2':y='(main_h-overlay_h)/2':enable='between(t,0.000,20.400)'[v2]

	然后使用filter_complex_script指定滤镜脚本complex.flt。完整命令如下：

	ffmpeg -filter_complex_script complex.flt -map [v2] -pix_fmt yuv420p -r 30 -crf 18 -movflags faststart -use_editlist 1 -metadata comment=[tid=610223814484943921066729][type=tran] output.mp4

8.13.8 色度抠图

	色度抠图功能可以把视频的指定颜色设置为透明，达到抠除颜色效果。FFmpeg内置colorkey和chromakey滤镜，通过设置颜色、相似度和混合比例等相关参数实现颜色抠图的功能。chromakey滤镜主要处理YUV数据，通过yuv参数指定；而colorkey滤镜主要处理RGB。两者效果略有差异。对应的FFmpeg命令如下：

	ffmpeg -stream_loop -1 -i input.jpg -filter_complex "color=c=black:s=1920x1080[v0];[0:v]chromakey=color=white:similarity=0.2:blend=0.2[v1];[v0][v1]overlay[vo]" -map [vo] -frames:v 1 chromakey.jpg

	ffmpeg -stream_loop -1 -i input.jpg -filter_complex "color=c=black:s=1920x1080[v0];[0:v]colorkey=color=white:similarity=0.2:blend=0.2[v1];[v0][v1]overlay[vo]" -map [vo] -frames:v 1 colorkey.jpg

	源图、colorkey效果图和chromakey效果图如图8-36所示。

	[image:]

	图8-36 源图、colorkey和chromakey滤镜效果图

	需要注意的是：

	・chromakey滤镜主要处理YUV数据，在处理绿幕或红幕时更有优势。

	・colorkey和chromakey滤镜可以处理简单场景下的色度抠图，复杂场景的色度抠图推荐使用OpenGL定制开发的shader来实现，在云剪辑服务中浏览器使用WebGL对齐算法做相同实现即可。

8.13.9 蒙版抠图

	类似色度抠图，云剪辑服务一般也会提供类似Photoshop蒙版功能的蒙版抠图功能，可以对视频素材使用不同的遮罩层实现保留想要的部分，其他部分则被透明代替，从而实现抠图效果。首先，蒙版抠图需要蒙版素材，蒙版素材一般通过两种方式获取：一种是定制设计，另一种是从其他素材中提取。FFmpeg内置的alphaextract滤镜支持从带alpha通道的素材中提取透明通道作为蒙版素材。

	提取蒙版素材对应的FFmpeg命令如下：

	ffmpeg -i input.mov -vf alphaextract -c:v h264 -an mask.mp4

	生成的蒙版素材效果如图8-37所示。

	[image:]

	图8-37 蒙版视频画面

	使用FFmpeg内置的alphamerge滤镜和蒙版素材实现抠图效果，对应的FFmpeg命令如下：

	ffmpeg -i input.mp4 -i mask.mp4 -filter_complex "color=0x000000@0x00:s=1920x1080:d=600[bg];[0:v][1:v]alphamerge[v1];[bg][v1]overlay[vo]" -map [vo] -c:v png -an output.mov

	生成的抠图效果如图8-38所示。

	[image:]

	图8-38 蒙版抠图效果视频画面

	进一步，蒙版抠图后的素材通过叠加素材可实现更换背景的效果。下面将素材叠加到一张图片（4k.jpg）上，如图8-39所示。对应的FFmpeg命令如下：

	ffmpeg -i output.mov -i 4k.jpg -filter_complex "[1:v][0:v]overlay=x='(main_w-overlay_w)/2':y=main_h-overlay_h[vo]" -map [vo] -c:v h264 -an mask_overlay.mp4

	[image:]

	图8-39 蒙版抠图更换背景

8.13.10 调色

	调色在视频编辑过程中也是一个常用的功能，FFmpeg内置的hue滤镜支持对视频的颜色、饱和度和亮度做调整。对应的FFmpeg命令如下：

	ffmpeg -i input.jpg -filter_complex "[0:v]split=2[v1][v2];[v1]hue=h=60:b=0.5:s=0.7:s=2,[v2]hstack[vo]" -map [vo] output.jpg

	调色前后的对比图如图8-40所示。

	[image:]

	图8-40 hue调色效果视频画面

	需要注意的是，在云剪辑服务中，前端浏览器通常使用Canvas调色。由于Canvas使用类似LCHab的颜色模型，而FFmpeg使用类似LCHuv的颜色模型，如果要实现浏览器Canvas和服务端FFmpeg的调色效果相对应，需要做定制化修改以使用相同的颜色模型。

8.13.11 透明度调整

	透明度调整功能在视频编辑过程中使用频率很高，片头、片尾、画中画和场景切换都会用到透明度调整。FFmpeg内置的colorchannelmixer、geq和fade滤镜都支持调整视频透明度，但是三者适用的场景不同。假设透明度从0到1对应完全透明到完全不透明，则colorchannelmixer滤镜适应于静态调整某个固定画面的透明值；fade滤镜适用于从0～1或者从1～0的完整透明度变化过程；而geq则比较灵活，适用于任意的透明度调整区间。对应的FFmpeg命令如下：

	ffmpeg -i input.mp4 -filter_complex "color=c=black:s=1920x1080:d=5[v0];[0:v]format=rgba,colorchannelmixer=aa=0.5,[v0]overlay[vo]" -map [vo] -c:v h264 -t 5 -an color_mix.mp4

	ffmpeg -i input.mp4 -vf fade=st=5:d=10 -t 15 -c:v h264 -an fade.mp4

	从第5秒到第12秒，透明度从0.2调整到0.7：

	ffmpeg -i input.mp4 -filter_complex "color=c=black:s=1920x1080:d=15[v0];[0:v]format=rgba,geq=r='p(X,Y)':g='p(X,Y)':b='p(X,Y)':a='(0.5*(T-5)/7+0.2)*p(X,Y)':enable='between(t,5,12)',[v0]overlay[vo]" -map [vo] -c:v h264 -t 15 -an geq.mp4

	需要注意的是，虽然geq滤镜比较灵活，但是由于需要处理每一个像素，导致计算量太大，从而编码效率下降，增加耗时，影响用户体验，因此要谨慎使用。

8.13.12 动态缩放

	动态缩放在视频剪辑中经常用于画中画的场景。FFmpeg内置的zoompan滤镜支持对视频画面的动态缩放。对应的FFmpeg命令如下：

	ffmpeg -i input.mp4 -vf "zoompan=z='min(max(zoom,pzoom)+0.04,1.5)':x='iw/2-(iw/zoom/2)':y='ih/2-(ih/zoom/2)':d=1:s=1280x720" -c:v libx264 -pix_fmt yuv420p output.mp4

	zoompan滤镜存在以下几个问题。

	・缩放只支持大于原视频1倍的处理，不能满足动态缩小视频的需求，比如不支持动态地从1倍缩小到0.5倍。

	・缩放过程中由于需要实时调整图像位置会导致视频画面抖动，虽然可以通过先放大再做缩放处理以减小抖动影响，但是缩放效果还是不够平滑。

	・对相关参数比如x、y的设置，文档解释不够清晰，增加使用难度。

	基于以上问题，zoompan滤镜只适合于一些固定场景，如果对缩放功能的需求场景比较复杂多样，则需要对zoompan滤镜做优化，或者使用其他方式实现动态缩放功能，比如OpenGL。

8.13.13 画质检测

	保证画质是在视频编辑后期不可或缺的一步，FFmpeg内置了psnr、ssim和libvmaf等滤镜，在分辨率相同的前提下计算编码前后的两个视频之间的画质损失。

	・psnr 滤镜通过计算两个视频的每一帧的均方差MSE，进一步计算每一帧的峰值信噪比PSNR，最后计算出整个序列的平均PSNR。

	・ssim滤镜通过计算两个视频的每一帧的结构相似性指标SSIM，计算出整个序列的SSIM。

	・libvmaf 滤镜通过计算两个视频的每一帧的视频多方法评估融合VMAF，计算出整个序列的VMAF。

	对应的FFmpeg命令如下。

	（1）计算PSNR指标

	ffmpeg -i input.mp4 -i output.mp4 -filter_complex psnr="stats_file=psnr.log" -f null -

	每一帧指标如下：

	n:1 mse_avg:0.00 mse_y:0.00 mse_u:0.00 mse_v:0.00 psnr_avg:inf psnr_y:inf psnr_u:inf psnr_v:inf

	n:2 mse_avg:290.06 mse_y:431.38 mse_u:3.83 mse_v:11.00 psnr_avg:23.51 psnr_y:21.78 psnr_u:42.30 psnr_v:37.72

	n:3 mse_avg:1440.06 mse_y:2138.10 mse_u:31.24 mse_v:56.74 psnr_avg:16.55 psnr_y:14.83 psnr_u:33.18 psnr_v:30.59

	结果指标如下：

	[Parsed_psnr_0 @ 0x7fe69ddc0440] PSNR y:28.456863 u:39.413558 v:41.855008 average:30.083128 min:11.124958 max:inf

	（2）计算SSIM指标

	ffmpeg -i input.mp4 -i output.mp4 -filter_complex ssim="stats_file=ssim.log" -f null -

	每一帧指标如下：

	n:1 Y:1.000000 U:1.000000 V:1.000000 All:1.000000 (inf)

	n:2 Y:0.731829 U:0.995026 V:0.987977 All:0.818387 (7.408521)

	n:3 Y:0.735724 U:0.980612 V:0.975134 All:0.816440 (7.362226)

	结果指标如下：

	[Parsed_ssim_0 @ 0x7fce99e16980] SSIM Y:0.915588 (10.735965) U:0.977309 (16.441427) V:0.979730 (16.931380) All:0.936565 (11.976722)

	（3）计算VMAF指标

	ffmpeg -i input.mp4 -i output.mp4 -filter_complex libvmaf=model='path=vmaf/model/vmaf_v0.6.1.json':log_path=vmaf.log -f null -

	每一帧指标如下：

	<frame frameNum="0" integer_adm2="1.000000" integer_adm_scale0="1.000000" integer_adm_scale1="1.000000" integer_adm_scale2="1.000000" integer_adm_scale3="1.000000" integer_motion2="0.000000" integer_motion="0.000000" integer_vif_scale0="1.000000" integer_vif_scale1="1.000000" integer_vif_scale2="1.000000" integer_vif_scale3="1.000000" vmaf="97.428043" />

	<frame frameNum="1" integer_adm2="1.000000" integer_adm_scale0="1.000000" integer_adm_scale1="1.000000" integer_adm_scale2="1.000000" integer_adm_scale3="1.000000" integer_motion2="0.000000" integer_motion="0.000000" integer_vif_scale0="0.999949" integer_vif_scale1="0.999965" integer_vif_scale2="0.999967" integer_vif_scale3="0.999964" vmaf="97.423458" />

	<frame frameNum="2" integer_adm2="1.432088" integer_adm_scale0="1.042091" integer_adm_scale1="1.207446" integer_adm_scale2="1.643958" integer_adm_scale3="2.094671" integer_motion2="20.446478" integer_motion="20.446478" integer_vif_scale0="1.113246" integer_vif_scale1="1.166365" integer_vif_scale2="1.187713" integer_vif_scale3="1.222095" vmaf="100.000000" />

	结果指标如下：

	libvmaf WARNING use default log_fmt xml[libvmaf @ 0x7f9b3cf38fc0] VMAF score: 68.711650

	以上3种画质指标对比如下：

	・PSNR是使用最普遍、最广泛的评价画质的客观量测法，取值范围一般是20～50dB，数值越大质量越好。由于人眼的视觉对于误差的敏感度并不是绝对的，PSNR的分数无法和人眼看到的视觉品质完全一致，有可能PSNR较高者看起来反而比PSNR较低者差。

	・SSIM是一种偏主观的客观评价方式，它分别从亮度、对比度、结构3方面计算图像相似性，与PSNR相比可以较好地反映人眼的主观质量感受，取值范围为0～1，数值越大质量越好。

	・VMAF是Netflix发布的一套将人类视觉建模与机器学习相结合的视频质量评价体系，更符合人眼视觉的质量评分，取值范围为0～100，数值越大质量越好。VMAF解决了传统指标不能反映多种场景、多种特征的视频的情况，并且实现了用自动化来代替通常需要人类观看和评价视频的主观质量测试工作，是目前互联网视频最主流的客观视频评价指标。

	另外，在做图像质量计算的时候，一个经常碰到的问题是编码后的图像和原参考图像在时间上没有对齐，导致计算出来的结果并不可信。在这种情况下，可以使用解码后的YUV文件来对齐或者调整start time和PTS来强行对齐。

8.13.14 滤镜动态调整

	通常FFmpeg启动滤镜后就会按照预定设置实现效果，在FFmpeg命令退出前滤镜的配置不会变化。在某些特定场景，比如视频会议、导播等一些直播场景中，会有一些动态调整滤镜的需求，FFmpeg的zmq和azmq滤镜支持使用zmq协议来实现动态调整其他滤镜的配置。首先，FFmpeg执行命令的同时会启动一个zmq协议的TCP服务器端，然后通过FFmpeg自带的zmq客户端zmqsend发送修改滤镜请求，FFmpeg在收到调整请求后根据指定的滤镜实例更新滤镜配置。FFmpeg为视频添加文字并启动zmq服务的命令如下：

	ffmpeg -y -v verbose -re -i input.mp4 -filter_complex "zmq=bind_address=tcp\\\://*\\\:5556,drawtext=text='FFmpeg':fontcolor=red:fontsize=200:x=20:y=20" -t 10 zmq.mp4

	通过zmqsend客户端发送请求，修改文字内容为ZeroMQ、颜色为蓝色的命令如下，效果如图8-41所示。

	echo Parsed_drawtext_1 reinit 'text=ZeroMQ:fontcolor=blue'| zmqsend -b "tcp://127.0.0.1:5556"

	[image:]

	图8-41 zmq动态调整滤镜效果

	需要注意的是：

	・由于使用zmq协议需要安装第三方库libzmq，所以需要指定--enable-libzmq重新编译FFmpeg，同时执行make tools/zmqsend命令生成对应的zmq客户端。

	・并非所有滤镜都支持动态调整，只有实现了process_command接口的滤镜才支持。

	・zmqsend的命令滤镜实例可以指定verbose日志级别查看。

8.13.15 深度学习

	随着短视频的普及，视频创作者在视频剪辑过程中越来越多地遇到复杂制作场景。相较FFmpeg传统滤镜处理效果单一的情况，FFmpeg的深度学习滤镜dnn_processing通过支持深度学习模型，引入检测、识别等智能处理功能，可以实现更丰富、平滑的复杂处理效果，能更好地满足视频创作者的复杂效果需求。
DNN环境安装部署脚本：https://github.com/T-bagwell/FFmpeg_Book_Version2/blob/book/base_ffmpeg_6.0/doc/examples/007/nvidia- dnn-install.sh。
	dnn_processing是一个在功能和运行环境方面都比较通用的滤镜。在功能方面，dnn_processing支持所有基于深度学习模型的图像处理算法的通用滤镜，目前已支持超分（SR）、去雨（DeRrain）、去雾（DeHaze）等深度学习算法模型；在运行环境方面，dnn_processing滤镜目前已支持Native、TensorFlow和OpenVINO三种后端运行环境，其中基于CPU的Native为FFmpeg默认方式，但性能较差，实际应用中推荐使用基于NVIDIA显卡的TensorFlow或者Intel显卡的OpenVINO后端。下面以SR（超分）算法和TensorFlow后端的Linux系统环境为例，对dnn_processing举例说明（详见本书参考代码doc/examples/007目录下DNN环境安装部署脚本
	 [image: DNN环境安装部署脚本：https://github.com/T-bagwell/FFmpeg_Book_Version2/blob/book/base_ffmpeg_6.0/doc/examples/007/nvidia- dnn-install.sh。]）。
TensorFlow构建配置版本对照表：https://tensorflow.google.cn/install/source#gpu。
	1）根据TensorFlow推荐的构建配置版本对照表
	 [image: TensorFlow构建配置版本对照表：https://tensorflow.google.cn/install/source#gpu。]，分别从TensorFlow和NVIDIA官网下载并安装对应版本的显卡驱动、计算框架CUDA、深度学习加速库CUDNN。

	2）重新编译FFmpeg。由于FFmpeg默认不支持TensorFlow后端，需要指定参数--enable- libtensorflow重新编译。

	./configure --enable-libtensorflow

	3）准备SRCNN和ESPCN两个SR深度学习模型文件。

	#下载

	git clone https://github.com/HighVoltageRocknRoll/sr.git

	cd sr/

	#生成SRCNN模型文件srcnn.pb

	python generate_header_and_model.py --model=srcnn --ckpt_path=checkpoints/srcnn/

	#生成ESPCN模型文件espcn.pb

	python generate_header_and_model.py --model=espcn --ckpt_path=checkpoints/espcn

	4）dnn_processing滤镜分别使用SRCNN和ESPCN模型实现SR算法效果。dnn_processing使用SRCNN模型，需要先放大素材，然后对放大后的素材的Y通道做超分处理，UV通道保持不变，处理前后的素材分辨率保持不变。

	ffmpeg -i srcnn_in.mp4 -vf format=yuv420p,scale=w=iw*2:h=ih*2,dnn_processing=dnn_backend=tensorflow:model=./dnn_processing/models/srcnn.pb:input=x:output=y srcnn_out.mp4

	dnn_processing使用ESPCN模型，也是只针对素材的Y通道做超分处理，UV通道则调用swscale模块（参数SWS_BICUBIC）进行放大，不需要提前放大。

	ffmpeg -i espcn_in.mp4 -vf format=yuv420p,dnn_processing=dnn_backend=tensorflow:model=./dnn_processing/models/espcn.pb:input=x:output=y espcn_out.mp4

	以上命令行中使用了format、scale和dnn_processing三个滤镜，其中format指定dnn_processing滤镜支持的YUV格式，scale用于在调用SRCNN模型之前将低分辨率图片放大2倍；model指定模型文件，dnn_backend指定后端类型，input和output分别为模型的输入和输出变量名称。

	另外，准备GPU环境时需要注意以下几点：

	・由于FFmpeg的限制，不能调用C++接口，TensorFlow和OpenVINO需要提供C语言接口的库文件。

	・由于可能导致运行时混乱，FFmpeg中无法同时支持TensorFlow和OpenVINO后端，只能二选一。

	・TensorFlow后端环境尽量使用官网推荐的构建配置版本对照表，以避免额外工作。

	・使用OpenVINO后端时，需要安装深度学习工具库OpenVINO和计算加速库OpenCL，重新编译FFmpeg的参数为--enable-libopenvino，并将模型文件转换为OpenVINO支持的格式。

8.14 小结

	FFmpeg功能强大的原因之一是因为包含了滤镜处理AVFilter，FFmpeg的AVFilter能够实现的音频、视频、字幕渲染等效果数不胜数，并且时至今日还在不断地增加新的功能，除了本章介绍的内容之外，还可以从FFmpeg官方网站的文档页面获得更多AVFilter的信息。

第9章

采集设备操作

	在使用FFmpeg作为编码器时，可以使用FFmpeg采集本地音视频采集设备的数据，然后进行编码、封装、传输等操作。例如我们可以采集摄像头的图像作为视频，采集麦克风的数据作为音频，然后对采集到的音视频数据进行编码，最后将编码后的数据封装成多媒体文件或作为音视频流媒体发送到服务器上。

	本章介绍在Linux、macOS、Windows平台通过FFmpeg进行音视频设备采集的方法和步骤，包含很多简单的例子。

9.1 Linux设备操作

	FFmpeg在Linux系统支持下的采集设备多种多样，包括FrameBuffer设备、V4L2设备、DV1394设备、OSS设备、x11grab设备等。本章将重点介绍FrameBuffer设备（fbdev）、V4L2设备（v4l2）和x11grab设备（x11grab）。操作设备之前，首先需要查看当前系统中可以支持操作的设备，然后查看对应设备所支持的参数。

9.1.1 查看设备列表

	首先查看系统当前支持的设备，将设备列出来。根据前面章节中介绍的FFmpeg帮助信息查看方式，可以通过如下命令查看系统当前支持的设备。

	ffmpeg -hide_banner -devices

	输出如下：

	Devices:

	D. = Demuxing supported

	.E = Muxing supported

	--

	D dv1394 DV1394 A/V grab

	DE fbdev Linux framebuffer

	D lavfi Libavfilter virtual input device

	DE oss OSS (Open Sound System) playback

	E sdl,sdl2 SDL2 output device

	E v4l2 Video4Linux2 output device

	D video4linux2,v4l2 Video4Linux2 device grab

	D x11grab X11 screen capture, using XCB

	从以上输出的内容中可以看到，系统当前可以支持以下设备：

	・输入设备：dv1934、fbdev、lavfi、oss、video4linux2、x11grab

	・输出设备：fbdev、sdl、v4l2

	查看设备列表之后，可以得到对应的设备名称。接下来重点介绍常用的设备操作参数并举例。

9.1.2 采集设备fbdev参数说明和使用

	使用fbdev设备之前，需要了解fbdev设备操作参数的情况。FFmpeg通过以下命令来查询fbdev支持的参数：

	ffmpeg -h demuxer=fbdev

	命令行执行后输出参数如表9-1所示。

	表9-1 fbdev设备参数

	[image:]

	FFmpeg针对FrameBuffer操作的参数比较少，指定帧率即可。下面举一个查看fbdev的例子。

	在Linux的图形图像设备中，FrameBuffer是一个比较有年份的设备，专门用于图像展示操作。例如，早期的图形界面就是基于FrameBuffer绘制的，有时在向外界展示Linux的命令行操作又不希望别人看到你的桌面时，可以通过获得FrameBuffer设备图像数据进行编码，然后推流或录制。

	ffmpeg -framerate 30 -f fbdev -i /dev/fb0 output.mp4

	命令行执行之后，Linux系统将会获取终端中的图像，而不是图形界面的图像。可以通过这种方法录制Linux终端中的操作，并以视频的方式展现。

9.1.3 采集设备v4l2参数说明和使用

	在Linux下常见的视频设备还有Video4Linux，现在是Video4Linux2，一般缩写为v4l2，常用于摄像头设备。下面查看一下v4l2设备的参数。

	ffmpeg -h demuxer=v4l2

	命令行执行后将会输出v4l2相关的操作参数。输出参数如表9-2所示。

	表9-2 v4l2参数说明

	[image:]

	[image:]

	FFmpeg下的v4l2可以支持设置帧率、时间戳、输入分辨率、视频帧大小等。下面针对这些参数进行举例说明。

	FFmpeg采集Linux下的v4l2设备时，主要是摄像头，而摄像头通常支持多种像素格式，有些摄像头还支持直接输出编码好的H.264数据。下面看一下作者的计算机上的v4l2摄像头所支持的色彩格式及分辨率。

	ffmpeg -hide_banner -f v4l2 -list_formats all -i /dev/video0

	命令行执行后输出内容如下：

	[video4linux2,v4l2 @ 0x1ff73a0] Raw : yuyv422 : YUYV 4:2:2 :

	 640x480 320x240 352x288

	 1280x720 960x540 800x448

	 640x360 424x240 640x480

	[video4linux2,v4l2 @ 0x1ff73a0] Compressed: mjpeg : Motion-JPEG :

	 640x480 320x240 352x288

	 1280x720 960x540 800x448

	 640x360 424x240 640x480

	正如输出的信息所展示的，输入设备/dev/video0输出了raw、yuyv422、yuyv4:2:2，同时输出了支持采集的图像分辨率大小，如320×240、1280×720等。除了这些Raw数据之外，还支持摄像头常用的mjpeg压缩格式，输出的分辨率与Raw数据基本上可以对应上。

	下面把这个摄像头采集为视频文件来看看效果。

	ffmpeg -hide_banner -s 1920x1080 -i /dev/video0 output.avi

	根据命令行分析，设置摄像头采集1920×1080分辨率的视频图像，终端输出信息如下：

	Input #0, video4linux2,v4l2, from '/dev/video0':

	 Duration: N/A, start: 312295.946438, bitrate: 117964 kb/s

	 Stream #0:0: Video: rawvideo (YUY2 / 0x32595559), yuyv422, 1280x720, 117964 kb/s, 8 fps, 8 tbr, 1000k tbn, 1000k tbc

	Output #0, avi, to 'output.avi':

	 Stream #0:0: Video: mpeg4 (FMP4 / 0x34504D46), yuv420p, 1280x720, q=2-31, 200 kb/s, 8 fps, 8 tbn, 8 tbc

	Stream mapping:

	Stream #0:0 -> #0:0 (rawvideo (native) -> mpeg4 (native))

	Press [q] to stop, [?] for help

	frame= 63 fps=7.8 q=31.0 size= 588kB time=00:00:08.50 bitrate=566.5kbits/s speed=1.05x

	如FFmpeg执行时输出的信息所示，如果摄像头不支持1920×1080分辨率，会适配最接近的分辨率，实际采集的图像分辨率为1280×720，输出视频编码采用AVI默认视频编码和码率等参数，录制成output.avi文件，播放效果如图9-1所示。

	FFmpeg采集了摄像头数据，并将摄像头数据录制成为AVI文件，播放的视频图像即为摄像头采集的数据。

	[image:]

	图9-1 视频图像采集效果

9.1.4 采集设备x11grab参数说明和使用

	使用FFmpeg采集Linux下的图形部分桌面图像时，通常采用x11grab设备。x11grab的参数如表9-3所示。

	表9-3 x11grab参数说明

	[image:]

	x11grab可以使用6个参数，支持的功能主要有绘制鼠标光标、跟踪鼠标轨迹数据、设置采集视频帧率、指定采集桌面区域、设置指定区域的边框参数、设置采集视频的分辨率。下面针对这些参数进行举例说明。

	FFmpeg通过x11grab录制屏幕时，输入设备的设备名规则如下：

	[主机名]:显示编号id.屏幕编号id[+起始x轴,起始y轴]

	其中主机名、起始x轴与起始y轴均为可选参数。下面看一下默认获取屏幕的例子。

	（1）桌面录制

	在教学或者演示时，有时需要使用Linux桌面的图像直播或者录制。参考本节前面介绍的设备名规则，可以使用如下命令对桌面进行录制。

	ffmpeg -f x11grab -framerate 25 -video_size 1366x768 -i :0.0 out.mp4

	设置输入帧率为25，图像分辨率为1366×768（根据当前设备实际的帧率和分辨率进行设置，下同），采集的设备为0.0，输出文件为out.mp4，播放效果如图9-2所示。

	从播放的效果可以看到，Linux桌面图像已经被录制下来，而且是完整的桌面。

	（2）桌面录制指定起始位置

	上面录制的区域为整个桌面，有时候并不一定符合我们的要求，FFmpeg提供了录制某个区域的方法。

	ffmpeg -f x11grab -framerate 25 -video_size 352x288 -i :0.0+300,200 out.mp4

	[image:]

	图9-2 x11grab录制Linux桌面图像

	通过参数“0.0+300,200”指定了x坐标为300，y坐标为200。需要注意的是，video_size需要按实际大小指定，最好保证此大小不要超出实际采集区域的大小。

	播放效果如图9-3所示。从播放的效果可以看到，视频区域显示的是桌面的局部区域，与命令行执行时设置的区域刚好吻合。

	至此，Linux下的桌面图像录制介绍完毕。

	[image:]

	图9-3 指定录制区域

9.2 macOS设备操作

	在FFmpeg中采集macOS系统的输入输出设备时，常规采用的是macOS的avfoundation设备。下面了解一下avfoundation的参数，如表9-4所示。

	表9-4 avfoundation参数说明

	[image:]

	FFmpeg对avfoundation设备的操作主要涉及枚举设备、音视频设备索引编号、色彩格式、帧率、图像分辨率等。接下来着重对这些参数的使用做介绍。

9.2.1 查看设备列表

	FFmpeg可以直接从系统中采集摄像头、桌面、麦克风等设备。在采集数据之前，首先需要知道当前系统都支持哪些设备。

	ffmpeg -devices

	可以查看当前macOS支持的设备，输出如下：

	Devices:

	D. = Demuxing supported

	.E = Muxing supported

	--

	D avfoundation AVFoundation input device

	D lavfi Libavfilter virtual input device

	D qtkit QTKit input device

	从输出的信息中可以看到，通过ffmpeg -devices查看的信息分为以下两大部分：

	・解封装或封装的支持情况

	・设备列表

	设备列表部分列出了3个设备：avfoundation、lavfi和qtkit。本章将重点介绍avfoundation，关于其他两种的使用方法可以参考8.11节，本章不再介绍。

9.2.2 设备采集举例

	在使用avfoundation操作设备采集之前，需要枚举avfoundation支持的输入设备。可以通过如下命令查看：

	ffmpeg -f avfoundation -list_devices true -i ""

	命令执行之后，结果如下：

	[AVFoundation input device @ 0x7f96a0500460\] AVFoundation video devices:

	[AVFoundation input device @ 0x7f96a0500460\] [0] FaceTime HD Camera (Built-in)

	[AVFoundation input device @ 0x7f96a0500460\] [1] Capture screen 0

	[AVFoundation input device @ 0x7f96a0500460\] AVFoundation audio devices:

	[AVFoundation input device @ 0x7f96a0500460\] [0] Built-in Microphone

	从输出的信息中可以看到，当前系统中包含以下3个设备。

	视频输入设备：

	・[0] FaceTime HD Camera (Built-in)

	・[1] Capture screen 0

	音频输入设备：

	・[0] Built-in Microphone

	avfoundation除了枚举物理摄像头（FaceTime高清相机）以外，还包括了 1 个虚拟设备（Capture screen 0设备代表了macOS桌面）。下面演示在macOS上采集摄像头、桌面、系统麦克风和桌面的例子。

	（1）采集内置摄像头

	在有些实时沟通场景中会用到摄像头，苹果计算机本身带有内置摄像头，通过FFmpeg可以直接获得摄像头，并将摄像头内容录制下来或者直播推出去。录制命令如下：

	ffmpeg -f avfoundation -framerate 30 -s 640x480 -i "FaceTime HD Camera (Built-in)" out.mp4

	命令执行后会生成out.mp4视频文件，播放out.mp4的效果如图9-9所示。

	从图9-4可以看到，FFmpeg从苹果计算机摄像头采集到了图像。

	[image:]

	图9-4 macOS采集摄像头示例

	（2）采集macOS桌面

	从设备列表中知道，FFmpeg除了可以获得macOS的摄像头以外，还可以获得桌面图像。获得桌面图像的命令如下：

	ffmpeg -f avfoundation -i "Capture screen 0" -r:v 30 out.mp4

	命令行执行后会录制桌面的图像为out.mp4。播放out.mp4的效果如图9-5所示。

	[image:]

	图9-5 macOS采集桌面示例

	参数Capture screen 0指定了桌面为输入设备。与x11grab的方式类似，也可以录制鼠标，在macOS上通过capture_cursor来指定。

	ffmpeg -f avfoundation -capture_cursor 1 -i "Capture screen 0" -r:v 30 out.mp4

	命令行执行后会将桌面图像带上鼠标一起录制下来。播放out.mp4来验证一下，如图9-6所示。

	[image:]

	图9-6 macOS桌面图像带鼠标采集

	从图9-6可以看到，播放的视频中包含了鼠标的图像，已经高亮圈起来了。

	（3）采集麦克风

	使用FFmpeg的avfoundation除了可以获得图像，还可以获得音频数据，从avfoundation的设备列表中可以看到能够识别麦克风。接下来考虑采集音频和视频，然后只对音频进行录制。avfoundation通过设备名采集方式采集图像的方式已经介绍过，现在使用设备号的方式进行举例。

	ffmpeg -f avfoundation -framerate 30 -s 1280x720 -i "0:0" out.aac

	通过参数“0:0”分别指定第0个视频设备、第0个音频设备。输出的信息如下：

	Input #0, avfoundation, from '0:0':

	 Duration: N/A, start: 18846.215533, bitrate: N/A

	 Stream #0:0: Video: rawvideo (UYVY / 0x59565955), uyvy422, 1280x720, 30 tbr, 1000k tbn, 1000k tbc

	 Stream #0:1: Audio: pcm_f32le, 44100 Hz, stereo, flt, 2822 kb/s

	Output #0, adts, to 'out.aac':

	 Stream #0:0: Audio: aac (LC), 44100 Hz, stereo, fltp, 128 kb/s

	Stream mapping:

	Stream #0:1 -> #0:0 (pcm_f32le (native) -> aac (native))

	Press [q] to stop, [?] for help

	size= 187kB time=00:00:11.76 bitrate= 130.0kbits/s speed=1.01x

	如以上输出信息所示，采集的数据包含了视频rawvideo数据和音频pcm_f32le数据，但是输出只有AAC的编码数据。

	除了这个方法以外，还可以使用设备索引参数指定设备采集。

	ffmpeg -f avfoundation -framerate 30 -s 1280x720 -video_device_index 0 -i ":0" out.aac

	ffmpeg -f avfoundation -framerate 30 -s 1280x720 -video_device_index 0 -audio_device_index 0 -i "" out.aac

	这两条FFmpeg命令与前面的一条效果相同。至此，macOS下用avfoundation采集音视频设备的方法介绍完毕。

9.3 Windows设备采集

	Windows下采集设备的主要方式是dshow、vfwcap、gdigrab，其中dshow可以用来采集摄像头、采集卡、麦克风等设备，vfwcap主要用来采集摄像头类设备，gdigrab则用来抓取Windows窗口程序。

9.3.1 使用dshow采集音视频设备

	（1）使用dshow枚举设备

	我们可以使用dshow来枚举当前系统上存在的音视频设备，这些设备主要是摄像头、麦克风。命令如下：

	ffmpeg.exe -f dshow -list_devices true -i dummy

	输出如下：

	[dshow @ 0048e620] DirectShow video devices (some may be both video and audio devices)

	[dshow @ 0048e620] "Integrated Camera"

	[dshow @ 0048e620] Alternative name

	"@device_pnp_\\?\usb#vid_04f2&pid_b2ea&mi_00#7&6fe2ea7&0&0000#{65e8773d-8f56-11d0-a3b9-00a0c9223196}global"

	[dshow @ 0048e620] DirectShow audio devices

	[dshow @ 0048e620] "麦克风 (High Definition Audio设备)"

	[dshow @ 0048e620] Alternative name

	"@device_cm_{33D9A762-90C8-11D0-BD43-00A0C911CE86}\麦克风 (High Definition Audio设备)"

	第1行的提示“some may be both video and audio devices”告诉我们，有些视频设备也同时具备音频输出能力。

	（2）使用dshow展示摄像头

	我们可以尝试打开设备，并使用ffplay来展示我们的摄像头。

	ffplay.exe -f dshow -video_size 1280x720 -i video="Integrated Camera"

	其中video_size指定了视频分辨率，为摄像头支持采集的分辨率值，video="Integrated Camera"指定了需要采集的摄像头名称。摄像头输出效果如图9-7所示。

	（3）将摄像头数据保存成MP4

	可以通过如下命令把摄像头和计算机播放的声音录制为MP4文件，原理就是打开两个设备，一个为摄像头，另一个为麦克风声音采集设备。

	ffmpeg.exe -f dshow -i video="Integrated Camera" -f dshow -i audio="麦克风 (High Definition Audio设备)" out.mp4

	指定了FFmpeg默认的音频和视频编码方式，也可以参照前面章节来指定适合自己的音视频编码方式，如H.264、AAC等。预览画面如图9-8所示。

	[image:]

	▲图9-7 dshow展示摄像头

	[image:]

	▲图9-8 dshow录制摄像头

9.3.2 使用vfwcap采集视频设备

	在Windows平台上，可以使用vfwcap采集摄像头，但是这种方式已经过时了。虽然FFmpeg也提供了支持，但还是推荐使用dshow采集摄像头和麦克风。

	vfwcap主要支持两个参数video_size、framerate，分别指示采集图像大小和帧率。

	（1）使用vfwcap枚举支持采集的设备

	ffmpeg.exe -f vfwcap -i list

	输出如下：

	[vfwcap @ 004fe280] Driver 0

	[vfwcap @ 004fe280] Microsoft WDM Image Capture (Win32)

	[vfwcap @ 004fe280] Version: 6.1.7601.17514

	list: I/O error

	从输出的内容可以看出，vfwcap只枚举了一个设备，虚拟摄像头不在其中，这说明vfwcap的使用有一定的局限性。

	（2）使用vfwcap生成MP4

	ffmpeg.exe -f vfwcap -i 0 -r 25 -vcodec libx264 out.mp4

	通过-i指定待录像的摄像头索引号，-r则指定需要录像的帧率，vcodec指定录像视频的编码格式，输出为out.mp4。预览画面如图9-9所示。

	[image:]

	图9-9 vfwcap录制摄像头

9.3.3 使用gdigrab采集窗口

	在Windows平台上，FFmpeg支持采集基于gdi的屏幕采集设备，这个设备同时支持采集显示器的某一块区域。gdigrab支持的主要参数如表9-5所示。

	gdigrab主要有两种输入方式：desktop和title=*window_title*，其中desktop代表采集整个桌面，而title=*window_title*则是采集标题为“*window_title*”的窗口。下面分别介绍gdigrab采集桌面和窗口。

	表9-5 gdigrab主要参数

	[image:]

	（1）使用gdigrab采集整个桌面

	ffmpeg.exe -f gdigrab -framerate 6 -i desktop out.mp4

	若需要录制整个桌面，只需要简单地指定输入对象为desktop即可。输出画面预览如图9-10所示。

	[image:]

	图9-10 gdigrab采集整个桌面

	（2）使用gdigrab采集某个窗口

	ffmpeg.exe -f gdigrab -framerate 6 -i title=ffmpeg out.mp4

	当需要录制某个窗口时，可根据窗口标题来查找窗口，即通过-i title来指定。需要注意的是，在录制期间，应该尽量避免调整录制窗口的大小，这可能会导致画面异常。输出预览画面如图9-11所示。

	（3）使用gdigrab录制带偏移量的窗口

	ffmpeg.exe -f gdigrab -framerate 6 -offset_x 50 -offset_y 50 -video_size 400x400 -i title=ffmpeg out.mp4

	通过offset_x和offset_y分别指定x和y坐标的偏移，当指定x或y方向的偏移时，需要指定video_size，否则参数无效，仍然录制整个窗口。输出预览画面如图9-12所示。

	[image:]

	▲图9-11 gdigrab采集指定窗口

	[image:]

	▲图9-12 gdigrab采集带偏移量的窗口

9.4 小结

	通过本章的学习，我们可以了解Linux、macOS、Windows上的设备采集方式，涉及fbdev、v4l2、x11grab、avfoundation、dshow、vfwcap、gdigrab等。这些设备用于提供实时音视频源，为后续处理提供实时媒体内容。设备是音视频最先触达的地方，通常可以设置原始采集的分辨率、帧率等信息，这些“原始”的信息对于音视频的质量至关重要。

下篇

API使用及开发

	上篇介绍了视频、音频、流媒体相关知识，重点介绍了FFmpeg命令行的使用方法。但在有些场景下需要直接调用FFmpeg的源码，接下来我们介绍FFmpeg API的调用方法。在介绍使用FFmpeg的API之前，为了方便读者查询API对应的代码，首先介绍FFmpeg的代码结构目录，读者可以先从FFmpeg的官方代码库下载一份代码。

	git clone git://source.ffmpeg.org/ffmpeg.git

	看一看FFmpeg的源代码有哪些文件和目录，如下图所示。

	[image:]

	从中可以看到，FFmpeg目录包含FFmpeg库代码目录、构建工程目录、自测子系统目录等。具体内容如下。

	・libavcodec：主要包含编码、解码的框架与子模块代码。

	・libavdevice：主要包含输入、输出外设框架与设备模块代码。

	・libavfilter：主要包含滤镜模块与视频、音频、字幕的特效处理模块代码。

	・libavformat：主要包含封装、解封装、传输协议的框架与子模块代码。

	・libavutil：主要包含 FFmpeg 提供的基础组件，比如加密解密算法、内存管理代码。

	・libswresample：主要包含音频的采样与重采样处理相关的代码。

	・libswscale：主要包含视频图像缩放与色彩转换等处理相关的代码。

	・libpostproc：视频后处理库。

	・fftools：主要包含ffmpeg、ffprobe、ffplay应用程序的代码。

	・tests：主要包含FFmpeg项目的自动化自测子系统。

	・ffbuild、compat：用以做FFmpeg工程构建的目录。

	・doc：主要包含FFmpeg的通用框架的参数、各模块参数的文档，API说明文档以及提供给API用户作为API使用用例的参考代码。

	以FFmpeg最为常用的两个场景（转码和播放）为例，其路径以及使用的库的关系如下图。

	[image:]

	一方面，我们会在后面的内容中以FFmpeg的API为基础，构建类似上面的媒体处理路径，当我们知道FFmpeg的源代码目录中都包含哪些内容之后，在使用FFmpeg的API做开发并遇到问题时，可以通过查看源代码来了解更多、更详细的内部实现来加深理解。另一方面，FFmpeg的结构和API众多，但只要我们抓住重点，有的放矢，就能提纲挈领，灵活使用。作者也不建议读者前期以面面俱到、滴水不漏的方式来学习上述内容，而是建议先抓住核心，后面在碰到实际问题时，再从本书或者FFmpeg的代码中进一步学习。

第10章

libavformat接口的使用

	libavformat 是 FFmpeg 中处理音频、视频和字幕等封装和解封装的通用框架，内置了大量多媒体格式的Muxer和Demuxer，它支持AVInputFormat输入容器和AVOutputFormat输出容器，同时也支持基于网络的一些流媒体协议，如HTTP、RTSP、RTMP等。

	本章主要介绍FFmpeg的媒体格式处理、协议封装与解封装的API函数使用方法，以libavformat的API使用为主，分别介绍封装、解封装、转封装等。在介绍API之前，我们先看看AVFormat的全景。作为处理各种媒体容器格式的库，libavformat（FFmpeg内部一般简写为lavf）的两个主要作用如下：

	・解封装，即把一个媒体文件分割成单独的流，以及逆过程封装，其以指定的容器格式写入提供的数据。
avformat_network_init()用于对网络库进行全局初始化。在新版本的FFmpeg中它是可选的，而且也不再推荐。这个函数当前存在的目的只是解决旧版本GnuTLS或OpenSSL库的线程安全问题。如果libavformat被链接到GnuTLS或OpenSSL库的新版本，那么调用这个函数是不必要的，否则，需要在任何使用它们的其他线程启动之前调用这个函数。一旦移除对旧版本GnuTLS和OpenSSL库的支持，这个函数将被废弃。
	・它还有一个I/O模块，支持访问数据的不同协议（如文件、TCP、HTTP等）。在老版本的库中，也建议调用avformat_network_init()
	 [image: avformat_network_init()用于对网络库进行全局初始化。在新版本的FFmpeg中它是可选的，而且也不再推荐。这个函数当前存在的目的只是解决旧版本GnuTLS或OpenSSL库的线程安全问题。如果libavformat被链接到GnuTLS或OpenSSL库的新版本，那么调用这个函数是不必要的，否则，需要在任何使用它们的其他线程启动之前调用这个函数。一旦移除对旧版本GnuTLS和OpenSSL库的支持，这个函数将被废弃。]，除非确定不会使用libavformat的网络功能。

	一个支持的输入格式由AVInputFormat结构描述，反之，一个输出格式由AVOutputFormat描述。可以使用av_demuxer_iterate/av_muxer_iterate()函数遍历所有支持的输入/输出格式。需要注意的是，协议层不是公共API的一部分，所以只能通过avio_enum_protocols()函数获得支持的协议名称。

	用于封装和解封装的核心数据结构是AVFormatContext，它包含所有关于正在读取或写入的文件的信息。与大多数libavformat的结构一样，它的大小不是公共ABI的一部分，所以它不能被分配到堆栈或直接用av_malloc()分配。要创建一个AVFormatContext，通常使用avformat_ alloc_context()函数，或者一些其他内部包含AVFormatContext申请操作相关的函数，如avformat_open_input()，这些函数会执行对应的创建。这意味着虽然可以访问AVFormatContext的内部字段，但是需要使用特定的API去创建并销毁它。

	一个AVFormatContext最重要的部分如下：

	・输入（AVInputFormat）或输出（AVOutputFormat）格式。输入格式要么是由FFmpeg的内部机制自动检测，要么是由用户人为设置；而输出则需要由用户来设置。如果是读音视频直播流，可以使用FFmpeg内部实现的探测功能探测，或者如果用户已经预先知道媒体流传输的格式，也可以自行设置；而对于输出场景，则只能自行设置了。
stream即流，它指的是连续流动的数据，这个词非常形象。一个流只包含一种数据（如音频、视频或隐藏式字幕）。
	・一个AVStream数组，它描述了文件中存储的所有基本流（这明显借用了MPEG2的概念elementary stream，从这里也可以看到MPEG2标准对FFmpeg的影响）。AVStream通常使用它们在这个数组中的索引以被引用。一般情况下，加载了容器头部之后就可以访问它的流
	 [image: stream即流，它指的是连续流动的数据，这个词非常形象。一个流只包含一种数据（如音频、视频或隐藏式字幕）。]（把流看作最基本的音频和视频数据）。AVStream实际上也建立了流和具体的编解码格式的关联，这个在后面会看到。

	・一个I/O上下文AVIOContext *pb。输入场景下，它要么由lavf在内部打开，要么由用户手动设置；输出场景下，则总是由用户来设置（除非处理的是AVFMT_NOFILE格式）。

	・priv_data。从层次上讲，解封装和封装模块分为两层，底层是具体容器格式的内部维护的封装、解封装结构，如FLVContext、MOVContext等，其关联则由AVFormatContext. priv_data来建立。

	注意：FFmpeg 6.0版本做了大量的内部结构封装，将结构体中用于FFmpeg内部处理流程的成员变量提取到FFStream、FFFormatContext结构体中，用户不能直接在外部使用该结构中的成员变量。

	以AVFormatContext为核心的几个重要结构体之间的关系如图10-1所示。

	[image:]

	图10-1 AVFormatContext与其他重要结构体之间的关系

	另外，可以使用AVOptions机制来设置lavf封装器和解封装器。FFmpeg提供了以下3种设置的方式：

	・通用的（与格式无关的）libavformat Options由AVFormatContext提供，它们可以通过在AVFormatContext上调用av_opt_next()/av_opt_find()（或通过avformat_ get_class()获得其AVClass）从用户程序中检查。

	・当且仅当相应格式结构的AVInputFormat.priv_class/AVOutputFormat.priv_ class非空时，私有（格式特定）Options由AVFormatContext.priv_data提供。

	・Options可以由I/O上下文（如果其AVClass为非NULL）和协议层提供。

	AVOptions相关操作会在本书后面讨论。

	libavformat中的URL字符串由一个scheme/protocol、一个冒号“:”和一个scheme特定的字符串组成。不含scheme和冒号“:”的URL曾经被用于本地文件访问模式，但现在已经被弃用，而应该使用“file:”这样的方式来访问本地文件，这将本地文件、远程链接及设备文件等资源的访问方式很好地统一了起来。

10.1 媒体流封装

	媒体流封装（Muxing）过程主要指以AVPackets的形式获取编码后的数据后，以指定的容器格式将其写入文件或以其他方式输出到字节流中。Muxing实际执行的主要API调用流程如下：

	・初始化，avformat_alloc_output_context2()

	・创建媒体流（如果有的话），avformat_new_stream()

	・写文件头，avformat_write_header()

	・写数据包，av_write_frame()/av_interleaved_write_frame()

	・写文件尾部信息并释放内部资源，av_write_trailer()

	在Muxing过程的起始阶段，调用者必须创建一个格式上下文AVFormatContext。然后，调用者通过填写该上下文中的不同字段来设置Muxer。在实际的操作中，一般使用avformat_ alloc_output_context2()函数，它在创建格式上下文AVFormatContext的同时，也会将oformat字段设置好并适当地初始化。其中AVFormatContext的重要字段如下：

	・oformat字段必须被设置，以选择将要使用的Muxer。如果使用avformat_alloc_output_ context2()函数，AVFormatContext的oformat字段将被设置。

	・除非格式是AVFMT_NOFILE类型，否则pb字段必须被设置为一个已打开的I/O上下文，该I/O上下文可以是由avio_open2()返回的，也可以是自定义的方式。

	・除非格式是AVFMT_NOSTREAMS类型，否则必须用avformat_new_stream()函数创建至少一个流。调用者应该填写流的编解码器参数信息，如编解码器类型、ID和其他已知参数（如宽度、高度、像素格式或采样格式等）。流的时间基准（即AVStream-> time_base）应该被设置为调用者希望使用这个流的时间基准（注意，Muxer实际使用的时间基准可能不同，比如MP4格式有一个全局的时间基准，但每个内部流也可以覆盖这个全局的时间基准而单独设置）。

	・建议手动初始化AVCodecParameters中的相关字段，而不是在Remuxing的时候使用avcodec_parameters_copy()，原因是不能保证编解码器上下文的值对输入和输出格式的上下文都有效。

	・调用者可以填写额外的信息，如全局或每个流的元数据、章节、节目表等，细节可以参考AVFormatContext的内部字段信息。这些信息是否会实际存储在输出中，取决于容器格式和Muxer支持的信息。
它们之间的区别主要在于写入容器格式时Audio和Video的交织由谁来保证，一般而言，建议使用av_interleaved_write_ frame()，除非明确指定音视频的同步方式，才调用av_write_frame()。另外，它们中只能有一个用于单个Muxer上下文，而不应该混合调用，否则结果不可预测。av_interleaved_write_frame()的一个参数控制Audio和Video最大的偏移量，这个参数是max_interleave_delta，默认值是10秒，意思是Video最多缓存10秒的数据，如果等不到Audio，就会强制输出。有时，若Muxing出现一个延迟，不妨调整一下这个参数或者改成基于av_write_frame()并自行控制流之间的同步关系。
	当Muxing的上下文环境被完全设置好后，调用者使用avformat_write_header()初始化Muxer的内部结构并写入文件头。在这一步是否真的有东西被写入I/O上下文，取决于具体的Muxer的内部实现，但这个函数必须被调用。任何Muxer的私有选项必须在这个函数的选项参数中传递。随后通过重复调用av_write_frame()或av_interleaved_write_frame()
	 [image: 它们之间的区别主要在于写入容器格式时Audio和Video的交织由谁来保证，一般而言，建议使用av_interleaved_write_ frame()，除非明确指定音视频的同步方式，才调用av_write_frame()。另外，它们中只能有一个用于单个Muxer上下文，而不应该混合调用，否则结果不可预测。av_interleaved_write_frame()的一个参数控制Audio和Video最大的偏移量，这个参数是max_interleave_delta，默认值是10秒，意思是Video最多缓存10秒的数据，如果等不到Audio，就会强制输出。有时，若Muxing出现一个延迟，不妨调整一下这个参数或者改成基于av_write_frame()并自行控制流之间的同步关系。]将数据发送并写入Muxer。请注意，发送到Muxer的数据包上的时间信息必须映射到相应的AVStream的时间基准中，原因是数据包的时间基准与Muxer对应的流的时间基准可能并不相同，所以这里需要做一个时间基准的转换。

	一旦所有数据被写入完成，调用者必须调用av_write_trailer()来刷新任何缓冲的数据包并最终确定输出文件，然后关闭I/O上下文（如果有的话），最后用avformat_free_context()释放Muxing的上下文结构。使用FFmpeg的API进行Muxing操作的主要步骤如上所述，比较简单，流程如图10-2所示。

	[image:]

	图10-2 文件Muxing接口调用流程

	下面通过代码详细说明一下。示例代码位于doc/examples/muxing.c文件，也可以通过FFmpeg官方网站demo查看。

	1）API使用声明。在使用FFmpeg的API之前，要根据将要支持的功能分析使用的FFmpeg的API属于哪个部分。在使用API之前，需要引用一些必要的头文件，最重要的是头文件libavformat/avformat.h，其他部分依据实际需要引用。

	#include <stdlib.h>

	#include <stdio.h>

	#include <string.h>

	#include <math.h>

	#include <libavutil/channel_layout.h> //音频声道布局操作

	#include <libavutil/opt.h> //设置操作选项

	#include <libavutil/mathematics.h> //数学相关操作

	#include <libavutil/timestamp.h> //对时间戳操作

	#include <libavformat/avformat.h> //封装与解封装操作

	#include <libswscale/swscale.h> //缩放、转换颜色格式操作

	#include <libswresample/swresample.h> //音频采样率操作

	2）申请AVFormatContext。在FFmpeg API使用封装格式相关的操作时，需要使用AVFormatContext作为容器格式操作的上下文操作句柄。在这个例子中，使用avformat_alloc_ output_context2()来完成，这个函数主要是在avformat_alloc_context()的基础上增加了根据格式名字、文件名等推断输出格式的逻辑，并将AVOutputFormat与AVFormatContext关联起来。

	AVOutputFormat *fmt;

	AVFormatContext *oc;

	avformat_alloc_output_context2(&oc, NULL, "flv", filename);

	if (!oc) {

	 printf("cannot alloc flv format\n");

	 return 1;

	}

	fmt = oc->oformat;

	3）申请AVStream。根据实际的需要，申请将要写入的AVStream流，这主要由函数avformat_ new_stream()完成。在FFmpeg中，AVStream流主要用于存放音频、视频、字幕数据流。在我们的例子中，只增加了Video流而没有其他，所以只使用了一次avformat_new_stream()。

	AVStream *st;

	AVCodecContext *c;

	st = avformat_new_stream(oc, NULL);

	if (!ost->st) {

	 fprintf(stderr, "Could not allocate stream\n");

	 exit(1);

	}

	st->id = oc->nb_streams-1;

	至此，因为需要将Codec的参数与AVStream的参数进行对应，可以根据视频的实际编码参数对AVCodecContext进行设置。

	c->codec_id = codec_id

	c->bit_rate = 400000;

	c->width = 352;

	c->height = 288;

	st->time_base = (AVRational){ 1, 25 };

	c->time_base = st->time_base;

	c->gop_size = 12;

	c->pix_fmt = AV_PIX_FMT_YUV420P;

	为了兼容新版本FFmpeg的AVCodecParameters结构，需要做一个参数的复制操作，这里使用的是avcodec_parameters_from_context()，这样，AVStream就能够正确地感知到对应Codec的相关信息。

	/* 从输入的AVCodecContext结构体中将音视频流相对应的参数复制到AVCodecParameter中 */

	ret = avcodec_parameters_from_context(ost->st->codecpar, c);

	if (ret < 0) {

	 printf("Could not copy the stream parameters\n");

	 exit(1);

	}

	这样，相关参数设置就基本结束了。可以通过av_dump_format()接口转储（dump）参数信息，以检查相关设置是否如预期。这个函数会打印有关输入或输出格式的详细信息，如持续时间、码率、流、容器、节目、元数据、边数据（side data）和时间基准。

	4）写入目标容器头信息。有了前面的操作，一切准备就绪，万事俱备，可以开始真正执行容器格式封装操作了。在操作封装格式时，有些封装格式有头部信息需要写入，所以在FFmpeg写封装数据时，需要先写封装格式的头部，这由avformat_write_header()完成。但实际上，avformat_ write_header()不仅会写入容器格式的头部信息，它还有一个很重要的作用是用来初始化Muxer并分配其私有数据，所以即使对应的封装格式不需要真实地写入头部信息，也需要调用该函数。

	ret = avformat_write_header(oc, &opt);

	if (ret < 0) {

	 printf("Error occurred when opening output file: %s\n",av_err2str(ret));

	 return 1;

	}

	5）写入数据。在FFmpeg操作数据包时，一般情况下，被压缩后的一帧或者多帧（多帧主要出现在Audio场景下）使用AVPacket结构存储音视频数据，AVPacket结构中包含了PTS、DTS、Data等信息。数据在写入封装格式中时，会根据封装的特性对对应的信息进行写入。这里需要注意的是需要确定好AVPacket和AVStream的对应关系，及其时间基准的转换问题。

	AVFormatContext *ifmt_ctx = NULL;

	AVIOContext* read_in = avio_alloc_context(inbuffer, 32 * 1024,0,NULL, get_input_buffer, NULL,NULL);

	if (read_in == NULL)

	 goto end;

	ifmt_ctx->pb = read_in;

	ifmt_ctx->flags = AVFMT_FLAG_CUSTOM_IO;

	if ((ret = avformat_open_input(&ifmt_ctx, "h264", NULL, NULL)) < 0)

	{

	 av_log(NULL, AV_LOG_ERROR, "Cannot get h264 memory data\n");

	 return ret;

	}

	while(1) {

	 AVPacket pkt = { 0 };

	 av_init_packet(&pkt);

	 ret = av_read_frame(ifmt_ctx, &pkt);

	 if (ret < 0)

	 break;

	 /* 根据AVCodecContext获得的timebase

	 与AVStream的timebase做一次针对AVPacket的时间戳的重新计算 */

	 av_packet_rescale_ts(pkt, *time_base, st->time_base);

	 pkt->stream_index = st->index;

	 /* Write the compressed frame to the media file. */

	 return av_interleaved_write_frame(fmt_ctx, pkt);

	}

	如上段代码所示，从内存中读取数据，需要通过avio_alloc_context接口中获得的buffer与AVFormatConext相关联，然后像操作文件一样进行操作即可。接下来就可以从AVFormatContext中获得packet，并通过av_packet_rescale_ts将读取的packet的PTS转换成以写入的AVStream的timebase为基准，最后将packet通过av_interleaved_write_frame写入输出的封装格式中。

	6）写容器尾信息。在写入数据即将结束时，将进行收尾工作，写入封装格式的结束标记等，如FLV的sequence end标识等。

	av_write_trailer(oc);

	加上对应的资源释放操作之后，一个完整的媒体流封装程序就完成了。

10.2 媒体流解封装

	在视频播放、转码及转封装中，视频媒体文件的解封装（Demuxing）是最基本的操作。一般而言，解封装过程需要读取一个媒体文件并将其分割成若干数据块（数据包，在FFmpeg中使用AVPacket表示），一个数据包包含一个或多个属于一个基本流的编码帧。在lavf的API中，这个过程先使用函数avformat_open_input()打开一个文件，然后使用av_read_frame()循环读取每一个数据包，最后由函数avformat_close_input()执行清理操作。其基本步骤如下。

	1）打开一个媒体文件。打开一个文件所需的最基本的信息是URL，它被传递给avformat_ open_input()，代码如下：

	const char *url = "file:in.mp3";

	AVFormatContext *s = NULL;

	int ret = avformat_open_input(&s, url, NULL, NULL);

	if (ret < 0)

	 abort();

	上面的代码分配了一个AVFormatContext，打开指定的文件（自动检测格式）并读取文件头，把存储在那里的信息输出到s中。有些格式没有文件头或者没有存储足够的信息，建议调用avformat_find_stream_info()函数，该函数试图读取并解码一些帧来获取更多的信息。

	在某些情况下，你可能想用avformat_alloc_context()预分配一个AVFormatContext，并在把它传递给avformat_open_input()之前对它做一些调整。其中一种情况是你想使用自定义I/O函数来读取输入数据，而不是使用内部I/O层。要做到这一点，可用avio_alloc_context()创建你自己的AVIOContext，把你的读取回调函数传递给它，然后将AVFormatContext的pb字段设置为新创建的AVIOContext，这样可以由调用方接管对应的I/O操作。由于打开的文件的格式一般在avformat_open_input()返回后才知道，所以不可能在预先分配的上下文中设置Demuxer私有选项。取而代之的是，这些选项应该被放入AVDictionary中并传递给avformat_ open_input()。

	AVDictionary *options = NULL;

	av_dict_set(&options, "video_size", "640x480", 0);

	av_dict_set(&options, "pixel_format", "rgb24", 0);

	if (avformat_open_input(&s, url, NULL, &options) < 0)

	 abort();

	av_dict_free(&options);

	这段代码将私有选项video_size和pixel_format传递给解封装器。它们对于raw video类型的Demuxer来说是必要的，因为它不知道如何解释原始视频数据。如果格式与原始视频不同，这些设置的选项将不会被对应的解封装器所识别，因此也将不会被应用。这些未被识别的选项将被返回到选项字典中（已识别的选项则被消耗，这使得调用方有机会检查哪些选项被正确设置了），调用程序可以按照自己的意愿处理这些未被识别的选项。例如：

	AVDictionaryEntry *e;

	if (e = av_dict_get(options, "", NULL, AV_DICT_IGNORE_SUFFIX)) {

	 fprintf(stderr, "Option %s not recognized by the demuxer.\n", e->key);

	 abort();

	}

	在完成读取文件后，必须用对应的avformat_close_input()关闭它。它将释放所有与该文件相关的内容。

	2）从一个打开的文件中读取数据。从容器格式获取数据的过程是从打开的AVFormatContext中，通过重复调用av_read_frame()来完成的。对于每次调用，如果成功，将返回一个AVPacket，其包含一个从AVStream中解析出来的编码数据，对应的流由AVPacket.stream_index标识。如果调用者希望对数据进行解码，这个数据包可以直接传递给libavcodec解码函数avcodec_send_ packet()或avcodec_decode_subtitle2()。获取AVPacket后，AVPacket.pts、AVPacket. dts和AVPacket.duration这些时间信息可能被设置；如果流不提供这些信息，它们也可以不被设置（即pts/dts为AV_NOPTS_VALUE，duration时间为0）。时间信息是以AVStream.time_ base为单位的，即必须乘以时间基准才能转换为我们更常用的基于秒的计数方式。

	由av_read_frame()返回的数据包总是包含引用计数，即AVPacket.buf被设置，用户可以无限期地保留它。当不再需要该数据包时，必须用av_packet_unref()释放它。av_read_ frame()会返回一个流里的下一帧。这个函数按照帧返回存储在文件中的内容，但并不保证这个帧对于解码器来说可以正确解码，这意味着这个函数是从流的角度来确定是否为完整的帧，而非从解码器正确解码的角度。该函数把存储在文件中的内容分成若干帧，每次调用时返回一个，且不会省略在两个有效帧之间的无效数据（非帧数据），这是为了给解码器提供尽可能多的信息以用于解码。一旦成功，返回的数据包将被引用计数（pkt->buf被设置）。当不再需要该数据包时，必须用av_packet_unref()释放它。对于视频，该数据包正好包含一个帧。对于音频来说，如果每个帧有一个已知的固定大小（例如PCM或ADPCM数据），它包含整数数目的帧。如果音频帧是可变大小（如MPEG音频），那么它就包含一个帧。pkt->pts、pkt->dts和pkt->duration总是被设置为以AVStream.time_base为单位值（如果格式不能提供，则可由内部推测而来）。函数返回0表示成功获取数据，出现错误或文件结束时返回小于0的值。如果出错，pkt将是空的（就像它来自av_packet_alloc()一样）。视频文件解封装常见API操作步骤如图10-3所示。

	[image:]

	图10-3 文件解封装操作步骤

	下面通过代码详细解析每一个解封装操作的步骤。具体的代码demo可以在FFmpeg源代码的doc/examples/demuxing_decoding.c中进行查看，也可以通过以下FFmpeg官方网站demo查看：http://ffmpeg.org/doxygen/trunk/demuxing_decoding_8c-example.html。

	3）构建AVFormatContext。首先需要声明输入的封装结构体，然后设置输入文件或者输入流媒体的地址。

	static AVFormatContext *fmt_ctx = NULL;

	/* 打开输入文件, 并且申请AVFormatContext结构体 */

	if (avformat_open_input(&fmt_ctx, input_filename, NULL, NULL) < 0) {

	 fprintf(stderr, "Could not open source file %s\n", input_filename);

	 exit(1);

	}

	如代码所示，通过avformat_open_input()接口尝试打开input_filename并挂载至fmt_ctx结构里，之后即可对fmt_ctx进行操作。

	4）查找音视频流信息。在将输入封装与AVFormatContext结构做好关联之后，即可通过avformat_find_stream_info()从AVFormatContext中建立输入文件的对应的流信息。avformat_find_stream_info()是FFmpeg中比较复杂的函数之一，内部执行了大量的操作，甚至会尝试解码。在访问网络文件时，它还有被阻塞的可能，这时候，需要使用自定义的I/O操作及自定义超时回调来处理，以更好地控制相关的逻辑。另外，在一些播放器场景下，有时为了减少这个函数的探测时间，可以根据自己的场景调整以下AVFormatContext字段再进行探测。

	・probesize：为了确定流属性，从输入中读取的最大字节数。

	・max_analyze_duration：从输入中读取数据的最大持续时间（以AV_TIME_BASE为单位）。可以设置为0，让avformat使用启发式方法选择，也可以自己调整。

	・fps_probe_size：用于确定帧率的帧数，默认FFmpeg使用20帧来探测帧率。

	avformat_find_stream_info()所执行的行为颇多，主要包含如下几个：

	・读取媒体文件的音视频包以获取流信息，一般用于avformat_open_input()函数之后。在avformat_open_input()函数中会调用对应输入文件格式的read_header()回调函数，如FLV格式的flv_read_header()函数来读取文件头。由于FLV格式的头比较简单，只能知道是否存在音频流和视频流，而无法获取流的编码信息，因此，对于FLV格式来说该函数就非常重要。该函数会读取FLV文件中的音视频包并尝试解码，以从这些包中获知流的编解码信息。对于没有文件头的MPEG格式来说存在同样的情况。

	・这个函数还能在MPEG的重复帧模式下计算真实的帧率。

	・这个函数不会改变文件访问的逻辑位置（即程序访问文件时的文件偏移offset），那些读取并用来执行检测的数据包将会被缓存起来，留作后续处理使用。

	・这个函数的参数AVDictionary **options如果不为空，那么该参数是一个AVDictionary列表，第几个AVDictionary就作用于AVFormatContext.nb_streams的第几个流。如果在对应的流中找不到相应的选项，函数返回时，该参数中还会保留没有找到的选项。

	・它不会保证打开所有的编解码器，因此，在函数返回时，选项非空是一个正常的行为。

	/* 尝试获得音视频流信息 */

	if (avformat_find_stream_info(fmt_ctx, NULL) < 0) {

	 fprintf(stderr, "Could not find stream information\n");

	 exit(1);

	}

	如代码所示，从fmt_ctx中获得音视频流信息。

	5）读取音视频流。获得音视频流信息之后，即可通过av_read_frame()从fmt_ctx中读取音视频流数据包，将音视频流数据包读取出来并存储至AVPacket中，然后对AVPacket包进行判断，确定是音频、视频，还是字幕数据等。接下来进行解码，或进行数据存储等后续操作。

	/* 初始化AVPacket结构体, 将data成员的内存初始化为NULL,

	 后面在解封装格式的时候由demuxer来填充 */

	av_init_packet(&pkt);

	pkt.data = NULL;

	pkt.size = 0;

	/* read frames from the file */

	while (av_read_frame(fmt_ctx, &pkt) >= 0) {

	 AVPacket orig_pkt = pkt;

	 do {

	 ret = decode_packet(&got_frame, pkt);

	 if (ret < 0)

	 break;

	 pkt.data += ret;

	 pkt.size -= ret;

	 } while (pkt.size > 0);

	 av_packet_unref(&orig_pkt);

	}

	如代码所示，通过循环调用av_read_frame读取fmt_ctx中的数据至pkt中，然后解码pkt，如果读取fmt_ctx中的数据结束，则退出循环，开始执行结束操作。在上面代码中，还有一个有意思的地方来自av_init_packet()函数，它很明显是用于初始化AVPacket的，但又不改变AVPacket.data和AVPacket.size字段，原因在于FFmpeg的历史代码依赖了这个行为，虽然看着奇怪，但好在FFmpeg即将废弃这个函数。

	6）收尾。执行结束操作，主要是关闭输入文件及释放资源等。

	avformat_close_input(&fmt_ctx);

	到这里，解封装操作的主要步骤的介绍就告一段落。

10.3 文件转封装

	视频文件转封装（Remuxing）操作，即将媒体文件或媒体流从一种封装格式转换为另外一种封装格式，如从FLV格式转换为MP4格式。本节将根据前两节所描述的封装与解封装的过程介绍转封装操作。下面看一下转封装所调用接口的流程，如图10-4所示。

	[image:]

	图10-4 文件Remuxing接口调用流程

	转封装本身是前两节的一个综合，根据10.1节、10.2节介绍的封装与解封装操作，即可完成一个完整的转封装操作。关于实际的代码demo，可以在FFmpeg源代码的doc/examples/remuxing.c中进行查看，也可以通过FFmpeg官方网站demo查看：http://ffmpeg.org/ doxygen/trunk/remuxing_ 8c-example.html。转封装主要步骤如下。

	1）构建输入AVFormatContext。打开输入文件并与AVFormatContext建立关联，这个部分前面已经提及，不再赘述。

	AVFormatContext *ifmt_ctx = NULL;

	if ((ret = avformat_open_input(&ifmt_ctx, in_filename, 0, 0)) < 0) {

	 fprintf(stderr, "Could not open input file '%s'", in_filename);

	 goto end;

	}

	2）查找流信息。建立关联之后，与解封装操作类似，可以通过接口avformat_find_stream_ info获得流的信息。

	if ((ret = avformat_find_stream_info(ifmt_ctx, 0)) < 0) {

	 fprintf(stderr, "Failed to retrieve input stream information");

	 goto end;

	}

	3）构建输出AVFormatContext。打开输入文件之后，可以打开输出文件并与AVFormatContext建立关联。

	AVFormatContext *ofmt_ctx = NULL;

	avformat_alloc_output_context2(&ofmt_ctx, NULL, NULL, out_filename);

	if (!ofmt_ctx) {

	 fprintf(stderr, "Could not create output context\n");

	 ret = AVERROR_UNKNOWN;

	 goto end;

	}

	4）申请AVStream。建立关联之后，需要申请输入的stream信息与输出的stream信息。输入stream信息可以从ifmt_ctx中获得，但是输出部分的流的信息需要申请并关联至ofmt_ctx。

	AVStream *out_stream = avformat_new_stream(ofmt_ctx, in_stream->codec->codec);

	if (!out_stream) {

	 fprintf(stderr, "Failed allocating output stream\n");

	 ret = AVERROR_UNKNOWN;

	}

	5）复制stream信息。输出的stream信息建立之后，需要从输入的stream中将信息复制到输出的stream中。由于本节重点介绍转封装，所以stream的信息不变，仅仅改变封装格式。

	ret = avcodec_copy_context(out_stream->codec, in_stream->codec);

	if (ret < 0) {

	 fprintf(stderr, "Failed to copy context from input to output stream codec context\n");

	}

	在新版本的FFmpeg中，AVStream中的AVCodecContext被逐步弃用，而是使用AVCodecParameter，所以在新版本的FFmpeg中一般需要增加以下操作步骤：

	ret = avcodec_parameters_from_context(out_stream->codecpar, out_stream->codec);

	if (ret < 0) {

	 fprintf(stderr, "Could not copy the stream parameters\n");

	}

	6）写文件头信息。打开输出文件之后，根据前面章节中介绍的封装部分，接下来可以进行写文件头操作。

	ret = avformat_write_header(ofmt_ctx, NULL);

	if (ret < 0) {

	 fprintf(stderr, "Error occurred when opening output file\n");

	}

	7）数据包读取和写入。输入与输出均已经打开并与对应的AVFormatContext建立关联，接下来可以从输入格式中读取数据包，然后将数据包写入输出文件中。当然，基于输入的封装格式与输出的封装格式的差异，时间戳也需要进行对应的映射。

	while (1) {

	 AVStream *in_stream, *out_stream;

	 ret = av_read_frame(ifmt_ctx, &pkt);

	 if (ret < 0)

	 break;

	 in_stream = ifmt_ctx->streams[pkt.stream_index];

	 out_stream = ofmt_ctx->streams[pkt.stream_index];

	 /* copy packet */

	 pkt.pts = av_rescale_q_rnd(pkt.pts,

	 in_stream->time_base,

	 out_stream->time_base,

	 AV_ROUND_NEAR_INF|AV_ROUND_PASS_MINMAX);

	 pkt.dts = av_rescale_q_rnd(pkt.dts,

	 in_stream->time_base,

	 out_stream->time_base,

	 AV_ROUND_NEAR_INF|AV_ROUND_PASS_MINMAX);

	 pkt.duration = av_rescale_q(pkt.duration,

	 in_stream->time_base,

	 out_stream->time_base);

	 pkt.pos = -1;

	 ret = av_interleaved_write_frame(ofmt_ctx, &pkt);

	 if (ret < 0) {

	 fprintf(stderr, "Error muxing packet\n");

	 break;

	 }

	 av_packet_unref(&pkt);

	}

	8）写文件尾信息。解封装读取数据并将数据写入新的封装格式中的操作已经完毕，接下来写文件尾至输出格式中。

	av_write_trailer(ofmt_ctx);

	9）收尾。输出格式写完之后即可关闭输入格式并释放输出格式。

	avformat_close_input(&ifmt_ctx);

	avformat_free_context(ofmt_ctx);

	这样，转封装操作也介绍完了。它本身是解封装与封装操作的结合，并没有引入太多新的知识，但是一个极好的例子，让我们再次回顾了解封装与封装的流程。

10.4 视频截取

	在日常处理视频文件时，经常需要对视频片段进行截取，而FFmpeg可以支持该功能（确切地讲，seek功能需要底层的容器格式支持，以MPEG-TS格式为例，FFmpeg就没有相应的seek操作支持，在这种情况下，需要使用方自行实现其seek操作），处理方式与转封装类似，流程上主要是多了视频的时间定位，以及截取视频长度的接口调用av_seek_frame()。截取视频的步骤如图10-5所示。

	[image:]

	图10-5 截取视频的步骤

	从步骤中可以看到中间加入了av_seek_frame()调用，可以参考av_seek_frame()接口的说明。

	int av_seek_frame(AVFormatContext *s, int stream_index, int64_t timestamp, int flags);

	可以看到，seek接口中包含以下4个参数：

	・AVFormatContext，为句柄。

	・stream_index，为流索引，如果stream_index是−1，会选择一个默认的流，时间戳会自动从以AV_TIME_BASE为单位转换为流的特定时间基准。

	・timestamp，为seek到的时间戳，时间戳以AVStream.time_base为单位，如果没有指定流则以AV_TIME_BASE为单位。

	・flags，用于设定seek操作的方向以及模式。

	而在传递flags参数时，可以设置多种seek策略。下面看一下flags对应的多种策略的宏定义。

	#define AVSEEK_FLAG_BACKWARD 1

	#define AVSEEK_FLAG_BYTE 2

	#define AVSEEK_FLAG_ANY 4

	#define AVSEEK_FLAG_FRAME 8

	flags包含上述4种策略，其意义如下：

	・从前向后查找，定位到请求的timestamp之前最近的关键帧。

	・根据字节位置进行查找，按照文件的位置（可能不被所有的解封装器支持）。

	・定位至非关键帧查找，非关键帧将被视为关键帧（可能不被所有的解封装器支持）。

	・根据帧位置查找，在内部，帧的序号实际上被映射成了时间戳，时间戳以stream_index所映射的流的时间基准为单位（可能不被所有解封装器支持）。如果stream_index为−1，则以AV_TIME_BASE为单位。

	实际上，FFmpeg还提供了另外一个增强版本的seek函数avformat_seek_file()，如果理解了上面的av_seek_frame()，理解这个也不复杂。

	int avformat_seek_file(AVFormatContext *s, int stream_index, int64_t min_ts, int64_t ts, int64_t max_ts, int flags);

	在播放器拖动时常见的查找策略为AVSEEK_FLAG_BACKWARD，这种方式虽然定位并不非常精确，但是因为能准确定位到一个靠前的关键帧，所以能够很好地避免解码相关问题。另外需要注意，如果支持seek操作，需要对应的封装格式支持，例如MP4格式，调用av_seek_frame()截取视频时，会调用底层的mov_read_seek()。下面示例部分的代码对转封装一节的代码进行了改动，主要的修改是在av_read_frame()前调用了av_seek_frame()。

	由上面的描述可以看到，seek操作一般没有达到精确到帧的粒度，如果需要帧粒度精确的seek，通常是分为两个步骤，第1步使用类似AVSEEK_FLAG_BACKWARD方式，找到对应帧前面的IDR帧，第2步使用解码的方式来获取对应帧的YUV。这种容器格式的seek结合解码的方式，在视频剪接中比较常见。

	下面看一下通过seek操作实现文件截取的部分示例代码。

	av_seek_frame(ifmt_ctx, ifmt_ctx->streams[pkt.stream_index], ts_start, AVSEEK_FLAG_BACKWARD);

	while (1) {

	 AVStream *in_stream, *out_stream;

	 ret = av_read_frame(ifmt_ctx, &pkt);

	 if (ret < 0)

	 break;

	 in_stream = ifmt_ctx->streams[pkt.stream_index];

	 out_stream = ofmt_ctx->streams[pkt.stream_index];

	 if (av_compare_ts(pkt.pts, in_stream->time_base, 20, (AVRational){1, 1 }) >= 0)

	 break;

	 /* copy packet */

	 pkt.pts = av_rescale_q_rnd(pkt.pts,

	 in_stream->time_base,

	 out_stream->time_base,

	 AV_ROUND_NEAR_INF|AV_ROUND_PASS_MINMAX);

	 pkt.dts = av_rescale_q_rnd(pkt.dts,

	 in_stream->time_base,

	 out_stream->time_base,

	 AV_ROUND_NEAR_INF|AV_ROUND_PASS_MINMAX);

	 pkt.duration = av_rescale_q(pkt.duration,

	 in_stream->time_base,

	 out_stream->time_base);

	 pkt.pos = -1;

	 ret = av_interleaved_write_frame(ofmt_ctx, &pkt);

	 if (ret < 0) {

	 fprintf(stderr, "Error muxing packet\n");

	 break;

	 }

	 av_packet_unref(&pkt);

	}

	从代码实现中可以看到，除了av_seek_frame()之外，还多了一个辅助函数av_compare_ ts()，它用来比较是否到达设置的截取长度，时间长度为20秒。注意，上面只是一个截取操作的粗略版本，可能并不能满足真实的需要，特别是不满足帧级别的截取操作的要求。

10.5 AVIO以及示例

	AVIO相关操作被称为Buffered I/O operation，之前也被称为ByteStream I/O。其核心结构是AVIOContext，其内部则是封装了一个结构URLContext并加上了对应的缓存操作。URLContext是一个不带缓冲的I/O结构，如读取操作实际是调用底层的I/O接口，主要用于统一不同文件的I/O API而已。AVIOContext在URLContext的基础上带上缓冲相关的管理，这样做的好处是可以加快I/O处理效率，减少I/O次数。假设我们请求的是网络数据，如果读取1字节也要发起一次网络请求的话，将使得I/O效率大大降低。在这种情况下可以预先申请一块buff并提前填充好，当请求的数据小于buff中缓存的数据时，直接在buff中复制就好了，这样可极大地提高处理性能。但需要注意，缓冲操作也带来了一些复杂度，FFmpeg中有些Bug就与带缓存的I/O管理密切相关。从实现上讲，这里的I/O操作实际上分为3层，最底层是前面提及的文件（file）、网络（TCP、UDP、HTTP、HTTPS等）、管道（pipe）这些具体的本地文件、网络传输协议等；中间层则以URLContext为核心，统一到一个以URL格式为基准的操作上，其操作主要是调用底层的具体的支撑函数；最上层则是AVIOContext，它在URLContext的基础上增加了缓存相关操作。AVIO与AVFormatContent和URLContext的基本关系如图10-6所示。

	[image:]

	图10-6 AVIO与AVFroamtContent和URLContext的基本关系

	AVIO在底层支持通用的文件、网络I/O等操作，但并未支持基于内存的I/O操作，在有些应用场景中需要从内存数据中读取H.264数据，然后将H.264数据封装为FLV或者MP4格式，使用FFmpeg的libavformat中的AVIO自定义方法即可以达到该目的。这种从内存中直接操作数据的方法，常用于可以得到编码后的视频数据或音频数据，然后将数据直接通过FFmpeg封装到文件中。我们通过扩展基于内存的读写I/O支持，来熟悉AVIO的基本原理。示例代码可以参考FFmpeg自带的例子avio_reading.c，也可以从FFmpeg官网中获得。

	这个实现并不复杂，只要定义你自己的回调方法和缓冲区，然后告诉FFmpeg如何使用它们，就可以接管其I/O操作。Muxing内存数据的API调用步骤如图10-7所示。

	如图10-7所示，从内存中读取数据的操作主要通过avio_ alloc_context注册自己的回调函数，回调接口在本节定义为read_packet。内存数据操作的主要步骤如下。

	[image:]

	图10-7 AVIO内存数据操作接口调用步骤

	1）读一个文件到内存。首先尝试将一个裸文件读取到内存中，FFmpeg提供了函数av_file_map()，如函数名所暗示的那样，这个函数读取文件名为filename的文件，并将其内容放入新分配的缓冲区，或者在可用的情况下用mmap()进行映射。成功读取数据后，将bufptr设置为读取的或映射完成的缓冲区，并将size设为bufptr中缓冲区的字节大小。与mmap()不同的是，这个函数对零大小的文件也能映射成功，在这种情况下，bufptr将被设置为NULL，size将被设置为0。其返回的缓冲区必须用匹配的av_file_unmap()函数释放。

	struct buffer_data {

	 uint8_t *ptr;

	 size_t size; ///< size left in the buffer

	};

	struct buffer_data bd = { 0 };

	char *input_filename;

	size_t buffer_size;

	uint8_t *buffer = NULL;

	ret = av_file_map(input_filename, &buffer, &buffer_size, 0, NULL);

	if (ret < 0)

	 return ret;

	bd.ptr = buffer;

	bd.size = buffer_size;

	如代码所示，通过av_file_map将输入的文件input_filename中的数据映射到内存buffer中。

	2）申请AVFormatContext。内存映射完毕后可以申请一个AVFormatContext，然后可以将AVIO操作的句柄挂载在AVFormatContext中。

	AVFormatContext *fmt_ctx = NULL;

	if (!(fmt_ctx = avformat_alloc_context())) {

	 ret = AVERROR(ENOMEM);

	 return ret;

	}

	因为FFmpeg框架中针对AVFormatContext进行操作将会非常方便，所以可以将数据挂载在AVFormatContext中，然后使用FFmpeg进行操作。

	3）申请AVIOContext。申请AVIOContext，同时将内存数据读取的回调函数实现注册给AVIOContext。

	avio_ctx_buffer = av_malloc(avio_ctx_buffer_size);

	if (!avio_ctx_buffer) {

	 ret = AVERROR(ENOMEM);

	 return ret;

	}

	avio_ctx_buffer_size = 4096;

	avio_ctx = avio_alloc_context(avio_ctx_buffer,

	 avio_ctx_buffer_size, 0,

	 &bd, &read_packet, NULL, NULL);

	if (!avio_ctx) {

	 ret = AVERROR(ENOMEM);

	 return ret;

	}

	fmt_ctx->pb = avio_ctx;

	如代码所示，内部缓冲区的大小由实现者按照实际需要决定，示例中内部缓冲区设置为 4k（avio_ctx_buffer_size = 4096），然后通过使用接口avio_alloc_context申请AVIOContext内存，申请的时候注册内存数据读取的回调接口read_packet，然后将申请的AVIOContext句柄挂载至之前申请的AVFormatContext中，接下来就可以对AVFormatContext进行操作了。

	注意：使用av_malloc()和av_free()等FFmpeg的内部内存管理函数来分配和释放你的缓冲区，原因是FFmpeg会对它分配的内存进行对齐操作，这使得缓冲I/O的操作更可控。另外，释放的时候首先释放缓冲区，然后释放AVIOContext，并确保使用的是原始的buffer指针。而且，即使你实现了自定义I/O操作，也不要在多个线程中同时调用avformat_open_input()。

	4）打开AVFormatContext。基本的自定义I/O操作已经注册完成，接下来与文件操作相同，使用avformat_open_input打开输入的AVFormatContext。

	ret = avformat_open_input(&fmt_ctx, NULL, NULL, NULL);

	if (ret < 0) {

	 fprintf(stderr, "Could not open input\n");

	 return ret;

	}

	与常规的打开文件不同，由于是从内存读取数据，所以是直接读取read_packet中的数据，在调用avformat_open_input时不需要传递输入文件。

	5）查看音视频流信息。打开AVFormatContext之后，可以通过avformat_find_stream_ info获得内存中数据的多媒体相关信息。

	ret = avformat_find_stream_info(fmt_ctx, NULL);

	if (ret < 0) {

	 fprintf(stderr, "Could not find stream information\n");

	 return ret;

	}

	6）读取帧。获得信息之后，可以尝试通过av_read_frame来获得内存中的数据，并尝试将关键帧打印出来。

	while (av_read_frame(fmt_ctx, &pkt) >= 0) {

	 if (pkt.flags & AV_PKT_FLAG_KEY) {

	 fprintf(stderr, "pkt.flags = KEY\n");

	 }

	}

	帧读取之后，就可以实现自己想要的操作了，如后期处理、转封装等操作。其资源释放操作的注意事项已在前面提及，主要是注意释放顺序和主导权。

	到这里，扩展AVIO的内存数据读取操作的介绍告一段落。

10.6 AVPacket常用操作

	通过前面的几个例子可以看到，在操作音视频数据时会频繁用到AVPacket这个结构体，但是比较有趣的是AVPacket的所有操作在FFmpeg项目中属于libavcodec层的操作，所以packet.h文件是被放在libavcodec目录里的。在使用FFmpeg的接口时，也可能不希望使用FFmpeg内置的方法来申请内存与存储音视频包，而是使用既有的buffer填充给AVPacket以进行操作，这种情况使得对于内存的管理更加灵活。AVPacket结构体存储压缩后的数据，通常有两种情况出现：一是由Demuxer导出，然后作为输入传给解码器；二是作为编码器的输出，然后传给Muxer。对于视频来说，它通常应包含一个压缩帧；对于音频来说，它可能包含几个压缩帧。另外，编码器也允许输出空包，而没有压缩数据，只包含side data（例如，在编码结束后更新一些流相关的参数）。

	AVPacket.data的生命周期取决于buf字段。如果它被设置，数据包是动态分配的，并且一直有效，直到调用av_packet_unref()将引用计数减少到0。如果buf字段没有被设置，av_packet_ ref()将进行复制而不是增加引用计数。side data总是由av_malloc()分配，由av_packet_ ref()复制，由av_packet_unref()释放。另外，在FFmpeg中，sizeof(AVPacket)作为公共ABI的一部分已被废弃，所以使用方的代码不能依赖sizeof(AVPacket)。一旦av_init_packet()被移除，新的数据包将只能用av_packet_alloc()分配，新的字段可能会被添加到该结构体的末端。若要操作AVPacket，需要先了解AVPacket的内部内容，其重要的字段如表10-1所示。

	表10-1 AVPacket的重要字段

	[image:]

	[image:]

	关于AVPacket结构的内存，我们通过图示来加深理解，如图10-8所示。

	[image:]

	图10-8 AVPacket结构

	了解AVPacket之后，操作AVPacket在FFmpeg内部也提供了一套自有的流程，同时提供了方便操作的接口，主要接口如表10-2所示。

	表10-2 AVPacket的主要接口

	[image:]

	[image:]

	[image:]

	为了加深对接口的理解，下面举个例子具体说明。先看看如下代码：

	#include <stdio.h>

	#include <stdlib.h>

	#include <inttypes.h>

	#include <string.h>

	#include "libavcodec/avcodec.h"

	#include "libavutil/error.h"

	static int setup_side_data_entry(AVPacket* avpkt)

	{

	 const uint8_t *data_name = NULL;

	 int ret = 0, bytes;

	 uint8_t *extra_data = NULL;

	 /* 获得side_data_name字符串 */

	 data_name = av_packet_side_data_name(AV_PKT_DATA_NEW_EXTRADATA);

	 /* 申请内存空间 */

	 bytes = strlen(data_name);

	 if(!(extra_data = av_malloc(bytes))){

	 ret = AVERROR(ENOMEM);

	 fprintf(stderr, "Error occurred: %s\n", av_err2str(ret));

	 exit(1);

	 }

	 /* 从side_data_name复制内存数据到extra_data */

	 memcpy(extra_data, data_name, bytes);

	 /* 为AVPacket申请side_data */

	 ret = av_packet_add_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,

	 extra_data, bytes);

	 if(ret < 0){

	 fprintf(stderr,

	 "Error occurred in av_packet_add_side_data: %s\n",

	 av_err2str(ret));

	 }

	 return ret;

	}

	static int initializations(AVPacket* avpkt)

	{

	 const static uint8_t* data = "selftest for av_packet_clone(...)";

	 int ret = 0;

	 /* 为AVPacket设置默认值 */

	 avpkt->pts = 17;

	 avpkt->dts = 2;

	 avpkt->data = (uint8_t*)data;

	 avpkt->size = strlen(data);

	 avpkt->flags = AV_PKT_FLAG_DISCARD;

	 avpkt->duration = 100;

	 avpkt->pos = 3;

	 ret = setup_side_data_entry(avpkt);

	 return ret;

	}

	int main(void)

	{

	 AVPacket *avpkt = NULL;

	 AVPacket *avpkt_clone = NULL;

	 int ret = 0;

	 /* 演示av_packet_alloc接口操作 */

	 avpkt = av_packet_alloc();

	 if(!avpkt) {

	 av_log(NULL, AV_LOG_ERROR, "av_packet_alloc failed to allcoate AVPacket\n");

	 return 1;

	 }

	 /* 初始化AVPacket操作 */

	 if (initializations(avpkt) < 0) {

	 printf("failed to initialize variables\n");

	 av_packet_free(&avpkt);

	 return 1;

	 }

	 /* 演示av_packet_clone接口操作 */

	 avpkt_clone = av_packet_clone(avpkt);

	 if(!avpkt_clone) {

	 av_log(NULL, AV_LOG_ERROR,"av_packet_clone failed to clone AVPacket\n");

	 return 1;

	 }

	 /* 演示av_grow_packet接口操作 */

	 if(av_grow_packet(avpkt_clone, 20) < 0){

	 av_log(NULL, AV_LOG_ERROR, "av_grow_packet failed\n");

	 return 1;

	 }

	 if(av_grow_packet(avpkt_clone, INT_MAX) == 0){

	 printf("av_grow_packet failed to return error "

	 "when \"grow_by\" parameter is too large.\n");

	 ret = 1;

	 }

	 /* 演示av_new_packet接口操作的极限值 */

	 if(av_new_packet(avpkt_clone, INT_MAX) == 0){

	 printf("av_new_packet failed to return error "

	 "when \"size\" parameter is too large.\n");

	 ret = 1;

	 }

	 /* 演示av_packet_from_data接口操作的极限值 */

	 if(av_packet_from_data(avpkt_clone, avpkt_clone->data, INT_MAX) == 0){

	 printf("av_packet_from_data failed to return error "

	 "when \"size\" parameter is too large.\n");

	 ret = 1;

	 }

	 /* 收尾清理AVPacket */

	 av_packet_free(&avpkt_clone);

	 av_packet_free(&avpkt);

	 return ret;

	}

	为了方便读者理解和测试，代码中加入了一些注释。有几个需要注意的操作方式。有些场景下并不会使用AVPacket的数据申请流程来申请data，而是自己读取一段内存数据并将数据挂载到AVPacket进行操作。可以不用av_new_packet来申请buf或者data的内存空间，但是前面的av_packet_alloc还是需要的，只是如果这里的buf或者data想要指向第三方data内存区域的话，最好使用av_packet_from_data。

	int av_packet_from_data(AVPacket *pkt, uint8_t *data, int size);

	为什么推荐使用av_packet_from_data做data挂载，而不是直接把AVPacket的data、buf指向我们自己读到的data内存空间呢？将数据挂载到AVPacket的主要目的是使用FFmpeg的API及其内部流程，如果将data指向第三方用户自己申请的内存空间，将会缺少data指向buf的操作，buf是有PADDING空间预留的。内部实现如下：

	pkt->buf = av_buffer_create(data, size + AV_INPUT_BUFFER_PADDING_SIZE,av_buffer_default_free, NULL, 0);

	这个AV_INPUT_BUFFER_PADDING_SIZE在后续做AVPacket的数据分析时可能会出现crash错误，因为FFmpeg内部的parser在解析数据的时候做了一些优化，会有一些额外的开销，FFmpeg的codec模块会预读一段数据，会因为内存越界而出现crash错误。所以最好还是使用av_packet_from_data来做数据的挂载操作。

10.7 小结

	本章通过使用FFmpeg AVFormat相关的API对文件进行了封装和解封装，总结了对应API的使用流程，同时介绍了AVIO、AVPacket相关知识点。AVIO在自定义数据源方面或者自定义I/O操作时非常重要，它偶尔也会引起一些麻烦，熟悉它的原理和使用流程往往可以把事情化繁为简，同时它也体现了FFmpeg设计上对可扩充性的一个考量。而AVPacket和AVFrame是FFmpeg中最经常使用的结构，其重要性自然不言而喻。

第11章

libavcodec接口的使用

	libavcodec为音视频的编解码提供了通用的框架，它包含了大量的编码器和解码器，这些编码器、解码器不仅可以用于音频、视频的编解码，还能用于处理字幕流，典型如使用libavcodec的H.264、H.265的编解码，AAC的编解码功能等。本章主要介绍FFmpeg的编解码器、编码与解码的API函数使用方法，重点介绍API使用，分别介绍视频流解码为YUV、视频原始YUV编码为H.264；而音频编解码部分则介绍AAC解码为PCM、音频PCM编码为AAC编码格式等。截至本书编写时，FFmpeg已经更新到6.1版本，其已经完全废弃了旧的编解码API，考虑到还有很多产品使用FFmpeg的旧版本，其对旧接口的支持可能需要有一个迁移过程，所以本章会同时对旧API和新API的使用方式都进行细致讲解，但建议读者尽早迁移到新API上来。

	使用libavcodec库需要了解两个重要的结构体，分别是AVCodec和AVCodecContext，前者主要表征编解码器的实现，后者则是表征编解码器的运行时信息，即程序运行时当前Codec使用的上下文，着重于所有Codec共有的属性（并且是在程序运行时才能确定的值），其中的codec字段和具体的AVCodec相关联，而priv_data关联具体AVCodec实例的私有运行时的信息。需要注意的是在FFmpeg 6.0以后，AVCodec对FFmpeg内部使用的与Codec信息相关的结构体成员进行了封装，命名为FFCodec。我们在前面的AVFormat库中曾经遇到过，这是一个典型的C代码实现抽象的方式。以H.264解码器为例，如图11-1所示。

	打开H.264解码器，其解码上下文会在Codec中指向ff_h264_decoder，priv_data则指向H.264解码器的私有运行时的上下文H264Context。

	[image:]

	图11-1 AVCodec运行时的关系

11.1 旧接口的使用

	在FFmpeg 5.0之前，编译FFmpeg或者编译调用FFmpeg的编解码接口实现的功能时，常常会遇到编译告警，告警内容为“调用的编码接口或者解码接口是被弃用的接口”。虽然这些接口在旧版本的FFmpeg中还可以使用，但是到FFmpeg 5.0的时候已经真正被弃用。在编写本节时，因为还有很大一部分FFmpeg用户还在使用旧版本的接口及旧版本的FFmpeg，所以本节依然会介绍FFmpeg旧接口对音视频的编解码操作。需要再次提醒的是，如果已经升级到FFmpeg 5.0及以上版本，这些接口实际上已经不可用，请参考本章后面部分，升级使用新接口。

11.1.1 视频解码旧接口

	使用FFmpeg开发播放器和转码功能，需要首先了解解码部分的关键步骤。本小节将重点介绍使用FFmpeg的旧API（接口）进行视频解码。下面介绍一下使用FFmpeg的旧API进行视频解码的步骤，而新API的变动会在相应的地方提及，有些流程在旧API这里依然保留了。具体的流程如图11-2所示。

	[image:]

	图11-2 视频解码API调用流程

	图11-2中几点重要的步骤已经罗列出来，下面重点描述API使用。详细的代码实现可以参考FFmpeg 4.0源代码的doc/examples/demuxing_decoding.c文件，或FFmpeg官方在线代码。

	1）FFmpeg的API注册函数。在使用API之前，需要注册使用FFmpeg的接口，这与使用libavformat基本相同，而在新API中，注册过程的API已经被剔除，所以不再需要调用av_ register_all了。

	2）查找解码器。为了便于理解解码API的使用，这里基于libavformat接口使用前一章的解封装的示例进行举例，但增加解码方面的操作步骤。解码之前一般需要根据封装中的视频编码压缩相关信息，查找对应的解码器，而在实际的使用中，如果不知道Codec ID，而是想按照名称找到对应的解码器的话，也可以使用另一个函数avcodec_find_decoder_by_name。下面是两种找到解码器的API，分别是按照Codec ID和名称查找对应的解码器。为什么提供两个不同的函数？原因是一个Codec ID可以对应多个不同的Codec实现，这种情况下需要使用Codec的名称去指定对应的Codec，而查找的依据则是具体Codec实现的AVCodec.name，以前面的H.264 Decoder的例子而言，就是“h264”。

	/**

	 * Find a registered decoder with a matching codec ID.

	 *

	 * @param id AVCodecID of the requested decoder

	 * @return A decoder if one was found, NULL otherwise.

	 */

	const AVCodec *avcodec_find_decoder(enum AVCodecID id);

	/**

	 * Find a registered decoder with the specified name.

	 *

	 * @param name name of the requested decoder

	 * @return A decoder if one was found, NULL otherwise.

	 */

	const AVCodec *avcodec_find_decoder_by_name(const char *name);

	下面的例子采用的是通过Codec ID找到解码器，如果一个Codec ID对应多个不同的Codec实现，它会返回其中的默认解码器。

	AVCodecContext *dec_ctx;

	AVStream *st = fmt_ctx->streams[stream_index];

	AVCodec *dec = NULL;

	dec = avcodec_find_decoder(st->codecpar->codec_id);

	if (!dec) {

	 fprintf(stderr, "Failed to find %s codec\n",

	 av_get_media_type_string(type));

	 return AVERROR(EINVAL);

	}

	其流程比较简单，首先从输入的AVFormatContext中得到对应的Stream，然后从Stream的codecpar（为AVCodecParameters类型）根据编码器的Codec ID获得对应的Decoder。

	3）申请AVCodecContext。获得Decoder之后，根据AVCodec申请其运行上下文AVCodecContext，avcodec_alloc_context3的内部会将Decoder挂载在AVCodecContext下，并对分配的AVCodecContext进行相应的初始化。

	dec_ctx = avcodec_alloc_context3(dec);

	if (!*dec_ctx) {

	 fprintf(stderr, "Failed to allocate the %s codec context\n", av_get_media_type_string(type));

	 return AVERROR(ENOMEM);

	}

	前面提及，AVCodecContext是非常重要的结构，所以需要熟悉它的各个字段，比如解码器的一些特定的设置，需要在申请AVCodecContext之后但在真正打开解码器之前设置好。

	这里特别提及解码加速的支持，FFmpeg支持两类解码加速，分别为以frame为粒度和以slice为粒度的解码加速。以FFmpeg H.264解码器为例，它就实现了这两类加速方式，用ffmpeg -h decoder=h264命令可以看到其线程加速能力为“Threading capabilities: frame and slice”。能采用frame粒度加速的原因在于，H.264分为I、P、B帧，其中I、P被用作参考帧，B帧常被用作非参考帧。并行算法对于完全不相关的数据能并行处理，即对作为非参考帧的B帧才能并行处理。可以采用这种并行算法，判断帧的类型并且把帧分配给不同的核进行处理。H.264之后的其他高级视频编码标准类似，每一帧都能分成一个或者多个slice。slice的目的是增强传输出错时的鲁棒性，一旦传输出现错误，没有出错的slice并不会受到影响，这样视频显示质量的下降就会比较有限。一帧的各个slice间是相互独立的，也就是说在执行熵解码、预测等各种解码操作时，slice间并不相互依赖。有了数据上的独立，就能对它们进行并行解码了。

	如果我们想更好地控制加速，需要设置好AVCodecContext的两个字段。

	 /**

	 * thread count

	 * is used to decide how many independent tasks should be passed to execute()

	 * - encoding: Set by user.

	 * - decoding: Set by user.

	 */

	 int thread_count;

	 /**

	 * Which multithreading methods to use.

	 * Use of FF_THREAD_FRAME will increase decoding delay by one frame per thread,

	 * so clients which cannot provide future frames should not use it.

	 *

	 * - encoding: Set by user, otherwise the default is used.

	 * - decoding: Set by user, otherwise the default is used.

	 */

	 int thread_type;

	#define FF_THREAD_FRAME 1 ///< Decode more than one frame at once

	#define FF_THREAD_SLICE 2 ///< Decode more than one part of a single frame at once

	特别是在多核心的场景下，设置合适的解码线程类型和数量是一个值得考虑的问题。有时，包括FFmpeg命令行本身，其线程数目的设置策略也并不是特别合适；另外，过多的基于frame的线程也会引入解码延迟，这在低延迟场景下可不是好事。

	4）同步AVCodecParameters参数。FFmpeg获得的音视频相关编码信息是存储到AVCodecParameters中的（还记得前面多次提及的avformat_find_stream_info()函数吗？），需要将AVCodecParameters的参数同步至AVCodecContext中，这个函数会根据提供的编解码器参数的值，即AVCodecParameters的各个字段来填充编解码器上下文AVCodecContext。任何在编解码器中分配的字段，只要在AVCodecParameters中有相应的字段，就会被释放并被替换为AVCodecParameters中相应字段的副本，而其他字段则不会被触及。

	avcodec_parameters_to_context(*dec_ctx, st->codecpar);

	5）打开解码器。设置解码器参数之后，接下来需要使用avcodec_open2打开解码器，如函数名字所暗示的一样，简单而直接。

	if ((ret = avcodec_open2(*dec_ctx, dec, NULL) < 0) {

	 fprintf(stderr, "Failed to open %s codec\n", av_get_media_type_string(type));

	 return ret;

	}

	6）解码。调用av_read_frame之后，可以对读到的AVPacket进行解码，解码后的数据存储在frame中即可。

	av_read_frame返回的数据包在下一次调用av_read_frame()或av_close_input_file()之前都是有效的，必须用av_free_packet释放。另外，FFmpeg内部保证了数据解析的完整性，确切地讲：对于视频来说，av_read_frame返回的数据包正好包含一个帧；对于音频来说，如果每个帧有一个已知的固定大小（例如PCM或ADPCM数据），它包含一个整数个数的帧。如果音频帧是可变大小的（例如MPEG音频），那么它就包含一个帧。这意味着av_read_frame能确保返回的数据一定是完整个数的帧，这大大减轻了处理码流时的解析工作。

	AVCodecContext *video_dec_ctx = dec_ctx;

	AVFrame *frame = av_frame_alloc();

	AVPacket pkt;

	while (av_read_frame(pFormatCtx, &pkt)>=0) {

	 ret = avcodec_decode_video2(video_dec_ctx, frame, got_frame, &pkt);

	 if (ret < 0) {

	 fprintf(stderr, "Error decoding video frame (%s)\n", av_err2str(ret));

	 return ret;

	 }

	}

	avcodec_decode_video2将一个视频帧从AVPacket中解码成图片，解码后的帧被存储在AVFrame中。got_frame表示是否有帧被成功解码，如果没有帧可以被解压，则为0，否则为非0。

	通常来说，一个packet会被解码为一个frame，不过也存在一个packet解码出多个frame或者多个packet才能解码出一个frame的情况。另外，有些解码器也可能因为内部缓存导致输出延迟。因此原来的API在某种程度上并没有完全覆盖这些场景。新的API提供一个输入packet的接口及输出frame的接口，调用者可以不必了解解码器的内部具体细节，只需要了解这两个接口的调用规则，就能写出适用于所有解码器的代码。从这里也可以窥见FFmpeg的编解码从旧API改为新API的意图。

	7）帧存储。解码之后，数据将会被存储在frame中，接下来可以对frame中的数据进行操作，例如将数据存储到文件中，或者转换为硬件输出的buffer支持的格式等。解码的最终目的是将压缩的数据解码为类似yuv420p格式的非压缩数据。

	/* copy decoded frame to destination buffer: */

	/* this is required since rawvideo expects non aligned data */

	av_image_copy(video_dst_data, video_dst_linesize, (const uint8_t **)(frame->data), frame->linesize, pix_fmt, width, height);

	/* write to rawvideo file */

	fwrite(video_dst_data[0], 1, video_dst_bufsize, video_dst_file);

	解码后的数据通过av_image_copy将frame中的数据复制到video_dst_data中，然后将数据写入输出的文件中，这个文件同样可以为SDL的输出buffer或者Framebuffer等，为以后的缩放、滤镜操作、编码等做准备。

	另外一个常见的问题是，解码结束后不能完整获取尾部的几个帧，在这种情况下，需要显式地传递NULL给avcodec_decode_video2，以告诉解码器需要刷新内部缓存的frame。在实际操作中，这个参数可以是NULL，也可以是AVPacket，但AVPacket的数据字段设置为NULL，大小字段设置为0。发送这个刷新包预示着流的结束，如果解码器仍有缓冲的帧，将会返回缓冲的数据帧。

	8）收尾。解码操作完成之后，接下来就要释放之前申请过的资源，释放之后，解码操作即完成。

11.1.2 视频编码旧接口

	使用FFmpeg开发屏幕截取录制功能或者对摄像头采集的图像进行推流，均需要编码。使用FFmpeg对图像进行编码比较简单，其基本流程与视频解码操作流程类似，但也有一些细微的差别。本小节将介绍视频编码的相关关键操作，其细微差异之处也会提及。编码基本流程如图11-3所示。

	[image:]

	图11-3 视频编码API调用流程

	前面解码示例是基于解封装之后的解码，而本小节编码操作举例则直接使用YUV文件开始其编码操作，而非与封装操作关联。为避免重复，会跳过前面已经介绍过的知识，只着重介绍编码相关API的使用。详细的代码可以参考FFmpeg 4.0源代码目录中的doc/examples/decoding_encoding.c文件，或参考在线代码https://ffmpeg.org/doxygen/trunk/decoding_encoding_8c-example.html。下面介绍一下编码操作的主要步骤。

	1）查找编码器。在使用编码器之前，首先需要通过接口avcodec_find_encoder找到想使用的编码器。当然，与前面解码器的使用一样，也支持按照Codec ID和名称查找对应的编码器。示例中使用Codec ID找到对应的编码器。

	AVCodec *codec;

	codec = avcodec_find_encoder(codec_id);

	if (!codec) {

	 fprintf(stderr, "Codec not found\n");

	 exit(1);

	}

	设置查找 AVCodec 时，上面是通过 codec_id 进行查找的，例如选择的编码器是做 H.264编码，那么将codec_id设置为AV_CODEC_ID_H264即可使用H.264编码器。当然，前提是FFmpeg中已经编译链接好了H.264编码器，如libx264、openh264、h264_qsv等。

	2）申请AVCodecContext。创建了AVCodec之后，需要根据AVCodec信息创建一个AVCodecContext，由avcodec_alloc_context3将AVCodec与AVCodecContext相关联。这个步骤在解码相关API使用的时候已经见过了。

	AVCodecContext *c= NULL;

	c = avcodec_alloc_context3(codec);

	if (!c) {

	 fprintf(stderr, "Could not allocate video codec context\n");

	 exit(1);

	}

	申请AVCodecContext之后，需要设置编码参数，通过设置AVCodecContext的参数将编码参数传递给编码器，一般是按照实际编码参数的需要，手动依次设置。

	/* 写视频码率为400kbit/s */

	c->bit_rate = 400000;

	/* 设置视频的宽高 */

	c->width = 352;

	c->height = 288;

	/* 设置视频的帧率 */

	c->time_base = (AVRational){1,25};

	/* 设置视频的关键帧间隔，这个是按照帧数设置的值 */

	c->gop_size = 10;

	c->max_b_frames = 1;

	c->pix_fmt = AV_PIX_FMT_YUV420P;

	在上面的例子中，设置视频码率为 400kbit/s，视频宽度为 352，高度为288，帧率为25fps，GoP大小为10帧一个GoP，最大可以包含1个B帧，像素色彩格式为YUV420P。

	3）打开编码器。设置参数之后，就可以通过调用avcodec_open2来打开对应的编码器了。

	if (avcodec_open2(c, codec, NULL) < 0) {

	 fprintf(stderr, "Could not open codec\n");

	 exit(1);

	}

	4）申请帧结构AVFrame。打开编码器之后，需要申请视频帧存储空间，用来存储每一帧的视频数据。需要注意的是，AVFrame的分配与AVFrame.data的分配是分离的。

	AVFrame *frame;

	frame = av_frame_alloc();

	if (!frame) {

	 fprintf(stderr, "Could not allocate video frame\n");

	 exit(1);

	}

	frame->format = c->pix_fmt;

	frame->width = c->width;

	frame->height = c->height;

	/* 根据视频图像的宽、高、像素格式、内存数据，按照32位对齐、行大小的值申请AVFrame的data数据内存空间 */

	ret = av_image_alloc(frame->data, frame->linesize, c->width, c->height, c->pix_fmt, 32);

	if (ret < 0) {

	 fprintf(stderr, "Could not allocate raw picture buffer\n");

	 exit(1);

	}

	5）帧编码。frame的存储空间申请完成之后，可以将视频裸数据写入frame->data中。写入的时候需要注意如果是YUV数据，要区分YUV的存储空间排布问题。frame数据写完之后，即可对数据进行编码。

	/* 设置YUV420P数据内存中的Y通道数据 */

	for (y = 0; y < c->height; y++) {

	 for (x = 0; x < c->width; x++) {

	 frame->data[0][y * frame->linesize[0] + x] = x + y + i * 3;

	 }

	}

	/* 设置YUV420P数据内存中的Cb和Cr通道数据 */

	for (y = 0; y < c->height/2; y++) {

	 for (x = 0; x < c->width/2; x++) {

	 frame->data[1][y * frame->linesize[1] + x] = 128 + y + i * 2;

	 frame->data[2][y * frame->linesize[2] + x] = 64 + x + i * 5;

	 }

	}

	/* 编码图像 */

	ret = avcodec_encode_video2(c, &pkt, frame, &got_output);

	if (ret < 0) {

	 fprintf(stderr, "Error encoding frame\n");

	 exit(1);

	}

	编码完成之后，将会生成编码之后的AVPacket，即代码中的pkt。编码完成之后，如果需要执行封装操作，可通过调用av_interleaved_write_frame接口执行。但是在这里重点不是介绍编码后封装成某种格式，仅仅是编码，所以只是将编码后的数据保存下来。

	fwrite(pkt.data, 1, pkt.size, f);

	6）收尾。这里则是将之前申请过的资源进行释放。到这里，使用FFmpeg进行编码操作已经介绍完毕。

11.1.3 音频解码旧接口

	前面介绍了FFmpeg解码视频的操作，这里重点介绍音频解码操作，并通过代码举例方式讲解音频解码。音频解码所使用的FFmpeg的主要API如图11-4所示。

	[image:]

	图11-4 音频解码API调用流程

	可以看到，音频解码操作步骤与视频解码的操作步骤基本相同。下面通过示例重点描述一下几个有差别的API使用，示例代码实现可以参考FFmpeg 4.0源代码目录中的doc/examples/decode_ audio.c文件，或在线代码：https://ffmpeg.org/doxygen/trunk/decode__audio_8c_source.html。

	1）音频解码。这里解封装操作、申请解码器操作等与视频解码操作所使用的API相同，不同之处在于读取每一帧音频数据后，解码音频与解码视频所使用的API有所不同，解码视频使用的是avcodec_decode_video2，而解码音频使用的API为avcodec_decode_audio4。

	AVCodecContext *audio_dec_ctx = NULL;

	ret = avcodec_decode_audio4(audio_dec_ctx, frame, got_frame, &pkt);

	if (ret < 0) {

	 fprintf(stderr, "Error decoding audio frame (%s)\n", av_err2str(ret));

	 return ret;

	}

	2）数据存储至AVFrame。解码完成之后，解码的数据会被保存至frame中，可以将frame中的数据保存下来，也可以通过编码压缩转换为其他格式的音频，例如MP3、AMR等。由于本小节重点讲解音频解码，所以不会介绍后续处理方式，仅仅将音频保存下来即可。

	3）查看音频参数信息。音频数据保存下来后，如果希望播放或者查看保存的音频数据，需要知道一些参数，如采样格式等，这时可以通过查看解码时获取的参数信息来查看对应的采样格式。下面是一个示例：

	enum AVSampleFormat sfmt = audio_dec_ctx->sample_fmt;

	int n_channels = audio_dec_ctx->channels;

	const char *fmt;

	if (av_sample_fmt_is_planar(sfmt)) {

	 const char *packed = av_get_sample_fmt_name(sfmt);

	 printf("Warning: the sample format the decoder produced is planar (%s). This example will output the first channel only.\n", packed ? packed : "?");

	 sfmt = av_get_packed_sample_fmt(sfmt);

	 n_channels = 1;

	}

	通过本小节简单的介绍，读者应该熟悉了音频的解码流程，其基本流程和前面的视频解码并无二致，只是细节上有少许不同。

11.1.4 音频编码旧接口

	音频的编码操作也非常常见，如通过音频设备采集音频数据之后需要进行编码压缩操作，例如编码为SPEEX、MP3或AAC等格式，可以使用FFmpeg的音频编码操作相关的API进行处理，音频编码API的使用流程如图11-5所示。

	[image:]

	图11-5 音频编码API调用流程

	接下来说明一下编码操作的重点步骤，由于音频编码的操作步骤与视频编码操作步骤基本相似，这里不对重复的API再进行说明，主要针对音频编码不同部分的设置进行说明，相关代码可以参考FFmpeg 4.0源代码目录中的doc/examples/encode_audio.c文件或者在线链接https://ffmpeg.org/ doxygen/trunk/encode__audio_8c.html。

	1）编码参数设置。在申请编码AVCodecContext之后，应对AVCodecContext的参数进行设置，主要设置音频相关的参数，例如音频的采样率、码率、采样格式、声道、声道布局等。

	AVCodecContext *c= NULL;

	AVCodec *codec;

	codec = avcodec_find_encoder(AV_CODEC_ID_AAC);

	if (!codec) {

	 fprintf(stderr, "Codec not found\n");

	 exit(1);

	}

	c = avcodec_alloc_context3(codec);

	if (!c) {

	 fprintf(stderr, "Could not allocate audio codec context\n");

	 exit(1);

	}

	/* 设置音频码率为64kbit/s */

	c->bit_rate = 64000;

	/* 首先需要确定音频的采样格式是否支持s16 */

	c->sample_fmt = AV_SAMPLE_FMT_S16;

	if (!check_sample_fmt(codec, c->sample_fmt)) {

	 fprintf(stderr, "Encoder does not support sample format %s", av_get_sample_fmt_name(c->sample_fmt));

	 exit(1);

	}

	/* 设置音频的采样率，前提是需要编码器支持这里设置的采样率，否则会出现参数错误的返回值 */

	c->sample_rate = select_sample_rate(codec);

	c->channel_layout = select_channel_layout(codec);

	c->channels = av_get_channel_layout_nb_channels(c->channel_layout);

	编码器的参数设置完成之后，准备进入编码。

	2）设置音频帧参数。编码器参数设置完毕，打开编码器，设置编码用到的音频数据帧的数据布局等参数。

	/* 为音频申请AVFrame内存空间 */

	frame = av_frame_alloc();

	if (!frame) {

	 fprintf(stderr, "Could not allocate audio frame\n");

	 exit(1);

	}

	frame->nb_samples = c->frame_size;

	frame->format = c->sample_fmt;

	frame->channel_layout = c->channel_layout;

	根据编码器参数设置每一个音频数据帧的采样大小、采样格式，以及声道布局格式等。

	3）计算音频帧信息。设置完编码器参数及需要编码的数据帧相关参数后，可以根据几个参数计算音频采样buffer的大小，用来申请存储音频采样buffer的内容。

	/* 通过音频声道数、采样格式、每个声道采样数据的大小获得采样数据需要的内存空间大小 */

	buffer_size = av_samples_get_buffer_size(NULL, c->channels, c->frame_size, c->sample_fmt, 0);

	if (buffer_size < 0) {

	 fprintf(stderr, "Could not get sample buffer size\n");

	 exit(1);

	}

	samples = av_malloc(buffer_size);

	if (!samples) {

	 fprintf(stderr, "Could not allocate %d bytes for samples buffer\n", buffer_size);

	 exit(1);

	}

	4）挂载数据至AVFrame。申请音频数据采样buffer之后，需要将该空间中对应的数据挂载到frame中，这一般通过接口avcodec_fill_audio_frame来处理。

	/* 将音频采样数据地址指给AVFrame的data字段 */

	ret = avcodec_fill_audio_frame(frame, c->channels, c->sample_fmt, (const uint8_t*)samples, buffer_size, 0);

	if (ret < 0) {

	 fprintf(stderr, "Could not setup audio frame\n");

	 exit(1);

	}

	5）音频编码。挂载好数据之后，即可对音频数据进行编码，编码的每一帧采样数据都会写入frame中，然后通过编码接口avcodec_encode_audio2将每一帧frame中的数据进行编码，之后写入pkt中。

	ret = avcodec_encode_audio2(c, &pkt, frame, &got_output);

	if (ret < 0) {

	 fprintf(stderr, "Error encoding audio frame\n");

	 exit(1);

	}

	编码完成后的数据即为pkt中的数据，将pkt中的数据保存下来或者通过封装容器的写帧操作接口av_interleaved_write_frame将数据写入容器中即可。由于本小节重点介绍编码，所以不对封装操作接口进行过多介绍。至此，音频编码操作介绍完毕。

11.2 新接口的使用

	在FFmpeg新版本中将会用新接口替换旧接口及结构体，在FFmpeg 5.0版本前，编译FFmpeg的源代码时会通过弃用告警的方式进行提醒，而在FFmpeg 5.0版本中，已经完全弃用旧接口。接下来本节举例介绍FFmpeg的新编解码接口的操作。

	新API和旧API最大的改动部分来自实际发送数据到编解码器与从编解码器获取数据的过程，本质上是把旧API改成两个异步的API来完成编码和解码，其将输入和输出解耦，主要是下面两组配对使用的API。

	// 解码接口组合

	int avcodec_send_packet(AVCodecContext *avctx, const AVPacket *avpkt);

	int avcodec_receive_frame(AVCodecContext *avctx, AVFrame *frame);

	// 编码接口组合

	int avcodec_send_frame(AVCodecContext *avctx, const AVFrame *frame);

	int avcodec_receive_packet(AVCodecContext *avctx, AVPacket *avpkt);

	其使用流程基本如下：

	・类似之前设置解码器或编码器，设置好AVCodecContext。

	・使用avcodec_send_*函数输入数据（AVFrame或AVPacket），直到得到一个AVERROR (EAGAIN)，这表明内部输入缓冲区已满。对于解码，调用avcodec_send_packet()来给解码器提供AVPacket中的原始压缩数据；对于编码，调用avcodec_send_frame()给编码器一个包含未压缩的音频或视频的AVFrame。

	・在一个循环中持续接收输出，使用相匹配的avcodec_receive_*函数获得数据（AVFrame或AVPacket），直到函数返回一个AVERROR(EAGAIN)，表示内部输出缓冲区为空。AVERROR(EAGAIN)的返回值意味着需要输入新的数据才能返回新的输出。对于每个输入的帧/包，编解码器通常会返回1个输出帧/包，但从新API设计的角度，其实也可以是0个或多于1个输出。对于解码，调用avcodec_receive_frame()。一旦成功，它将返回一个包含未压缩的音频或视频数据的AVFrame。对于编码，调用avcodec_ receive_packet()。一旦成功，它将返回一个包含压缩帧的AVPacket。

	・一旦完成了所有数据的输入，必须传递一个NULL来表示流的结束。流结束的情况下，FFmpeg会对编解码器进行刷新（flush，又称draining）操作，因为编解码器可能为了性能或出于需要而在内部缓冲多个帧或数据包（典型的如有B帧的场景），在这种情况下，通过传递NULL参数，通知编解码器输出内部缓冲的所有数据包。

	・传递NULL参数后，继续循环调用avcodec_receive_*函数，直到得到AVROR_EOF，获取全部的编解码数据。

	・像之前的例子一样释放上下文，这部分并无多少变化。

	但在实际使用中，可能还有另外一些问题需要注意，我们在后面的例子中详细说明。

11.2.1 视频解码新接口

	如前所述，FFmpeg 视频解码旧接口与新接口的差异就是由原来的一个同步输入输出的函数avcodec_decode_video2，改为两个输入输出函数avcodec_send_packet和avcodec_ receive_frame，前者用来输入要解码的压缩数据，后者用来输出解码后的视频裸数据，其他设置视频解码参数等接口的方式与旧接口方式基本相同。视频解码的接口调用流程如图11-6所示。

	视频解码时，解码后的视频裸数据通过avcodec_receive_frame得到，然后可以根据实际的需要进行处理。在本接口调用流程中进一步对解码的帧进行处理，在最后释放所有的资源后退出。另外，上面流程中比较特殊的地方在于，使用了FFmpeg的解析器接口av_parser_parse2()，它主要用来在解码的时候解析和读取完整的压缩帧数据，它会使用内部缓存收集数据包，直到它能找到足够的数据组成一个完整的帧，然后这个帧被发送到解码器进行解码。关于FFmpeg的新接口解码视频操作的示例可以参考官方网站：http://ffmpeg.org/doxygen/trunk/decode_video_8c- example.html。下面对流程的主要接口进行说明。

	[image:]

	图11-6 视频解码API调用流程

	1）查找和打开解码器。查找和打开解码器的操作与旧接口流程基本相同，示例代码如下。需要注意的是引入了用来解析压缩数据帧的parser变量。

	const AVCodec *codec;

	AVCodecParserContext *parser = NULL;

	AVCodecContext *c= NULL;

	/* find the MPEG-1 video decoder */

	codec = avcodec_find_decoder(AV_CODEC_ID_MPEG1VIDEO);

	if (!codec) {

	 fprintf(stderr, "Codec not found\n");

	 exit(1);

	}

	parser = av_parser_init(codec->id);

	if (!parser) {

	 fprintf(stderr, "Parser not found\n");

	 exit(1);

	}

	c = avcodec_alloc_context3(codec);

	if (!c) {

	 fprintf(stderr, "Could not allocate video codec context\n");

	 exit(1);

	}

	if (avcodec_open2(c, codec, NULL) < 0) {

	 fprintf(stderr, "Could not open codec\n");

	 exit(1);

	}

	2）视频解码准备。视频解码前的准备工作包括为frame分配空间、读取视频压缩数据及解析压缩数据。

	frame = av_frame_alloc();

	If (!frame) {

	 fprintf(stderr, "Could not allocate audio frame\n");

	 exit(1);

	}

	do {

	 /* read raw data from the input file */

	 data_size = fread(inbuf, 1, INBUF_SIZE, f);

	 if (ferror(f))

	 break;

	 eof = !data_size;

	 /* use the parser to split the data into frames */

	 data = inbuf;

	 while (data_size > 0 || eof) {

	 ret = av_parser_parse2(parser, c, &pkt->data, &pkt->size,

	data, data_size, AV_NOPTS_VALUE, AV_NOPTS_VALUE, 0);

	 if (ret < 0) {

	 fprintf(stderr, "Error while parsing\n");

	 exit(1);

	 }

	 data += ret;

	 data_size -= ret;

	3）视频解码函数。实际的解码过程主要包括前面介绍的两个函数，分别为输入视频的编码数据和读取解码后的裸数据。

	static void decode(AVCodecContext *dec_ctx, AVFrame *frame, AVPacket *pkt,const char *filename)

	{

	 char buf[1024];

	 int ret;

	 ret = avcodec_send_packet(dec_ctx, pkt);

	 if (ret < 0) {

	 fprintf(stderr, "Error sending a packet for decoding\n");

	 exit(1);

	 }

	 while (ret >= 0) {

	 ret = avcodec_receive_frame(dec_ctx, frame);

	 if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF)

	 return;

	 else if (ret < 0) {

	 fprintf(stderr, "Error during decoding\n");

	 exit(1);

	 }

	 printf("saving frame %3"PRId64"\n", dec_ctx->frame_num);

	 fflush(stdout);

	 /* the picture is allocated by the decoder. no need to

	 free it */

	 snprintf(buf, sizeof(buf), "%s-%"PRId64, filename, dec_ctx->frame_num);

	 pgm_save(frame->data[0], frame->linesize[0],

	 frame->width, frame->height, buf);

	 }

	}

	这里对avcodec_send_packet和avcodec_receive_frame的返回值进行详细说明，以便读者更好地理解这两个函数的工作方式。

	avcodec_send_packet的返回值主要包含以下这些情况：

	・成功时，该函数返回0，否则为负的错误代码。返回值为0，意味着输入的packet被解码器正常接收。

	・返回AVERROR(EAGAIN)，在当前状态下不接受输入，用户必须用avcodec_receive_ frame()读取输出（一旦所有输出被读取，数据包应该被重新发送，调用将不会以EAGAIN失败）。

	・返回AVERROR_EOF，解码器已经被刷新了，不能向其发送新的数据包（如果发送了超过1个刷新数据包也会返回）。关于刷新操作，前面已经解释过了。

	・返回AVERROR(EINVAL)，解码器没有打开或者它是一个编码器，或者需要刷新等。

	・返回AVERROR(ENOMEM)，未能将数据包添加到内部队列中。

	・其他合法解码错误。

	avcodec_receive_frame的返回值如下。

	・0：成功，返回了一个完整的帧。

	・AVERROR(EAGAIN)：在这种状态下没有输出，用户必须尝试发送新的输入packet。

	・AVERROR_EOF：编解码器已经被完全刷新，不会再有输出帧。

	・AVERROR(EINVAL)：编解码器没有打开，或者它是一个没有启用AV_CODEC_FLAG_ RECON_FRAME标志的编码器。

	・AVERROR_INPUT_CHANGED：当前解码的帧相对于第1个解码的帧，参数已经改变。当标志AV_CODEC_FLAG_DROPCHANGED被设置时适用。

	・其他负值表示其他合法解码错误。

	可见新API有点类似于一个状态机。调用API用于执行解码操作，但API的返回值则表示解码器的内部状态，需要根据API的返回值来确定下一步执行的动作。另外也可以看到，新API在带来灵活性的同时，对于调用者的要求其实有所提高。

11.2.2 视频编码新接口

	FFmpeg视频编码新接口从原有的avcodec_encode_video2更改为使用avcodec_ send_frame配合avcodec_receive_packet进行编码。接口调用的流程如图11-7所示。

	[image:]

	图11-7 视频编码API调用流程

	如图11-7所示，新接口的视频编码流程和旧接口基本相同。FFmpeg新接口编码视频的参考示例可以查看官方网站：http://ffmpeg.org/doxygen/trunk/encode_video_8c-example.html。下面以一个例子对主要流程的接口进行说明。

	1）查找和打开编码器。

	const AVCodec *codec;

	AVCodecContext *c= NULL;

	int i, ret, x, y;

	codec_name = argv[2];

	/* find the mpeg1video encoder */

	codec = avcodec_find_encoder_by_name(codec_name);

	if (!codec) {

	 fprintf(stderr, "Codec '%s' not found\n", codec_name);

	 exit(1);

	}

	c = avcodec_alloc_context3(codec);

	if (!c) {

	 fprintf(stderr, "Could not allocate video codec context\n");

	 exit(1);

	}

	pkt = av_packet_alloc();

	if (!pkt)

	 exit(1);

	/* put sample parameters */

	c->bit_rate = 400000;

	/* resolution must be a multiple of two */

	c->width = 352;

	c->height = 288;

	/* frames per second */

	c->time_base = (AVRational){1, 25};

	c->framerate = (AVRational){25, 1};

	/* emit one intra frame every ten frames

	* check frame pict_type before passing frame

	* to encoder, if frame->pict_type is AV_PICTURE_TYPE_I

	* then gop_size is ignored and the output of encoder

	* will always be I frame irrespective to gop_size

	*/

	c->gop_size = 10;

	c->max_b_frames = 1;

	c->pix_fmt = AV_PIX_FMT_YUV420P;

	if (codec->id == AV_CODEC_ID_H264)

	av_opt_set(c->priv_data, "preset", "slow", 0);

	/* open it */

	ret = avcodec_open2(c, codec, NULL);

	if (ret < 0) {

	 fprintf(stderr, "Could not open codec: %s\n", av_err2str(ret));

	 exit(1);

	}

	包括查找编码器，设置编码相关参数，以及打开编码器。

	2）编码前的准备工作。

	f = fopen(filename, "wb");

	if (!f) {

	 fprintf(stderr, "Could not open %s\n", filename);

	 exit(1);

	}

	frame = av_frame_alloc();

	if (!frame) {

	 fprintf(stderr, "Could not allocate video frame\n");

	 exit(1);

	}

	frame->format = c->pix_fmt;

	frame->width = c->width;

	frame->height = c->height;

	ret = av_frame_get_buffer(frame, 0);

	if (ret < 0) {

	 fprintf(stderr, "Could not allocate the video frame data\n");

	 exit(1);

	}

	/* encode 1 second of video */

	for (i = 0; i < 25; i++) {

	 fflush(stdout);

	 /* Make sure the frame data is writable.

	On the first round, the frame is fresh from av_frame_get_buffer()

	and therefore we know it is writable.

	But on the next rounds, encode() will have called

	avcodec_send_frame(), and the codec may have kept a reference to

	the frame in its internal structures, that makes the frame

	unwritable.

	av_frame_make_writable() checks that and allocates a new buffer

	for the frame only if necessary.

	*/

	 ret = av_frame_make_writable(frame);

	 if (ret < 0)

	 exit(1);

	 /* Prepare a dummy image.

	In real code, this is where you would have your own logic for

	filling the frame. FFmpeg does not care what you put in the

	frame.

	*/

	 /* Y */

	 for (y = 0; y < c->height; y++) {

	 for (x = 0; x < c->width; x++) {

	 frame->data[0][y * frame->linesize[0] + x] = x + y + i * 3;

	 }

	 }

	 /* Cb and Cr */

	 for (y = 0; y < c->height/2; y++) {

	 for (x = 0; x < c->width/2; x++) {

	 frame->data[1][y * frame->linesize[1] + x] = 128 + y + i * 2;

	 frame->data[2][y * frame->linesize[2] + x] = 64 + x + i * 5;

	 }

	 }

	编码前的准备工作包括初始化frame，把dummy image的YUV数据填充到frame的缓存中。

	3）视频编码。

	static void encode(AVCodecContext *enc_ctx, AVFrame *frame, AVPacket *pkt,

	FILE *outfile)

	{

	 int ret;

	 /* send the frame to the encoder */

	 if (frame)

	 printf("Send frame %3"PRId64"\n", frame->pts);

	 ret = avcodec_send_frame(enc_ctx, frame);

	 if (ret < 0) {

	 fprintf(stderr, "Error sending a frame for encoding\n");

	 exit(1);

	 }

	 while (ret >= 0) {

	 ret = avcodec_receive_packet(enc_ctx, pkt);

	 if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF)

	 return;

	 else if (ret < 0) {

	 fprintf(stderr, "Error during encoding\n");

	 exit(1);

	 }

	 printf("Write packet %3"PRId64" (size=%5d)\n", pkt->pts, pkt->size);

	 fwrite(pkt->data, 1, pkt->size, outfile);

	 av_packet_unref(pkt);

	 }

	}

	实际的视频编码主要包括发送frame到编码器中，再从编码器中循环读取编码后的packet数据包。

11.2.3 音频解码新接口

	FFmpeg的音频解码新接口从原来的旧接口avcodec_decode_audio4更改为使用avcodec_ send_packet配合avcodec_receive_frame进行解码。接口调用的流程如图11-8所示。

	[image:]

	图11-8 音频解码API调用流程

	下面对主要流程的接口进行说明，代码可以参考官方网站：http://ffmpeg.org/doxygen/trunk/ decode_audio_8c-example.html。

	1）查找和打开解码器。在使用FFmpeg的新的解码接口之前，前期准备工作与旧接口基本类似，但是有些细微的差别。

	const AVCodec *codec;

	AVCodecContext *c= NULL;

	AVCodecParserContext *parser = NULL;

	AVPacket *pkt;

	AVFrame *decoded_frame = NULL;

	pkt = av_packet_alloc();

	/* find the MPEG audio decoder */

	codec = avcodec_find_decoder(AV_CODEC_ID_MP2);

	if (!codec) {

	 fprintf(stderr, "Codec not found\n");

	 exit(1);

	}

	parser = av_parser_init(codec->id);

	if (!parser) {

	 fprintf(stderr, "Parser not found\n");

	 exit(1);

	}

	c = avcodec_alloc_context3(codec);

	if (!c) {

	 fprintf(stderr, "Could not allocate audio codec context\n");

	 exit(1);

	}

	if (avcodec_open2(c, codec, NULL) < 0) {

	 fprintf(stderr, "Could not open codec\n");

	 exit(1);

	}

	从示例代码中可以看到，在设置解码器的Codec ID之后，使用接口av_parser_init建立了一个Codec的parser，然后打开Codec解码器。

	2）音频解码准备。接下来开始解码前的准备工作，主要是读取编码数据和对编码数据进行解析。

	while (data_size > 0) {

	 if (!decoded_frame) {

	 if (!(decoded_frame = av_frame_alloc())) {

	 fprintf(stderr, "Could not allocate audio frame\n");

	 exit(1);

	 }

	 }

	 ret = av_parser_parse2(parser, c, &pkt->data, &pkt->size, data, data_size, AV_NOPTS_VALUE, AV_NOPTS_VALUE, 0);

	 if (ret < 0) {

	 fprintf(stderr, "Error while parsing\n");

	 exit(1);

	 }

	 data += ret;

	 data_size -= ret;

	 if (pkt->size)

	 decode(c, pkt, decoded_frame, outfile);

	 if (data_size < AUDIO_REFILL_THRESH) {

	 memmove(inbuf, data, data_size);

	 data = inbuf;

	 len = fread(data + data_size, 1, AUDIO_INBUF_SIZE - data_size, f);

	 if (len > 0)

	 data_size += len;

	 }

	}

	如代码所示，在解码时，首先通过调用接口av_parser_parse2将音频数据解析出来，然后开始解码。

	3）音频解码函数。解码前的工作准备完成之后，开始进行解码。解码过程如下。

	static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)

	{

	 int i, ch;

	 int ret, data_size;

	 /* send the packet with the compressed data to the decoder */

	 ret = avcodec_send_packet(dec_ctx, pkt);

	 if (ret < 0) {

	 fprintf(stderr, "Error submitting the packet to the decoder\n");

	 exit(1);

	 }

	 /* read all the output frames (in general there may be any number of them */

	 while (ret >= 0) {

	 ret = avcodec_receive_frame(dec_ctx, frame);

	 if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF)

	 return;

	 else if (ret < 0) {

	 fprintf(stderr, "Error during decoding\n");

	 exit(1);

	 }

	 data_size = av_get_bytes_per_sample(dec_ctx->sample_fmt);

	 if (data_size < 0) {

	 /* This should not occur, checking just for paranoia */

	 fprintf(stderr, "Failed to calculate data size\n");

	 }

	 for (i = 0; i < frame->nb_samples; i++)

	 for (ch = 0; ch < dec_ctx->channels; ch++)

	 fwrite(frame->data[ch] + data_size*i, 1, data_size, outfile);

	 }

)

	解码时，首先通过接口avcodec_send_packet将音频编码数据发送给Codec解码器，然后通过接口avcodec_receive_frame获得解码后的数据，最后进行音频对应的采样处理。

	至此，使用FFmpeg新版本接口解码音频的示例介绍完毕。

11.2.4 音频编码新接口

	FFmpeg的音频编码新接口从原有的avcodec_encode_audio2更改为使用avcodec_ send_frame配合avcodec_receive_packet进行编码。接口调用的流程如图11-9所示。

	[image:]

	图11-9 使用FFmpeg新接口的音频编码流程

	下面对主要流程的接口进行说明，参考代码可以从官方网站的示例中获得，链接地址为http:// ffmpeg.org/doxygen/trunk/encode_audio_8c-example.html。

	1）查找和打开编码器。这里使用FFmpeg编码器的准备工作部分与使用旧接口类似，在本小节将不赘述，直接介绍编码的关键部分。

	const AVCodec *codec;

	AVCodecContext *c= NULL;

	AVFrame *frame;

	AVPacket pkt;

	codec = avcodec_find_encoder(AV_CODEC_ID_MP2);

	if (!codec) {

	 fprintf(stderr, "Codec not found\n");

	 exit(1);

	}

	c = avcodec_alloc_context3(codec);

	if (!c) {

	 fprintf(stderr, "Could not allocate audio codec context\n");

	 exit(1);

	}

	if (avcodec_open2(c, codec, NULL) < 0) {

	 fprintf(stderr, "Could not open codec\n");

	 exit(1);

	}

	frame = av_frame_alloc();

	if (!frame) {

	 fprintf(stderr, "Could not allocate audio frame\n");

	 exit(1);

	}

	frame->nb_samples = c->frame_size;

	frame->format = c->sample_fmt;

	frame->channel_layout = c->channel_layout;

	/* 申请数据buffer的空间 */

	ret = av_frame_get_buffer(frame, 0);

	if (ret < 0) {

	 fprintf(stderr, "Could not allocate audio data buffers\n");

	 exit(1);

	}

	如代码所示，在编码之前，设置了编码器的Codec ID，然后打开编码器，接着申请用于存储frame数据的空间。

	2）填充数据。空间申请完毕之后，可以获得frame数据。由于本小节是举例说明，所以将自己生成的音频数据填充至frame空间中。

	t = 0;

	tincr = 2 * M_PI * 440.0 / c->sample_rate;

	for (i = 0; i < 200; i++) {

	 /* make sure the frame is writable -- makes a copy if the encoder

	 * kept a reference internally */

	 ret = av_frame_make_writable(frame);

	 if (ret < 0)

	 exit(1);

	 samples = (uint16_t*)frame->data[0];

	 for (j = 0; j < c->frame_size; j++) {

	 samples[2*j] = (int)(sin(t) * 10000);

	 for (k = 1; k < c->channels; k++)

	 samples[2*j + k] = samples[2*j];

	 t += tincr;

	 }

	 encode(c, frame, pkt, f);

	}

	从代码中可以看到，首先确定了frame空间是可以写入数据的，然后将生成数据写入frame空间中。接下来开始编码。

	3）音频编码。FFmpeg的新编码接口如前面代码所示，encode(c,frame,pkt,f)为编码封装操作，这个函数的实现如下：

	static void encode(AVCodecContext *ctx, AVFrame *frame, AVPacket *pkt, FILE *output)

	{

	 int ret;

	 * send the frame for encoding */

	 ret = avcodec_send_frame(ctx, frame);

	 if (ret < 0) {

	 fprintf(stderr, "Error sending the frame to the encoder\n");

	 exit(1);

	 }

	 /* read all the available output packets (in general there may be any

	 * number of them */

	 while (ret >= 0) {

	 ret = avcodec_receive_packet(ctx, pkt);

	 if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF)

	 return;

	 else if (ret < 0) {

	 fprintf(stderr, "Error encoding audio frame\n");

	 exit(1);

	 }

	 fwrite(pkt->data, 1, pkt->size, output);

	 av_packet_unref(pkt);

	 }

)

	如代码所示，主要调用接口avcodec_send_frame将填充好的frame数据送至编码器中，然后通过avcodec_receive_packet将编码后的数据读取出来，读取的数据为编码后所生成的AVPacket数据。最后将压缩好的音频数据写入文件output中。至此，使用FFmpeg新编码接口编码音频的主要步骤介绍完毕。

11.3 硬件加速的编解码

	随着低功耗设备及高密度或者低延迟等场景的普及，视频编解码硬件加速已经迅速成为一种必要。本节介绍硬件加速的背景，并解释FFmpeg是如何从中受益的，以及如何使用FFmpeg的API来执行硬件的解码和编码加速。需要注意的是，除了编解码，FFmpeg也使用硬件执行诸如Filter的加速。

	视频编解码是一项CPU密集的任务，特别是对于像1080p、4K、8K这样的高分辨率设备。幸运的是，配备了GPU的现代显卡能够处理这项工作，使CPU能够专注于其他任务。尤其对于根本无法快速解码此类媒体的低功耗CPU来说，拥有专用硬件也变得至关重要。目前，不同GPU制造商提供了不同的方法来访问硬件（不同的API），但还没有出现一个强大统一的工业标准。FFmpeg中至少存在11种不同的视频编解码或图像处理加速API。我们在前面章节已经描述了部分加速方式，在这里不赘述。

	FFmpeg尝试在框架层面统一这些硬件加速方式，现在基本可以屏蔽底层的差异。但我们知道，更好的优化需要熟悉硬件基层设施，所以，从这个角度讲，使用FFmpeg API来执行相关的硬件加速，需要对底层的硬件有更多的了解，这样才能更好地执行加速。本节以常用的Intel GPU为例进行说明，但会提及其他的硬件加速或者接口。

	在使用FFmpeg的硬件加速前，可以通过hwaccels查询一下当前支持的硬件加速接口中哪些已经被FFmpeg所支持。

	 ./ffmpeg -hide_banner -hwaccels

	Hardware acceleration methods:

	vaapi

	qsv

	drm

	opencl

	vulkan

	这个选项列出了编译的FFmpeg中所启用的所有硬件加速组件，实际的运行结果取决于实际安装的硬件和是否安装好了合适的驱动程序。例如，为了确认Intel GPU是否可以正常工作，用Linux工具vainfo检查是否安装好了Intel GPU的驱动。

	barry@barry-HP-ENVY-Laptop-13-ah1xxx:~/Sources/FFmpeg/ffmpeg$ vainfo

	libva info: VA-API version 1.17.0

	libva info: Trying to open /usr/local/lib/dri/iHD_drv_video.so

	libva info: Found init function __vaDriverInit_1_4

	libva info: va_openDriver() returns 0

	vainfo: VA-API version: 1.17 (libva 2.4.0.pre1)

	vainfo: Driver version: Intel iHD driver - 1.0.0

	vainfo: Supported profile and entrypoints

	 VAProfileNone : VAEntrypointVideoProc

	 VAProfileNone : VAEntrypointStats

	 VAProfileMPEG2Simple : VAEntrypointVLD

	 VAProfileMPEG2Simple : VAEntrypointEncSlice

	 VAProfileMPEG2Main : VAEntrypointVLD

	 VAProfileMPEG2Main : VAEntrypointEncSlice

	 VAProfileH264Main : VAEntrypointVLD

	 VAProfileH264Main : VAEntrypointEncSlice

	 VAProfileH264Main : VAEntrypointFEI

	 VAProfileH264Main : VAEntrypointEncSliceLP

	 VAProfileH264High : VAEntrypointVLD

	 VAProfileH264High : VAEntrypointEncSlice

	 VAProfileH264High : VAEntrypointFEI

	 VAProfileH264High : VAEntrypointEncSliceLP

	 VAProfileVC1Simple : VAEntrypointVLD

	 VAProfileVC1Main : VAEntrypointVLD

	 VAProfileVC1Advanced : VAEntrypointVLD

	 VAProfileJPEGBaseline : VAEntrypointVLD

	 VAProfileJPEGBaseline : VAEntrypointEncPicture

	 VAProfileH264ConstrainedBaseline: VAEntrypointVLD

	 VAProfileH264ConstrainedBaseline: VAEntrypointEncSlice

	 VAProfileH264ConstrainedBaseline: VAEntrypointFEI

	 VAProfileH264ConstrainedBaseline: VAEntrypointEncSliceLP

	 VAProfileVP8Version0_3 : VAEntrypointVLD

	 VAProfileVP8Version0_3 : VAEntrypointEncSlice

	 VAProfileHEVCMain : VAEntrypointVLD

	 VAProfileHEVCMain : VAEntrypointEncSlice

	 VAProfileHEVCMain : VAEntrypointFEI

	 VAProfileHEVCMain10 : VAEntrypointVLD

	 VAProfileHEVCMain10 : VAEntrypointEncSlice

	 VAProfileVP9Profile0 : VAEntrypointVLD

	 VAProfileVP9Profile2 : VAEntrypointVLD

	提示：硬件加速方案是一个异常分裂的领域，在前面章节已经提及。以Intel GPU为例，在Linux下，如果想要加速编解码，可以使用VA API接口，也可以使用基于其上的QSV接口，它本身在Linux上是用mediasdk/OneVPL且基于底层的VA API接口和驱动，但对上提供了自己的API。NVIDIA的GPU在Linux上也面临着是使用更底层的VDPAU加速接口，还是使用私有的加速库NVDEC/NVENC这样的选择。如果选择NVDEC/NVENC方式，这种情况类似FFmpeg继承libx264等第三方库的方式，直接使用上面类似软编码的流程即可完成编解码操作。

	从实际使用角度而言，使用硬件加速方案需要完整考虑整条链路中的解码、媒体处理、编码、渲染等操作，主要的原因在于，在异构计算的场景下，即使有GPU用来被加速，如果出现频繁的CPU与GPU数据交换，这类I/O操作的overhead很可能抵消GPU加速带来的收益。一般而言，如果使用GPU加速，我们希望尽量在GPU内部完成整条链路大部分的工作。

11.3.1 硬件加速解码

	在正式介绍FFmpeg硬件加速的API之前，先熟悉一些基本概念。FFmpeg为了支持硬件加速的编解码，抽象了几个概念，主要是 AVHWDeviceContext、AVHWFramesContext、AVCodecHWConfig等。

	AVHWDeviceContext这个结构体集合了所有硬件特定的“高层”状态，即与具体处理配置无关的状态。例如，在一个支持硬件加速编码和解码的API中，这个结构将（如果可能的话）包含编码和解码所共有的状态，并且可以从中衍生出编码器或解码器的具体实例。这个结构通过AVBuffer机制进行引用计数。av_hwdevice_ctx_alloc()构造函数产生一个引用，其数据域指向实际的AVHWDeviceContext。从AVHWDeviceContext派生出来的其他对象（比如AVHWFramesContext，描述具有特定属性的帧池）将持有对它的内部引用。在所有的引用被释放后，AVHWDeviceContext本身将被释放，可以选择调用一个用户指定的回调，以解除硬件状态。

	而AVHWFramesContext这个结构体描述了一组“硬件”帧（即这些数据一般非CPU内存中可以正常访问的帧，可能位于显存之中）。所有在相同“硬件”帧池中的帧都被认为是以相同的方式分配的，并且可以互换。这个结构体通过AVBuffer机制进行引用计数，并与一个给定的AVHWDeviceContext实例相关联。av_hwframe_ctx_alloc()构造函数产生一个引用，其数据域指向实际的AVHWFramesContext结构。

	如果对应的Codec支持硬件加速，它会注册一个AVCodec.hw_configs数组，且对外只能用avcodec_get_hw_config()来获取对应Codec支持的硬件加速配置。

	以H.264 Decoder而言，它可以支持dxva2、d3d11va、d3d11va2、nvdec、vaapi等。

	const AVCodec ff_h264_decoder = {

	 .name = "h264",

	 .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),

	 .type = AVMEDIA_TYPE_VIDEO,

	 .id = AV_CODEC_ID_H264,

	 .priv_data_size = sizeof(H264Context),

	...

	 .hw_configs = (const AVCodecHWConfigInternal *const []) {

	#if CONFIG_H264_DXVA2_HWACCEL

	 HWACCEL_DXVA2(h264),

	#endif

	#if CONFIG_H264_D3D11VA_HWACCEL

	 HWACCEL_D3D11VA(h264),

	#endif

	#if CONFIG_H264_D3D11VA2_HWACCEL

	 HWACCEL_D3D11VA2(h264),

	#endif

	#if CONFIG_H264_NVDEC_HWACCEL

	 HWACCEL_NVDEC(h264),

	#endif

	#if CONFIG_H264_VAAPI_HWACCEL

	 HWACCEL_VAAPI(h264),

	#endif

	#if CONFIG_H264_VDPAU_HWACCEL

	 HWACCEL_VDPAU(h264),

	#endif

	#if CONFIG_H264_VIDEOTOOLBOX_HWACCEL

	 HWACCEL_VIDEOTOOLBOX(h264),

	#endif

	 NULL

	 },

	 ...

	};

	上面提及的avcodec_get_hw_config()函数用于从Codec中查询其支持的硬件配置，获取的结构体是AVCodecHWConfig。它的定义如下：

	typedef struct AVCodecHWConfig {

	 enum AVPixelFormat pix_fmt;

	 int methods;

	 enum AVHWDeviceType device_type;

	} AVCodecHWConfig;

	其中，对于解码器来说，如果有合适的硬件，字段pix_fmt表示该解码器能够解码的硬件像素格式；对于编码器来说，是编码器可以接受的一种像素格式。如果设置为AV_PIX_FMT_NONE，则适用于解码器支持的所有像素格式。字段methods描述了可用于该配置的可能的设置方法，即AV_CODEC_HW_CONFIG_METHOD_*标志的位集，所有取值如下：

	enum {

	/**

	 * The codec supports this format via the hw_device_ctx interface.

	 *

	 * When selecting this format, AVCodecContext.hw_device_ctx should

	 * have been set to a device of the specified type before calling

	 * avcodec_open2().

	 */

	AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX = 0x01,

	/**

	 * The codec supports this format via the hw_frames_ctx interface.

	 *

	 * When selecting this format for a decoder,

	 * AVCodecContext.hw_frames_ctx should be set to a suitable frames

	 * context inside the get_format() callback. The frames context

	 * must have been created on a device of the specified type.

	 *

	 * When selecting this format for an encoder,

	 * AVCodecContext.hw_frames_ctx should be set to the context which

	 * will be used for the input frames before calling avcodec_open2().

	 */

	AV_CODEC_HW_CONFIG_METHOD_HW_FRAMES_CTX = 0x02,

	/**

	 * The codec supports this format by some internal method.

	 *

	 * This format can be selected without any additional configuration -

	 * no device or frames context is required.

	 */

	AV_CODEC_HW_CONFIG_METHOD_INTERNAL = 0x04,

	/**

	 * The codec supports this format by some ad-hoc method.

	 *

	 * Additional settings and/or function calls are required. See the

	 * codec-specific documentation for details. (Methods requiring

	 * this sort of configuration are deprecated and others should be

	 * used in preference.)

	 */

	AV_CODEC_HW_CONFIG_METHOD_AD_HOC = 0x08,

	};

	字段device_type描述与硬件加速配置相关的设备类型。它要求在字段methods设置为AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX或AV_CODEC_HW_CONFIG_METHOD_ HW_FRAMES_CTX时使用，否则不使用。其可能的取值如下：

	enum AVHWDeviceType {

	 AV_HWDEVICE_TYPE_NONE,

	 AV_HWDEVICE_TYPE_VDPAU,

	 AV_HWDEVICE_TYPE_CUDA,

	 AV_HWDEVICE_TYPE_VAAPI,

	 AV_HWDEVICE_TYPE_DXVA2,

	 AV_HWDEVICE_TYPE_QSV,

	 AV_HWDEVICE_TYPE_VIDEOTOOLBOX,

	 AV_HWDEVICE_TYPE_D3D11VA,

	 AV_HWDEVICE_TYPE_DRM,

	 AV_HWDEVICE_TYPE_OPENCL,

	 AV_HWDEVICE_TYPE_MEDIACODEC,

	 AV_HWDEVICE_TYPE_VULKAN,

	};

	下面再来看看怎么使用FFmpeg API来完成硬件加速的解码。本质上，其流程和软件解码基本一致，相同之处如下：初始化解码器上下文，配置参数，然后读取AVPacket数据并送入解码器，随后取出解码的AVFrame。

	不同之处如下：

	・硬件加速的解码需要初始化硬件解码上下文，然后把硬件设备上下文绑定到解码器上下文，并指定其输出格式。

	・硬件解码出来的AVFrame有可能本身是指向显存的一块数据，CPU无法直接访问，如果需要访问，需要显式地使用av_hwframe_transfer_data()，将其从GPU侧复制到CPU侧。另外，需要注意，因为复制的是YUV数据，这里很可能会变成全链路的性能瓶颈。以Intel VAAPI硬件解码为例，在下面的例子中，解码出来的AVFrame中AVFrame. data[3]包含的是VASurfaceID，其并不能直接访问。
位于FFmpeg/doc/examples。除了hw_decode.c这个例子以外，还有同在FFmpeg/doc/examples下的vaapi_encode.c、vaapi_ transcode.c，本身也是作者提交到FFmpeg项目，作为使用FFmpeg API来实现硬件加速解码、编码、转码的示例，目的是以精简但不失重点的方式展示如何使用FFmpeg API来完成硬件加速的编码、解码、转码等功能。因为是例子，所以并未像一个完整项目一样处理各种情况，但作为API展示已经足够了。本书使用它们来作为API示例。
	下面是一个基本的硬件加速解码的流程，其来自FFmpeg自带的例子hw_decode.c
	 [image: 位于FFmpeg/doc/examples。除了hw_decode.c这个例子以外，还有同在FFmpeg/doc/examples下的vaapi_encode.c、vaapi_ transcode.c，本身也是作者提交到FFmpeg项目，作为使用FFmpeg API来实现硬件加速解码、编码、转码的示例，目的是以精简但不失重点的方式展示如何使用FFmpeg API来完成硬件加速的编码、解码、转码等功能。因为是例子，所以并未像一个完整项目一样处理各种情况，但作为API展示已经足够了。本书使用它们来作为API示例。]，如图11-10所示。与一般的软解码的不同之处用圆角框加阴影的形式标识了出来。

	[image:]

	图11-10 硬件加速解码流程

	1）在avcodec_open2()前绑定好硬件设备上下文。

	这个步骤主要是设置AVCodecContext::hw_device_ctx。如果编解码器设备不需要硬件帧，或者使用的硬件帧由libavcodec内部分配，就应该使用AVCodecContext::hw_device_ctx。如果用户希望提供任何用作编码器输入或解码器输出的帧，那么应该使用 AVCodecContext::hw_ frames_ctx来代替。在我们的硬件加速解码例子中，选择前者，即使用AVCodecContext::hw_ device_ctx，而不是使用AVCodecContext::hw_frames_ctx来控制硬件帧的方式。

	对于编码器和解码器来说，字段AVCodecContext::hw_device_ctx应该在调用avcodec_open2()之前被设置，此后不得更改。在代码示例中，先以设备名称为string找到对应的设备类型，然后调用avcodec_get_hw_config函数以获取该解码器的硬件配置属性，比如可以支持的目标像素格式等。而硬件配置这个信息就存储在AVCodecHWConfig中，这个结构体的细节在上面已经提及。

	之后，使用av_hwdevice_ctx_create()创建硬件设备相关的上下文信息 AVHWDevice Context，包括资源分配、对硬件设备上下文进行初始化。准备好硬件设备上下文 AVHWDevice Context 后，需要把这个信息绑定到AVCodecContext，就可以按照软解码一样的流程执行解码操作了。

	同时，我们设置了AVCodecContext::get_format的回调函数，这个函数的作用就是告诉解码器输出的目标像素格式是什么。在上一步骤获取硬解码器Codec可以支持的目标格式之后，就通过这个回调函数告知Codec。

	2）视具体情况决定是否执行GPU到CPU的数据搬移。

	在作者的环境中，使用这个例子程序执行硬件解码的命令如下：

	./hw_decode vaapi input.mp4 test.yuv

	以这个例子而言，在调用avcodec_receive_frame()之后，得到的数据其实还在硬件内部（一般是显存，CPU无法直接访问），也就是说，如果用Intel GPU的VAAPI接口解码，数据是在显存上（或者说是在GPU encoder/decoder的内置buffer上，在上面的命令中，解码出来的AVFrame中，AVFrame.data[3]包含的是VASurfaceID，AVFrame对应的像素格式是AV_PIX_ FMT_VAAPI）。对于很多应用而言，解码之后往往还需要使用CPU进行后续操作，如保存成一幅幅图片之类，那么这时候就需要把数据从 GPU 搬移到 CPU 侧，这个操作由 av_hwframe_ transfer_data()完成。

	硬件加速解码的其他部分与软解码一致，在此不赘述。

11.3.2 硬件加速编码

	如同硬件加速例子hw_decode.c一样，FFmpeg自然也带了硬件编码、转码的例子。但从实现上讲，FFmpeg的硬件加速编码和解码的实现并不一样，对H.264的硬件加速解码和编码而言，它的底层实现实际上分为两种方式，一种是嵌入FFmpeg的原生软解码器，比如VAAPI加速的硬件解码嵌入原生h264解码器，可以使用下列命令来直接查看和确认。

	 ./ffmpeg -h decoder=h264

	... 省略其他信息

	Decoder h264 [H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10]:

	 General capabilities: dr1 delay threads

	 Threading capabilities: frame and slice

	 Supported hardware devices: vaapi

	H264 Decoder AVOptions:

	 -is_avc <boolean> .D.V..X.... is avc (default false)

	 -nal_length_size <int> .D.V..X.... nal_length_size (from 0 to 4) (default 0)

	 -enable_er <boolean> .D.V....... Enable error resilience on damaged frames (unsafe) (default auto)

	 -x264_build <int> .D.V....... Assume this x264 version if no x264 version found in any SEI (from -1 to INT_MAX) (default -1)

	可以看到在原生H.264解码器中，支持了VAAPI的硬件设备加速，即上面显示了“Supported hardware devices: vaapi”。另一种方式则是直接以集成第三方库的方式支持，比如在相同环境下，可以看到另外的H.264解码器h264_qsv。而对于硬件加速的编码器，FFmpeg则选择了直接注册为单独的编码器的方式来实现，而不是嵌入已经存在的原生编码器中。

	./ffmpeg -decoders | grep 264

	... 省略其他信息

	 VFS..D h264 H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10

	 V..... h264_v4l2m2m V4L2 mem2mem H.264 decoder wrapper (codec h264)

	 V....D h264_qsv H264 video (Intel Quick Sync Video acceleration) (codec h264)

	 V....D libopenh264 OpenH264 H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (codec h264)

	依然以FFmpeg自带的vaapi_encode.c为例，说明使用FFmpeg API执行硬件编码加速的操作。注意，这个例子本身只支持NV12格式的输入，所以在自行测试时需要使用NV12格式的YUV文件。该示例运行命令如下：

	./vaapi_encode 1920 1080 input.nv12 output.h264

	与之前软编码的流程相比，这个例子比较特殊的地方在于：

	・需要将YUV数据显式地加载到硬件编码的内存中，使用的函数是av_hwframe_ transfer_data()，只是在硬件加速解码的例子中，我们用它来把硬件编码的内存的数据复制到CPU侧，现在则是执行一个相反方向的操作。

	・需要显式地管理硬件编码“帧”，这里使用的是在前面提及的AVHWFramesContext。

	该例子的基本流程如图11-11所示，与硬件加速相关的操作用圆角框加阴影的形式表示。

	1）硬件帧管理上下文与编码Codec上下文关联。

	硬件设备上下文与Codec的关联在硬件加速解码中我们已经看到了，但在硬件编码过程中，我们需要管理位于硬件中的“帧池”，这由AVHWFramesContext来完成，主要是在avcodec_ open2()前设置AVCodecContext::hw_frames_ctx。另外该引用由调用者设置，但之后由libavcodec拥有（和释放），这意味着在被设置后，调用者不应该读取它。还有一个限定是AVHWFramesContext.format必须等于AVCodecContext.pix_fmt，在我们的例子中，它们都是AV_PIX_FMT_VAAPI，同时我们也预先设置了硬件帧池的大小是20，这在实际的情况中需要按照编码的实际需要去设定。

	2）将原始数据复制到硬件帧并编码。

	另一个特殊之处在于，我们需要显式地将原始YUV数据复制到硬件“帧”中，因为硬件编码器只能支持特定的帧类型，在我们的例子中，它由两个步骤完成。预先使用av_hwframe_ get_buffer()从AVHWFramesContext的硬件“帧”池中分配好硬件“帧”，随后，使用av_ hwframe_transfer_data()将原始数据加载到硬件“帧”，最后，同软编码一样，将硬件“帧”传送给编码器正常编码即可。

	要使用好硬件加速API，关键在于理解上述流程，理解硬件设备上下文、硬件帧管理，以及CPU和特定硬件的数据交换方式。通过对硬件加速解码、编码的示例介绍，读者可以很好地理解结合了硬件编解码的硬件转码示例doc/examples/vaapi_transcode.c。

	[image:]

	图11-11 硬件加速编码示例

11.4 AVFrame操作

	在做视频的编码、解码、滤镜操作时均会用到FFmpeg的一个常见的结构体AVFrame，这个AVFrame属于FFmpeg的utils部分。那么AVFrame里面的数据主要是干什么用的呢？可以简单理解一下，AVFrame里面的数据主要是视频或音频编码压缩前的数据、视频或音频解码解压缩后的数据，对于视频我们可以理解它就是一张图像，对于音频就是一个音频的未经压缩的裸数据。可见，这个结构描述了原始的音频或视频数据。

	AVFrame必须用av_frame_alloc()来分配。注意，这只是分配了AVFrame本身，数据的缓冲区必须通过其他方式管理。AVFrame的释放使用对应的av_frame_free()。

	AVFrame通常被分配一次，然后被多次重复使用以保存不同的数据（例如，用一个AVFrame来保存从解码器收到的帧）。在这种情况下，av_frame_unref()将释放该帧所持有的任何引用，并在它被重用之前将其重置为原来的干净状态。

	AVFrame所描述的数据通常是通过AVBuffer API进行引用计数的。底层的缓冲区引用被存储在AVFrame.buf/AVFrame.extended_buf中。如果至少有一个引用被设置，即AVFrame. buf[0]!= NULL，那么一个AVFrame就被认为是引用计数的。在这种情况下，每一个数据平面必须包含在AVFrame.buf或AVFrame.extended_buf的一个缓冲区中。所有的数据可能被放在一个缓冲区中，或者每个平面有一个单独的缓冲区。

	另外需要注意，使用的时候，sizeof(AVFrame)不是公共ABI的一部分。

	AVFrame的字段可以通过AVOptions访问，使用的名称字符串与通过AVOptions访问的字段的C结构字段名称相匹配。AVFrame的AVClass则可以通过avcodec_get_frame_class()获得。

	为了更全面地理解AVFrame里面的内容，接下来细致看一下AVFrame结构里的各个字段。AVFrame在FFmpeg中是最基础的结构之一，先来看一下AVFrame中都包含哪些成员。

	typedef struct AVFrame {

	 uint8_t *data[8];

	 int linesize[8];

	 uint8_t **extended_data;

	 int64_t pts;

	 int width, height;

	 int format;

	 int key_frame;

	 enum AVPictureType pict_type;

	 AVRational sample_aspect_ratio;

	 AVRational time_base;

	 int coded_picture_number;

	 int display_picture_number;

	 void *opaque;

	 int interlaced_frame;

	 int top_field_first;

	 AVBufferRef *buf[8];

	 AVBufferRef **extended_buf;

	 int nb_extended_buf;

	 AVFrameSideData **side_data;

	 int nb_side_data;

	 enum AVColorRange color_range;

	 enum AVColorPrimaries color_primaries;

	 enum AVColorTransferCharacteristic color_trc;

	 enum AVColorSpace colorspace;

	 int64_t pkt_dts;

	 int64_t pkt_pos;

	 int64_t pkt_duration;

	 int pkt_size;

	 AVDictionary *metadata;

	 int nb_samples;

	 int sample_rate;

	 AVChannelLayout ch_layout;

	};

	AVFrame结构中的成员名看上去大多数都很眼熟，因为在本书前半部分介绍ffprobe -show_frames参数的时候应该已经大部分见过了。

	・data：AVFrame中存储的音视频数据内容，指向图片/音频通道平面的指针，例如YUV420P的内存数据、音频的PCM采样数据等。data和extend_data数组指针中的所有指针必须指向buf或extend_buf中的一个AVBufferRef。有些解码器或者过滤器会访问(0, 0)（宽度、高度）以外的区域，如一些过滤器和swscale可以读取平面以外的16字节，如果要使用这些过滤器，那么必须额外分配16字节，在这种情况下这些数据内容的空间会超过图片的W×H，需要保证扩展对齐。

	・linesize：AVFrame中存储的音视频数据的各个区域的行长度。以YUV420格式的数据为例，它被单独分为Y的存储区域、U的存储区域、V的存储区域，所以有3个linesize值。而NV12属于我们说的semi planar格式，Y有一个单独区域，UV共用一个区域，所以它的有效linesize是2个。AVFrame的内存排布模式是经常出问题的原因之一，它和format密切相关，需要特别注意。对于视频，它通常表示每个图片行的字节大小，但也可以是负数；对于音频，只可以设置linesize[0]。对于平面音频，每个通道平面必须是相同的大小。对于视频来说，linesize应该是CPU对齐偏好的倍数，对于现代CPU来说，一般是16或32对齐。一些代码需要这样的对齐方式，另一些代码若没有正确的对齐方式运行起来会比较慢，而有些代码则没有区别。

	注意：linesize的大小可能大于可用数据的大小，其主要出于性能考虑，可能会有额外的填充。对于视频，行的大小值可以是负数，以实现对图像行的垂直方向的颠倒处理。

	・extended_data：指向数据平面/通道的指针。对于视频，这应该简单地指向data[]。对于平面音频，每个通道有一个单独的数据指针，linesize[0]包含每个通道缓冲区的大小。对于打包格式的音频，只有一个数据指针，linesize[0]包含所有通道的缓冲区的总大小。

	注意：在一个有效的帧中，data和extend_data都应该被设置，但是对于有更多通道的平面音频，可能必须使用extend_data才能访问所有通道。其核心的原因在于，音频的通道个数有可能会超过AV_NUM_DATA_POINTERS(8)，所以有extend_data的出现。

	・buf[8]/*extended_buf：支持该帧数据的AVBuffer引用。data和extension_data中的所有指针必须指向buf或extension_buf中的一个缓冲区内。这个数组必须是连续填充的，举例来说，对于所有j<i，如果buf[i]是非空的，那么buf[j]也必须是非空的。每个数据平面最多只有一个AVBuffer，所以对于视频，这个数组总是包含所有的引用，因为视频的平面数目不可能超过8个。对于有超过AV_NUM_DATA_POINTERS通道的平面音频，可能会有更多的缓冲区无法被容纳在这个数组中，额外的AVBufferRef指针被存储在extended_buf数组中。

	・format：当前视频的采样格式，如AV_PIX_FMT_YUV420P、AV_PIX_FMT_RGB24；或者音频的采样格式，如AV_SAMPLE_FMT_FLT、AV_SAMPLE_FMT_S16。

	・width：视频当前帧宽度。

	・height：视频当前帧高度。

	・key_frame：当前帧是否是视频的关键帧。

	・pict_type：表示当前帧是I帧、P帧或者B帧等。

	・sample_aspect_ratio：当前帧的采样宽高比。

	・pts：当前视频帧的显示时间戳。

	・coded_picture_number：当前帧的编码后图像序列号。

	・display_picture_number：当前帧的图像显示序列序号。

	・interlaced_frame、top_field_first：视频行交错能力相关，如果是行交错的话是否是顶场先刷新。

	・side_data、nb_side_data：AVFrame携带的side data，用于存放当前帧的扩展信息，例如图像是否需要旋转角度，图像中是否有区域识别或者区域画质增强的额外信息。

	・color_range、color_primaries、color_trc、colorspace：这4个变量是图像调色专用的参数，通常需要参考颜色的参考标准模型来设置对应的参考值，例如色彩是BT.709、BT.601、BT.2020或者Display P3等。这些色彩大部分是有开放的参考标准的（比如Recommendation ITU-R BT.709-6、Recommendation BT.2020，均可以在ITU开放标准的网站上找到对应的标准），我们在前半部分介绍过基本的色彩模型和色彩可显示的动态范围，如果想要支持HDR等能力，这4个参数是必然会遇到的。当进行视频转码、视频显示等操作时如果遇到图像偏色，可以通过这4个参数作为入口点进行分析与调整。

	・pkt_dts、pkt_pos、pkt_duration、pkt_size：这4个参数均为与AVPacket部分一一对应的参数，在调试与分析当前帧内容时与AVPacket可以互为参考进行分析与操作。

	・metadata：AVFrame携带的元数据信息。在FFmpeg内部操作时可以在多个滤镜之间通过metadata进行传递，例如做人脸识别等功能时。通过metadata作为自定义信息记录也可以达到同样的效果，与上面的side_data的功能比较相似，但是side_data通常是内部定义好的类型，而metadata则可以是自定义的私有内容。

	・nb_samples：当前帧的音频的一个声道的采样个数。

	・sample_rate：当前帧的音频的采样率。

	・ch_layout：当前声道的布局相关信息，包括声道数、声道布局等。

	AVFrame是FFmpeg中最基础的组件，FFmpeg提供了关于AVFrame操作的接口，如表11-1所示。除了必要的申请与释放AVFrame接口av_frame_alloc和av_frame_free，还有一些经常会用到的接口。

	表11-1 AVFrame相关接口

	[image:]

	[image:]

	为了加深对AVFrame API的理解，我们通过一个例子来使用这些API。由于AVFrame操作的是基础库中的API，所以不需要依赖avcodec、avformat、avfilter这类第三方库，直接使用avutil即可。示例代码如下：

	#include <stdio.h>

	#include <libavutil/frame.h>

	/* 构建一帧YUV图像 */

	static void fill_yuv_image(AVFrame *pict, int frame_index,

	 int width, int height)

	{

	 int x, y, i;

	 i = frame_index;

	 /* 构建Y通道数据 */

	 for (y = 0; y < height; y++)

	 for (x = 0; x < width; x++)

	 pict->data[0][y * pict->linesize[0] + x] = x + y + i * 3;

	 /* 构建UV通道数据 */

	 for (y = 0; y < height / 2; y++) {

	 for (x = 0; x < width / 2; x++) {

	 pict->data[1][y * pict->linesize[1] + x] = 128 + y + i * 2;

	 pict->data[2][y * pict->linesize[2] + x] = 64 + x + i * 5;

	 }

	 }

	}

	int main(int argc, char **argv)

	{

	 AVFrame *frame;

	 AVFrame *frame_dst;

	 int writable = 0;

	 int ret;

	 frame = av_frame_alloc();

	 if (!frame)

	 return AVERROR(ENOMEM);

	 frame->format = AV_PIX_FMT_YUV420P;

	 frame->width = 1280;

	 frame->height = 720;

	 writable = av_frame_is_writable(frame);

	 fprintf(stderr, "frame writable = %d\n", writable);

	 ret = av_frame_get_buffer(frame, 0);

	 if (ret < 0) {

	 fprintf(stderr, "Could not allocate frame data.\n");

	 exit(1);

	 }

	 fprintf(stderr, "frame writable = %d\n", writable);

	 if (av_frame_make_writable(frame) < 0)

	 exit(1);

	 writable = av_frame_is_writable(frame);

	 fprintf(stderr, "frame writable = %d\n", writable);

	 fill_yuv_image(frame, 0, 1280, 720);

	 frame_dst = av_frame_clone(frame);

	 if (!frame_dst)

	 return AVERROR(ENOMEM);

	 writable = av_frame_is_writable(frame_dst);

	 fprintf(stderr, "frame_dst writable = %d\n", writable);

	 av_frame_free(&frame);

	 av_frame_free(&frame_dst);

	 return 0;

	}

	从代码示例中可以看到用到了多个操作，申请与释放AVFrame用到av_frame_alloc与av_ frame_free，而av_frame_clone则是在av_frame_alloc之后做了av_frame_ref操作，av_frame_free也顺带做了av_frame_unref操作。申请AVFrame之后通常需要设置可写操作的属性，否则向AVFrame内存做写入操作时会报错，可以通过av_frame_is_writable先确认一下是否可写，如果不可写入但希望写入的话，需要使用av_frame_make_writable更改可写入操作。申请AVFrame之后，存储视频或者声音数据的内存不会直接被申请，需要使用av_frame_get_buffer申请一段buffer以便存储音视频数据，av_frame_unref会根据av_frame_get_buffer申请的内存情况进行释放。对于AVFrame的操作，需要注意内存的使用，如不谨慎很容易引起内存泄漏。程序运行的结果如下：

	frame writable = 0

	frame writable = 0

	frame writable = 1

	frame_dst writable = 0

	为了确认这段用例是否存在内存泄漏，可以考虑使用valgrind来监测一下内存泄漏情况。

	valgrind --tool=memcheck

	--leak-check=full ./doc/examples/avframe_demo_g

	==31656== Memcheck, a memory error detector

	==31656== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

	==31656== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info

	==31656== Command: ./doc/examples/avframe_demo_g

	==31656==

	frame writable = 0

	frame writable = 0

	frame writable = 1

	frame_dst writable = 0

	==31656==

	==31656== HEAP SUMMARY:

	==31656== in use at exit: 0 bytes in 0 blocks

	==31656== total heap usage: 6 allocs, 6 frees, 1,414,288 bytes allocated

	==31656==

	==31656== All heap blocks were freed -- no leaks are possible

	==31656==

	==31656== For lists of detected and suppressed errors, rerun with: -s

	==31656== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

	从输出的信息中可以看到，很显然是没有内存泄漏的。关于AVFrame相关的介绍到这里就结束了，更多的AVFrame操作可以参考之前介绍的FFmpeg中的示例代码以加深理解。

11.5 内存操作

	在FFmpeg中做音视频处理时会频繁地用到内存操作，常见的有av_malloc与av_free操作，还有FFmpeg为了内存使用安全而改进的av_freep。除了这些基础的、常见的API，为了方便，它还提供了buffer相关的包装操作。在前面做AVFrame操作时，间接使用了FFmpeg内部定义的AVBuffer与管理AVBuffer的AVBufferRef，由于AVBuffer被FFmpeg的内部流程所用，所以我们只需要了解AVBufferRef及其使用的API即可。

	typedef struct AVBufferRef {

	 AVBuffer *buffer;

	 /**

	 * AVBuffer里存储的数据. 当且仅当这个data是AVBuffer的唯一引用的数据时它才被设为是可写的，

	 * 在AVBuffer是可写的情况下，用av_buffer_is_writable()查看可写属性时会返回1。

	 */

	 uint8_t *data;

	 /* 数据的大小 */

	 size_t size;

	} AVBufferRef;

	AVBufferRef的结构看上去比较简单，但是作为较为基础的功能，它所提供的操作API非常灵活，相关的API如表11-2所示。

	表11-2 AVBufferRef相关的API

	[image:]

	AVBuffer在很多时候并不会直接被用户使用，而是在调用编解码、滤镜处理等接口的时候会在内部流程中使用。但是使用AVBuffer来做内存管理与操作确实方便，为了加深对AVBufferRef API的理解，我们通过一个例子来使用这些API。由于AVBufferRef操作的API是基础库中的API，所以不需要依赖avcodec、avformat、avfilter这类第三方库，直接使用avutil即可。示例代码如下：

	#include <stdio.h>

	#include <libavutil/error.h>

	#include <libavutil/buffer.h>

	#include <libavutil/mem.h>

	int main(int argc, char **argv)

	{

	 uint8_t *data = av_malloc(1024);

	 AVBufferRef *fdd_buf = av_buffer_create(data, 1024, NULL, NULL, AV_BUFFER_FLAG_READONLY);

	 if (!fdd_buf)

	 return AVERROR(ENOMEM);

	 fprintf(stderr, "fdd_buf writable = %d\n", av_buffer_is_writable(fdd_buf));

	 av_buffer_ref(fdd_buf);

	 av_buffer_ref(fdd_buf);

	 fprintf(stderr, "fdd count = %d\n", av_buffer_get_ref_count(fdd_buf));

	 av_buffer_make_writable(&fdd_buf);

	 fprintf(stderr, "fdd_buf writable = %d\n", av_buffer_is_writable(fdd_buf));

	 return 0;

	}

	从例子中可以看到，首先需要申请一段内存，根据申请的内存空间创建一段AVBufferRef，然后可以操作AVBufferRef中的data。其实从FFmpeg内部的代码来看，AVBufferRef常用于Codec的内部，在实现Codec时使用会很方便，或者在做AVPacket的data控制与管理时也很方便。到这里关于AVBufferRef的基本操作就介绍完了，更多的FFmpeg的AVBufferRef相关操作还可以参考FFmpeg的Codec部分实现来加深理解。

	除了AVBufferRef的基本操作，FFmpeg还提供了AVBufferPool的buffer池的操作。FFmpeg支持buffer池主要是让用户在做buffer操作的时候在方便性和性能方面有一定的提升，尤其是当用户操作GPU的显存时。AVBufferPool操作的API如表11-3所示。

	表11-3 AVBufferPool操作的API

	[image:]

	AVBufferPool在平时基本上不会有太多的使用，在使用滤镜操作的时候会间接地用到，通过使用av_buffer_pool_get从内存中获得AVBuffer，但是如果使用av_buffer_pool_get的话，通常是从AVBuffer池里面找可用内存来用。所以如果仔细观察的话，在频繁地做滤镜处理操作的时候内存或者显存会有一定的增长积累，但是并不会持续增长，而是在AVBuffer池没有可用空间时才会追加申请空间。

11.6 小结

	在本章，我们分析了FFmpeg使用新旧接口进行视频、音频编解码的方法和流程。到本书编写时，虽然一些旧的编解码API仍然被很普遍地使用，但是强烈推荐大家接受新的接口规范，一方面新的接口更加灵活，使用起来会更强大，另一方面，对于FFmpeg 5.0之后的版本，旧API已经完全不可用，所以建议相关代码早日迁移到新的接口。另外，FFmpeg在这几年很重要的一个特性就是逐步完善的硬件加速功能，所以特意对这部分内容进行了介绍，这样使得读者想要使用FFmpeg API来完成硬件加速编码、解码、转码等操作时，有个良好的基础。同时，作为FFmpeg最重要的结构体之一的AVFrame也在本章做了介绍，深刻理解AVPacket和AVFrame的细节会让你对FFmpeg的使用有更多启发。

第12章

libavfilter接口的使用

	libavfilter是FFmpeg中一个很重要的模块，提供了很多滤镜，可以对音视频进行各种处理。在做音视频处理时，通过合理使用这些滤镜，可以达到事半功倍的效果。第8章介绍过使用FFmpeg命令行给视频添加水印、生成画中画、视频多宫格处理，以及音频相关的操作，这些特效操作就是通过libavfilter滤镜来完成的。

	本章主要介绍FFmpeg的滤镜API函数的使用方法，重点以API使用为主，通过使用滤镜对视频添加Logo这个例子展开叙述。本章介绍的滤镜操作为通用操作，其他滤镜操作均可以参考本章中介绍的步骤。

12.1 Filter和FilterGraph简述

	FFmpeg中的Filter就是我们所说的滤镜，又称过滤器，跟我们日常生活中使用的过滤器类似，只不过在FFmpeg中，Filter中流入和流出的是音视频数据，Filter在中间对音视频进行各种特效处理。将多个滤镜连接起来，就组成一个链，再进一步则组成一个图，它实际上是一个有向无环图（DAG，Directed Acyclic Graph），在FFmpeg中被称为FilterGraph。滤镜之间可以有多个连接，这个与微软公司的DirectShow处理功能模块化的方式是类似的。举个例子，我们从摄像头中采集到图像，输出给滤镜，然后滤镜会对这个图像进行处理，如调节亮度和对比度、进行美颜等，最后输出处理以后的图像。

	FFmpeg中内置了很多滤镜功能模块，这些模块描述了滤镜的特性及输入输出端的个数。从输入输出的角度来说，滤镜主要有3种类型：Source Filter、Sink Filter和Transform Filter，其中Source Filter是源滤镜，它只有输出端没有输入端；Sink Filter则是终端滤镜，只有输入端没有输出端；而Transform Filter是位于传输中间位置的滤镜，既有输入端又有输出端。一个示例如图12-1所示。如果把大家熟悉的小孔成像实验设备都看成是滤镜，则左边的蜡烛就是Source Filter，右边的挡板就是Sink Filter，而中间的小孔就是Transform Filter。

	FilterGraph有规定好的表示方式。使用命令行工具时，在ffmpeg中由-filter/-vf和-filter_complex选项指定，在ffplay中由-vf选项指定；如果使用的是API方式，则由libavfilter/avfilter.h中定义的avfilter_graph_parse()/avfilter_graph_parse_ ptr()/avfilter_graph_parse2()函数来解析。其规则如下：

	・一个滤镜（filter）由以下形式的字符串表示。

	[in_link_1]...[in_link_N]filter_name=arguments[out_link_1]...[out_link_M]

	[image:]

	图12-1 滤镜示意图

	・一个滤镜链（filterchain）由一连串的滤镜组成，每一个滤镜都与序列中的前一个滤镜相连。一个滤镜链由用逗号“,”分隔的滤镜描述列表组成。

	・一个滤镜图（filtergraph）由一连串的滤镜链组成。滤镜图由用分号“;”分隔的滤镜链描述的列表组成。

	filter_name是滤镜类的名称，所描述的滤镜是其实例，并且必须是已经支持的滤镜的名称。滤镜的名称后面有一个字符串=arguments，其用来对滤镜实例做进一步的参数控制。arguments是一个字符串，包含用于初始化滤镜实例的参数，可以通过以下两种形式之一来设置。

	・一个由冒号“:”分隔的key=value方式的键值对，这种情况下明确指定key的名字和对应的值。一般推荐这样的方式，因为这样更为清晰，后续调试也更为便利。

	・一个由“:”分隔开的值列表，但不带键的名字。在这种情况下，键被假定为选项名称，按照它们在Filter中被声明的顺序。例如，fade滤镜按照这个顺序声明了3个选项：type、start_frame和nb_frames，那么参数列表in:0:30意味着in的值被分配给选项type，0分配给start_frame，30分配给nb_frames。保留这种方法的原因是有些老的命令行使用了这样的方式，读者可以了解一下。

	如果选项值本身是一个列表（例如，format滤镜可能需要多个像素格式组成的列表），列表中的选项值通常用符号“|”来分隔。参数列表可以用单引号字符“'”作为开始和结束标记，用转义字符“\”来转义引号内的字符；否则，当遇到下一个特殊字符（指的是“[]=;,”集合）时，参数字符串就被认为终止了。

	一个滤镜包含一个或多个输入、输出，滤镜的输入或输出被称为pad，每个pad被绑定到一个特定的媒体类型上，支持一个或多个输入、输出格式。输入和输出pad再通过一个链接联系在一起，逐级链接构成滤镜链。

	另外，滤镜的语法也支持链接标签（flag）方式，这时，滤镜的名称和参数可以选择在链接标签列表的前面和后面。一个链接标签允许显式地命名一个链接，并将其与滤镜的输出或输入pad相关联。以上面的例子来说，前面的标签[in_link_1] ... [in_link_N]与滤镜的输入pad关联，后面的标签[out_link_1] ... [out_link_M]与输出pad关联。当在滤镜图中发现两个具有相同名称的链接标签时，就会在相应的输入和输出pad之间创建一个链接。如果一个输出pad没有被贴上标签，它就被默认为链接到滤镜链中下一个滤镜的第1个未贴标签的输入pad。滤镜链举例如下：

	nullsrc, split[L1], [L2]overlay, nullsink

	split滤镜实例有两个输出pad，overlay滤镜实例有两个输入pad。split的第1个输出pad被标记为L1，overlay的第1个输入pad被标记为L2，而split的第2个输出pad与overlay的第2个输入pad相连，且都没有被标记。

	在一个完整的滤镜链中，所有未被标记的滤镜输入和输出pad都必须连接；且只有所有滤镜链的所有输入和输出pad都是连接的，该滤镜图才被认为是有效的。需要注意的是，libavfilter可能会在需要转换格式的地方自动插入scale滤镜，在这种情况下，可以通过在filtergraph描述中添加sws_flags=flags来为那些自动插入的scale滤镜指定swscale标志。
巴科斯范式（Backus Normal Form，BNF），又称为巴科斯-诺尔范式（Backus-Naur Form），是一种用于表示上下文无关文法的语言。上下文无关文法描述了一类形式语言，它是由约翰·巴科斯（John Backus）和彼得·诺尔（Peter Naur）首先引入的，用来描述计算机语言语法的符号集。
	下面是对filtergraph语法的BNF
	 [image: 巴科斯范式（Backus Normal Form，BNF），又称为巴科斯-诺尔范式（Backus-Naur Form），是一种用于表示上下文无关文法的语言。上下文无关文法描述了一类形式语言，它是由约翰·巴科斯（John Backus）和彼得·诺尔（Peter Naur）首先引入的，用来描述计算机语言语法的符号集。]描述，可以作为完整的语法参考。

	NAME ::= sequence of alphanumeric characters and '_'

	FILTER_NAME ::= NAME["@"NAME]

	LINKLABEL ::= "[" NAME "]"

	LINKLABELS ::= LINKLABEL [LINKLABELS]

	FILTER_ARGUMENTS ::= sequence of chars (possibly quoted)

	FILTER ::= [LINKLABELS] FILTER_NAME ["=" FILTER_ARGUMENTS] [LINKLABELS]

	FILTERCHAIN ::= FILTER [,FILTERCHAIN]

	FILTERGRAPH ::= [sws_flags=flags;] FILTERCHAIN [;FILTERGRAPH]

	另外需要指出的是，AVFilter的设计理念似乎受到Windows的DirectShow的设计影响，所以很多最初的概念与DirectShow颇为相似。不过后期AVFilter的内部也开始逐步迭代出一些自有的创新，比如多输入滤波同步（framesync）、动态参数设置（process_command）等。

12.2 FFmpeg中内置的滤镜

	FFmpeg中内置了很多滤镜，在AVFilter中主要分为3种类型：音频滤镜、视频滤镜、多媒体滤镜。注意，这是一个简单但不严谨的分类方式，实际上，滤镜也能处理字幕等。

12.2.1 音频滤镜

	1. 音频Transform Filter

	音频Transform Filter包含了重采样、混音器、调整音频时间戳、淡入淡出、静音检测等模块。截至本书编写时，FFmpeg内置了100多种音频Transform Filter，如表12-1所示。

	表12-1 音频Transform Filter

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	2. 音频Source Filter

	截至本书编写时，FFmpeg一共内置了6种音频Source Filter。当前可用的音频Source Filter如表12-2所示。

	表12-2 音频Source Filter

	[image:]

	[2] CMU Flite（festival-lite）是卡耐基梅隆大学开源的一个语音合成库，可以将文本转变成语音。参见http://cmuflite.org/。

	3. 音频Sink Filter

	截至本书编写时，FFmpeg一共内置了两种音频Sink Filter，如表12-3所示。

	表12-3 音频Sink Filter

	[image:]

12.2.2 视频滤镜

	1. 视频Transform Filter

	FFmpeg中视频Transform Filter非常丰富，包含了图像剪切、Logo虚化、色彩空间变换、图像缩放、淡入淡出、字幕处理等模块。因为这些滤镜非常多，如果需要禁止一些不需要的滤镜以使得库的尺寸减小，可以通过--disable-filters来禁用。截至本书编写时，FFmpeg内置了300多种视频Transform Filter，具体如表12-4所示。

	表12-4 视频Transform Filter

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	[image:]

	2. 视频Source Filter

	截至本书编写时，FFmpeg一共内置了18种视频Source Filter，如表12-5所示。

	表12-5 视频Source Filter

	[image:]

	[image:]

	3. 视频Sink Filter

	截至本书编写时，FFmpeg一共内置了两种视频Sink Filter，如表12-6所示。

	表12-6 视频Sink Filter

	[image:]

12.3 libavfilter的API使用

	在前面命令行使用章节中已经介绍过对视频添加水印的操作，下面使用FFmpeg API来实现同样的效果。AVFilter流程图如图12-2所示。

	[image:]

	图12-2 AVFilter流程图

	图12-2可以总结为如下步骤：初始化libavfilter，创建Source和Sink滤镜，然后调用解析滤镜图接口以正确地创建滤镜图，剩下的就是将解码出来的视频或音频数据以帧的方式放到滤镜中处理，然后再取出来，整个流程就完成了。下面我们通过对视频添加Logo来看看这一过程。除了上面的这些API，使用libavfilter也需要对相应的数据结构有清晰的认识，如表12-7所示。

	表12-7 AVFilter库中的重要结构体

	[image:]

	[image:]

	这里对AVFilterPad和AVFilterInOut做进一步的说明。

	AVFilterPad用于描述一个滤镜的输入或输出，它包含类型、名字、用于处理传入或传出帧的函数指针，以及其他更多的一些技术细节。它是滤镜（AVFilter）的一部分。

	AVFilterInOut主要是对诸如“concat滤镜的第4个输入”这样的信息进行描述，它包含一个指向滤镜上下文的指针，以及指定输入或输出的索引，加上一个建立链接列表的next指针，如果这个结构来自于解析滤镜图的字符串描述，其可能还有一个名字。

	例如解析一个滤镜图的字符串描述“[0:a] [ex] amerge”，你会得到两个AVFilterInOut的输入：

	・一个指向amerge的上下文，索引为0，名称为“0:a”。

	・一个指向amerge的上下文，索引为1，名称为“ex”。

	还有一个AVFilterInOut用于输出：

	・指向amerge的上下文，索引为0，因为它只有一个输出，名称为NULL。

12.4 使用滤镜给视频加Logo

	下面我们通过一个例子来讲述上述流程在实际中的使用方法。关于滤镜的操作接口已经列出，接下来重点讲解一下视频的滤镜操作过程，代码中与解封装、解码相关的内容可参考本书的其他部分，我们着重于滤镜操作的主要步骤，参考代码网址为https://ffmpeg.org/doxygen/trunk/filtering_ video_8c-example.html。

	1）获得滤镜处理的源及Sink。获得滤镜处理的源及滤镜处理的Sink滤镜（AVFilter），同时申请输入与输出的滤镜结构AVFilterInOut。

	AVFilter *buffersrc = avfilter_get_by_name("buffer"); // 源滤镜

	AVFilter *buffersink = avfilter_get_by_name("buffersink"); // Sink滤镜

	AVFilterInOut *outputs = avfilter_inout_alloc(); // 初始化滤镜输出

	AVFilterInOut *inputs = avfilter_inout_alloc(); // 初始化滤镜输入

	2）分配AVFilterGraph。在AVFilter与AVFilterInOut申请完成之后，申请一个AVFilterGraph结构，用来存储Filter的in与out描述信息。如前面所言，AVFilterGraph是整个滤波过程的总控结构之一。

	AVFilterGraph *filter_graph = avfilter_graph_alloc(); // 初始化AVFilterGraph

	if (!outputs || !inputs || !filter_graph) { // 检查是否初始化成功

	 ret = AVERROR(ENOMEM);

	}

	3）创建AVFilterContext。需要创建一个AVFilterContext结构以存储Filter的处理内容，包括输入与输出的Filter等信息。在创建输入信息时，需要加入源视频的相关信息，例如video_size、pix_fmt、time_base、pixel_aspect等。

	AVFilterContext *buffersink_ctx;

	AVFilterContext *buffersrc_ctx;

	snprintf(args, sizeof(args), // 准备Filter参数

	 "video_size=%dx%d:pix_fmt=%d:time_base=%d/%d:pixel_aspect=%d/%d",

	 dec_ctx->width, dec_ctx->height, dec_ctx->pix_fmt, time_base.num,

	 time_base.den, dec_ctx->sample_aspect_ratio.num,

	 dec_ctx->sample_aspect_ratio.den);

	// 创建源Filter实例,这个函数会在开头调用滤镜的preinit函数，然后创建滤镜实例并做一些简单的初始化，解析输入的字符串，最后调用滤镜的init函数

	ret = avfilter_graph_create_filter(&buffersrc_ctx, buffersrc,

	 "in", args, NULL, filter_graph);

	if (ret < 0) {

	 av_log(NULL, AV_LOG_ERROR, "Cannot create buffer source\n");

	}

	创建好输入的AVFilterContext之后，接下来创建一个输出的AVFilterContext，用于终结FilterGraph。

	// 创建Sink Filter

	ret = avfilter_graph_create_filter(&buffersink_ctx, buffersink,

	 "out", NULL, NULL, filter_graph);

	if (ret < 0) {

	 av_log(NULL, AV_LOG_ERROR, "Cannot create buffer sink\n");

	}

	4）设置其他参数。创建完输入与输出的AVFilterContext之后，如果还需要设置一些其他的与Filter相关的参数，可以使用av_opt_set_int_list进行设置。例如设置AVfilterContext的输出的pix_fmt参数。

	ret = av_opt_set_int_list(buffersink_ctx, "pix_fmts",

	 AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_OPT_SEARCH_CHILDREN);

	if (ret < 0) {

	 av_log(NULL, AV_LOG_ERROR, "Cannot set output pixel format\n");

	}

	5）建立滤镜解析器。参数设置完毕之后，可以针对前面设置的Filter相关的内容建立滤镜解析器。滤镜内容与前面章节中介绍的命令行方式基本相同，填入对应的字符串即可。

	const char * filters_descr =

	 "movie=logo.jpg [logo];[logo]color key=White:0.2:0.5[alphawm];[in][alphawm]overlay=20:20[out]";

	设置FilterGraph的连接点。filter_graph将会连接到以filters_descr描述的图上。源滤镜（buffersrc）的输出必须接在filters_desc描述的滤镜图的输入端。由于第1个Filter的输入标签（lable）没有设置，则默认为“in”。

	outputs->name = av_strdup("in");

	outputs->filter_ctx = buffersrc_ctx;

	outputs->pad_idx = 0;

	outputs->next = NULL;

	Sink滤镜（buffersink）的输入必须接到filters_descr描述的最后一个Filter的输出上。由于最后一个Filter的输出标签（label）没有指定，默认为“out”。

	inputs->name = av_strdup("out");

	inputs->filter_ctx = buffersink_ctx;

	inputs->pad_idx = 0;

	inputs->next = NULL;

	// 解析Filter字符串，建立Filter间的连接，主要是用AVFilterLink把相邻的两个滤波实例连接起来

	avfilter_graph_parse_ptr(filter_graph, filters_descr, &inputs, &outputs, NULL);

	avfilter_graph_config(filter_graph, NULL); // 配置FilterGraph，同时验证参数配置是否正确

	上面设置的inputs/outputs代码初看会觉得有些奇怪，但仔细想想，便觉得合理。outputs对应的是in（也就是buffer），in是FilterGraph第一个Filter，所以它只有输出端（所以对应到了outputs）。同理out（buffersink）是FilterGraph的最后一个Filter，只有输入端，因此对应到了inputs。

	至此，可以看到滤镜输入与输出的关联已建立，并且解析了滤镜的处理过程字符串，将建立的处理过程图filter_graph加入filter配置。

	这样就建立好滤镜图了。如果想要了解构建的滤镜图是否符合预期，可以使用avfilter_graph_ dump函数“dump”一下整个滤镜图，用于调试或者验证。

	/**

	 * Dump a graph into a human-readable string representation.

	 *

	 * @param graph the graph to dump

	 * @param options formatting options; currently ignored

	 * @return a string, or NULL in case of memory allocation failure;

	 * the string must be freed using av_free

	 */

	char *avfilter_graph_dump(AVFilterGraph *graph, const char *options);

	6）数据放入Filter的源。准备工作做完之后，接下来开始进入解码及将数据喂给滤镜图的过程。解码的过程在前面章节已经讲述，参考即可。滤波的流程都是从向buffersrc输入帧开始的，FFmpeg实际上提供了3个函数：av_buffersrc_write_frame()、av_buffersrc_add_frame()和av_buffersrc_add_frame_flags()。实际上av_buffersrc_write_frame()和av_ buffersrc_add_frame()是av_buffersrc_add_frame_flags()的一个特例。

	/**

	 * Add a frame to the buffer source.

	 *

	 * By default, if the frame is reference-counted, this function will take

	 * ownership of the reference(s) and reset the frame. This can be controlled

	 * using the flags.

	 *

	 * If this function returns an error, the input frame is not touched.

	 *

	 * @param buffer_src pointer to a buffer source context

	 * @param frame a frame, or NULL to mark EOF

	 * @param flags a combination of AV_BUFFERSRC_FLAG_*

	 * @return >= 0 in case of success, a negative AVERROR code

	 * in case of failure

	 */

	av_warn_unused_result

	int av_buffersrc_add_frame_flags(AVFilterContext *buffer_src,

	 AVFrame *frame, int flags);

	解码完成后对解码后的数据进行滤镜操作，将解码后的视频的每一帧数据（frame）抛给源AVFilterContext（buffersrc_ctx）进行处理。具体的操作如下：

	if (av_buffersrc_add_frame_flags(buffersrc_ctx, frame, AV_BUFFERSRC_FLAG_KEEP_REF) < 0) {

	 av_log(NULL, AV_LOG_ERROR, "Error while feeding the filtergraph\n");

	}

	7）获取数据。数据抛给源AVFilterContext处理之后，AVFilter会自行对数据按照先前设定好的处理方式进行处理，通过从输出的AVFilterContext中获得输出的帧数据，即可获得滤镜处理过的数据，然后根据实际的需要，对数据进行编码或者存储下来观看效果。保存数据的方式与解码保存方式相同。

	在下面的例子中，调用av_buffersink_get_frame以尝试获得buffersink输出的帧。如果返回值大于0则表明得到了一帧，正常情况下如果无法获得帧通常会返回EAGAIN，这表明要求用户向buffersrc输入更多的帧。av_buffersink_get_frame会向下调用get_frame_ internal，该函数的主要作用就是调用滤镜进行滤波，并返回滤波完成的帧。获取过滤后的帧的代码示例如下：

	while (1) {

	 // 获取经过滤镜处理后的视频数据帧

	 ret = av_buffersink_get_frame(buffersink_ctx, filt_frame);

	 if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF) break;

	 if (ret < 0) goto end;

	 // 复制视频帧数据到video_dst_data内存缓冲区

	 av_image_copy(video_dst_data, video_dst_linesize,

	 (const uint8_t **)(frame->data), frame->linesize, AV_PIX_FMT_YUV420P,

	 frame->width, frame->height);

	 // 将内存中的数据写到文件中

	 fwrite(video_dst_data[0], 1, video_dst_bufsize, video_dst_file);

	 av_frame_unref(filt_frame); // 释放滤镜中的视频帧

	}

	av_frame_unref(frame); // 释放视频帧

	至此，通过调用滤镜API为视频添加Logo的处理方式介绍完毕。添加Logo后的效果如图12-3所示，可以看到Logo已经被加入视频中。

	[image:]

	图12-3 滤镜添加效果图

12.5 小结

GPAC的filter的开发进展可以关注https://github.com/gpac/gpac/wiki/filters_general。
	相对于libavformat和libavcodec，libavfilter库在FFmpeg中出现得更晚一些，期间内部实现也经历了多次迭代，也引起过关于稳定性、文档、性能等问题的争议。但不可否认，libavfilter的加入使得FFmpeg的使用范围更为广泛。另外一个开源项目GPAC
	 [image: GPAC的filter的开发进展可以关注https://github.com/gpac/gpac/wiki/filters_general。]甚至在后续版本的开发中直言，其filter的开发借鉴了FFmpeg的libavfilter库的实现。

	本章介绍了libavfiter的各种滤镜，更为重要的是介绍了其API的使用方式。其构建过程显得有些复杂，但只要实操几次便会熟悉。其他滤镜操作方法与上述添加Logo的方法基本相同，而音频的滤镜操作方法与本例也大同小异。另外，在使用滤镜API的时候，也需要注意其线程的设置，这在多核心场景下颇为重要。

第13章

FFmpeg辅助库的使用

	FFmpeg的辅助库主要由libavutil、libswscale、libswresample组成。其中libavutil库是一个辅助多媒体编程的实用工具库，它包含的功能非常多，如安全的可移植字符串函数、随机数生成器、各种常用数据结构、扩展的数学函数、密码学和多媒体相关功能（如像素和样本格式的枚举）等。

	libavutil的设计目标如下。

	・模块化：它应该有很少的相互依赖，并可能在./configure期间禁用个别部分。

	・小型化：其内部实现和对应的实例都应该较小。

	・高效：它应该具有较低的CPU和内存使用率。

	・实用：它应该避免那些几乎没有人需要的无用功能。

	libavutil被设计为模块化的方式。在大多数情况下，为了使用libavutil的某个组件所提供的功能，你必须明确地包含该功能的特定头文件。如果只使用媒体相关的组件，也可以只简单地包含libavutil/avutil.h文件，它涵盖了大部分的“核心”组件。

	除了libavutil，还有针对图像转换、缩放的libswscale，以及针对音频重采样、格式转换的libswresample。

	在FFmpeg项目的工程实现中，命令行部分介绍了很多参数，这些参数除了可以通过命令行工具使用，也可以在调用API的时候使用。另外，图像缩放和音频格式转换也是常用操作，作为FFmpeg的SDK用户或FFmpeg模块开发者，会经常使用libavutil、libswscale和libswresample的一些常用的结构体和方法。

13.1 libavutil的dict与opt操作

	在使用FFmpeg命令行做视频的封装、解封装、编码、解码、网络传输的时候，都会使用一些参数，例如第6章中讲到的通过TCP传输模式拉取RTSP视频流，并录制成MP4文件等。有时候我们希望在录制MP4后将moov移动到文件头部，则需要添加一个参数-movflags faststart，在使用FFmpeg的SDK时将参数传给RTSP模块和MP4模块。FFmpeg提供了两种操作方式来传递参数，分别是dict与opt。那么在什么场景下使用dict，在什么场景下使用opt呢？下面我们通过两个例子来进行说明。

	以设置-movflags faststart为例，将MP4的moov移动到文件头部，示例如下。

	通过opt操作设置参数示例代码如下：

	AVFormatContext *oc;

	avformat_alloc_output_context2(&oc, NULL, NULL, "out.mp4");

	av_opt_set(oc->priv_data, "movflags", "faststart", 0); /* 直接设置容器对象的参数 */

	avformat_write_header(oc, NULL);

	av_interleaved_write_frame(oc, pkt);

	av_write_trailer(oc);

	通过dict操作设置参数示例代码如下：

	AVFormatContext *oc;

	AVDictionary *opt = NULL; /* 先定义一个AVDictionary变量 */

	avformat_alloc_output_context2(&oc, NULL, NULL, "out.mp4");

	av_dict_set(&opt, "movflags", "faststart", 0); /* 将参数设置到AVDictionary变量中 */

	avformat_write_header(oc, &opt); /* 打开文件时传AVDictionary参数 */

	av_dict_free(&opt); /* 使用完AVDictionary参数后立即释放以防止内存泄漏 */

	av_interleaved_write_frame(oc, pkt);

	av_write_trailer(oc);

	以上两种操作方式均可以将moov容器移动到MP4的文件头部。从操作的示例中可以看到，av_opt_set可以直接设置对应对象的参数，这么使用的话可以直接对设置的对象生效；而av_dict_set可以设置到AVDictionary变量中，这样可以复用到多个对象中，但是设置起来会稍微麻烦一些。二者各有优势，由个人使用习惯和场景而定。

	除了av_opt_set与av_dict_set，opt与dict还有更多的操作接口可以选择使用，其中dict操作接口比opt接口少一些，如表13-1和表13-2所示。

	▼表13-1 opt的set操作

	[image:]

	[image:]

	▼表13-2 opt的get操作

	[image:]

	从列表中可以看到，opt的操作接口比较多，与处理的具体数据类型关联比较紧密，使用这些接口操作对象时可以精确地设置参数值类型，且直接操作在对象之上，例如某个封装格式模块的实例或者某个编解码模块的实例。

	如表13-3所示，dict的操作接口比较少，常操作于通用的数据类型之上。但是使用dict的这些接口操作对象通常只是设置了AVDictionary，并没有真正设置具体对象，如果想让设置的参数生效，还需要在封装格式或者编解码器open的时候设置AVDictionary，并且需要仔细斟酌内存使用情况，通常需要自己在合适的时机调用av_dict_free，做内存释放以免内存泄漏。

	表13-3 dict的常规操作

	[image:]

	为了加深理解，可以自己动手实现一个最简单的例子作为参考。

	#include <stdlib.h>

	#include <stdio.h>

	#include <string.h>

	#include <math.h>

	#include <libavutil/opt.h>

	#include <libavutil/mathematics.h>

	#include <libavutil/timestamp.h>

	#include <libavcodec/avcodec.h>

	#include <libavformat/avformat.h>

	typedef struct OutputStream {

	 AVStream *st; /* 用来存储视频流信息的内容，比如视频的帧率、码率、编码格式等信息 */

	 AVCodecContext *enc; /* 用来存放视频编码参数和编码处理操作上下文的结构内容 */

	 int64_t next_pts; /* 用来存储将会生成的下一帧的PTS */

	 AVFrame *frame; /* 用来存储视频编码前的每一帧图像的信息 */

	 AVPacket *tmp_pkt; /* 用来存储视频编码后的数据包信息 */

	} OutputStream;

	static int write_frame(AVFormatContext *fmt_ctx, AVCodecContext *c, AVStream *st, AVFrame *frame, AVPacket *pkt)

	{

	 int ret;

	 /* 编码操作的时候将图像的帧数据喂给编码器 */

	 ret = avcodec_send_frame(c, frame);

	 if (ret < 0) {

	 fprintf(stderr, "Error sending a frame to the encoder: %s\n",

	 av_err2str(ret));

	 exit(1);

	 }

	 while (ret >= 0) {

	 ret = avcodec_receive_packet(c, pkt);

	 if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF)

	 break;

	 else if (ret < 0) {

	 fprintf(stderr, "Error encoding a frame: %s\n", av_err2str(ret));

	 exit(1);

	 }

	 /* 根据视频编码信息及流信息中的timebase（帧率参考信息），与当前数据包中的pts进行重新计算 */

	 av_packet_rescale_ts(pkt, c->time_base, st->time_base);

	 pkt->stream_index = st->index;

	 /* 交错存储编码后的视频数据包到需要输出的目标容器格式中 */

	 ret = av_interleaved_write_frame(fmt_ctx, pkt);

	 if (ret < 0) {

	 fprintf(stderr, "Error while writing output packet: %s\n", av_err2str(ret));

	 exit(1);

	 }

	 }

	 return ret == AVERROR_EOF ? 1 : 0;

	}

	/* 添加输出视频流的信息 */

	static void add_stream(OutputStream *ost, AVFormatContext *oc, const AVCodec **codec, enum AVCodecID codec_id)

	{

	 AVCodecContext *c;

	 /* 根据传入的codecid查找对应的编码器 */

	 *codec = avcodec_find_encoder(codec_id);

	 if (!(*codec)) {

	 fprintf(stderr, "Could not find encoder for '%s'\n", avcodec_get_name(codec_id));

	 exit(1);

	 }

	 ost->tmp_pkt = av_packet_alloc();

	 if (!ost->tmp_pkt) {

	 fprintf(stderr, "Could not allocate AVPacket\n");

	 exit(1);

	 }

	 ost->st = avformat_new_stream(oc, NULL);

	 if (!ost->st) {

	 fprintf(stderr, "Could not allocate stream\n");

	 exit(1);

	 }

	 ost->st->id = oc->nb_streams-1;

	 c = avcodec_alloc_context3(*codec);

	 if (!c) {

	 fprintf(stderr, "Could not alloc an encoding context\n");

	 exit(1);

	 }

	 ost->enc = c;

	 switch ((*codec)->type) {

	 case AVMEDIA_TYPE_VIDEO:

	 c->codec_id = codec_id;

	 c->bit_rate = 400000;

	 /* 设置图像的宽和高 */

	 c->width = 352;

	 c->height = 288;

	 ost->st->time_base = (AVRational){ 1, 25 }; /* 设置帧率 */

	 c->time_base = ost->st->time_base;

	 c->gop_size = 12; /* 设置视频编码的关键帧间隔 */

	 c->pix_fmt = AV_PIX_FMT_YUV420P;

	 break;

	 default:

	 break;

	 }

	}

	static AVFrame *alloc_picture(enum AVPixelFormat pix_fmt, int width, int height)

	{

	 AVFrame *picture;

	 int ret;

	 picture = av_frame_alloc();

	 if (!picture)

	 return NULL;

	 picture->format = pix_fmt;

	 picture->width = width;

	 picture->height = height;

	 /* 为创建视频图像数据申请一个内存空间 */

	 ret = av_frame_get_buffer(picture, 0);

	 if (ret < 0) {

	 fprintf(stderr, "Could not allocate frame data.\n");

	 exit(1);

	 }

	 return picture;

	}

	static void open_video(AVFormatContext *oc, const AVCodec *codec, OutputStream *ost, AVDictionary *opt_arg)

	{

	 int ret;

	 AVCodecContext *c = ost->enc;

	 AVDictionary *opt = NULL;

	 av_dict_copy(&opt, opt_arg, 0);

	 /* 打开视频编码器 */

	 ret = avcodec_open2(c, codec, &opt);

	 av_dict_free(&opt);

	 if (ret < 0) {

	 fprintf(stderr, "Could not open video codec: %s\n", av_err2str(ret));

	 exit(1);

	 }

	 /* 申请并且初始化图像帧数据内存 */

	 ost->frame = alloc_picture(c->pix_fmt, c->width, c->height);

	 if (!ost->frame) {

	 fprintf(stderr, "Could not allocate video frame\n");

	 exit(1);

	 }

	 /* 复制视频流信息到封装容器格式对应的字段中 */

	 ret = avcodec_parameters_from_context(ost->st->codecpar, c);

	 if (ret < 0) {

	 fprintf(stderr, "Could not copy the stream parameters\n");

	 exit(1);

	 }

	}

	/* 自己手动生成一帧图像，如果自己有YUV数据可以不用这个 */

	static void fill_yuv_image(AVFrame *pict, int frame_index, int width, int height)

	{

	 int x, y, i;

	 i = frame_index;

	 /* 创建一段Y数据 */

	 for (y = 0; y < height; y++)

	 for (x = 0; x < width; x++)

	 pict->data[0][y * pict->linesize[0] + x] = x + y + i * 3;

	 /* 创建一段UV数据 */

	 for (y = 0; y < height / 2; y++) {

	 for (x = 0; x < width / 2; x++) {

	 pict->data[1][y * pict->linesize[1] + x] = 128 + y + i * 2;

	 pict->data[2][y * pict->linesize[2] + x] = 64 + x + i * 5;

	 }

	 }

	}

	static AVFrame *get_video_frame(OutputStream *ost)

	{

	 AVCodecContext *c = ost->enc;

	 /* 设定2.0秒为视频帧最大长度，超过2.0秒就退出 */

	 if (av_compare_ts(ost->next_pts, c->time_base, 2.0, (AVRational){ 1, 1 }) > 0)

	 return NULL;

	 /* 当将帧传递给编码器时，它可能会在内部保留对它的引用；确保不会在这里覆盖它*/

	 if (av_frame_make_writable(ost->frame) < 0)

	 exit(1);

	 fill_yuv_image(ost->frame, ost->next_pts, c->width, c->height);

	 ost->frame->pts = ost->next_pts++;

	 return ost->frame;

	}

	static void close_stream(AVFormatContext *oc, OutputStream *ost)

	{

	 avcodec_free_context(&ost->enc);

	 av_frame_free(&ost->frame);

	 av_packet_free(&ost->tmp_pkt);

	}

	/******************** 程序入口 *************************************/

	int main(int argc, char **argv)

	{

	 OutputStream video_st = { 0 };

	 const AVOutputFormat *fmt;

	 AVFormatContext *oc;

	 const AVCodec *video_codec;

	 int ret;

	 int have_video = 0;

	 int encode_video = 0;

	 AVDictionary *opt = NULL;

	 /* 申请需要输出的封装容器格式的结构体，这个结构体用于封装/解封装处理的上下文内容记录 */

	 avformat_alloc_output_context2(&oc, NULL, NULL, argv[1]);

	 if (!oc)

	 return AVERROR(ENOMEM);

	 fmt = oc->oformat;

	 /* 将编码信息并且初始化过的编码参数写入视频流信息中*/

	 if (fmt->video_codec != AV_CODEC_ID_NONE) {

	 add_stream(&video_st, oc, &video_codec, fmt->video_codec);

	 have_video = 1;

	 encode_video = 1;

	 }

	 /* 到这里所有参数设置完成，可以打开视频编码器并且按需申请编码操作时需要的内存*/

	 if (have_video)

	 open_video(oc, video_codec, &video_st, opt);

	 /* 如果需要，则打开输出文件 */

	 if (!(fmt->flags & AVFMT_NOFILE)) {

	 ret = avio_open(&oc->pb, argv[1], AVIO_FLAG_WRITE);

	 if (ret < 0) {

	 fprintf(stderr, "Could not open '%s': %s\n", argv[1], av_err2str(ret));

	 return 1;

	 }

	 }

	 /* 我们讲到的av_dict_set可以在这里设置。也可以尝试在这里做av_opt_set试验 */

	 av_dict_set(&opt, "movflags", "faststart", 0);

	 /* 写封装容器的头部信息 */

	 ret = avformat_write_header(oc, &opt);

	 av_dict_free(&opt);

	 if (ret < 0) {

	 fprintf(stderr, "Error occurred when opening output file: %s\n", av_err2str(ret));

	 return 1;

	 }

	 while (encode_video) {

	 encode_video = !write_frame(oc, video_st.enc, video_st.st, get_video_frame(&video_st), video_st.tmp_pkt);

	 }

	 av_write_trailer(oc); /* 输入容器写内容结束之后的后处理 */

	 close_stream(oc, &video_st); /* 关闭codec句柄 */

	 avio_closep(&oc->pb); /* 关闭输出的文件句柄 */

	 avformat_free_context(oc); /* 释放流对应的上下文内存 */

	 return 0;

	}

	这段代码是基于FFmpeg源代码目录API的示例Muxing修改的，可以结合本节开始介绍的opt与dict操作步骤做修改，达到试验的目的。在日常使用API开发的时候，为了更简单地使用FFmpeg的参数，多用opt与dict的操作可以更好地掌握它们。

13.2 libswscale的sws_scale图像转换

	在处理视频图像时，编解码器可能要求输入或输出指定颜色空间和大小的图像，为此FFmpeg提供了非常灵活和高度优化的图像转换API——sws_scale，其位于libswscale。它主要具备如下功能：

	・颜色空间转换，如RGB24和YUV420P互转，同时也可以实现图像的打包格式转换，如把packed转换为planar。

	・改变图像大小，实现图像的缩放操作，如把1920×1080的图像转换为1280×720的图像。

	需要注意的是，颜色空间转换和改变图像大小通常是一个有损的操作，转换之后，目的图像和原始图像之间可能会存在差异。

13.2.1 图像转换流程

	FFmpeg图像转换依赖一个上下文：SwsContext，这个上下文包含了转换时所需的图像信息，如宽、高、格式等核心数据，如下面代码所示：

	typedef struct SwsContext {

	 // ...

	 int srcW; // 源图像宽度

	 int srcH; // 源图像高度

	 int dstH; // 目标图像的高度

	 enum AVPixelFormat dstFormat; // 目的图像格式

	 enum AVPixelFormat srcFormat; // 源图像格式

	 // ...

	} SwsContext;

	图像转换的流程并不复杂，如图13-1所示。

	[image:]

	图13-1 图像转换流程

	下面我们分步骤重点讲述各个节点参数和函数的意义。

	1）创建SwsContext上下文。FFmpeg通过一个复合函数sws_getContext快速创建并返回一个上下文。原型如下：

	struct SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,

	 int dstW, int dstH, enum AVPixelFormat dstFormat,

	 int flags, SwsFilter *srcFilter,

	 SwsFilter *dstFilter, const double *param);

	传入参数解释如下。

	・srcW：原始图像的宽度。

	・srcH：原始图像的高度。

	・srcFormat：原始图像格式。

	・dstW：目的图像宽度。

	・dstH：目的图像高度。

	・dstFormat：目的图像格式。

	・flags：缩放时使用的算法，不同算法的效果略有差异，性能也不一样。本书针对不同的情况进行了性能测试。

	・srcFilter：输入图像的滤波信息，不常用，设置为NULL即可。

	・dstFilter：输出图像的滤波信息，不常用，设置为NULL即可。

	・param：转换时使用的额外的一些参数，用于指定图像缩放的一些算法参数，如SWS_ BICUBIC、SWS_GAUSS、SWS_LANCZOS等。

	・返回值：成功时返回申请的上下文指针，失败时返回0。

	sws_scale()进行图像转换涉及性能问题，这也是很多项目关心的一个方面，为此我们对部分参数进行了一些性能测试。

	・软件环境：FFmpeg 6.0 Windows

	・硬件环境：I7 8代CPU

	・目标：对一幅1920×1080的图像进行缩放，缩放为960×540的图像

	测试下来，其性能数据如表13-4所示。

	表13-4 sws_scale性能测试数据

	[image:]

	综合性能数据和视觉情况，推荐使用SWS_BILINEAR和SWS_BICUBIC算法。

	2）实施转换操作。FFmpeg通过sws_scale()进行具体的图像缩放，这个函数的功能非常强大，不仅可以缩放整张图片，还支持缩放连续的图像切片，同时在像素方面支持200多种格式，详见AVPixelFormat（pixfmt.h）。原型如下：

	int sws_scale(struct SwsContext *c, const uint8_t *const srcSlice[],

	 const int srcStride[], int srcSliceY, int srcSliceH,

	 uint8_t *const dst[], const int dstStride[]);

	参数解释如下。

	・struct SwsContext*c：由sws_getContext()创建的上下文。

	・const uint8_t*const srcSlice[]：srcSlice是一个指针数组，里面的指针指向包含源slice的plane。

	・const int srcStride[]：srcStride是一个指针数组，里面存储的指针指向每个plane的跨度（stride）。

	・int srcSliceY：待处理图像切片的第1行的行号，起始值为0，大部分场景下都为0。

	・int srcSliceH：待处理图像切片的高度。

	・uint8_t *const dst[]：dst是一个指针数组，里面存储的指针指向输出图像数据的每个plane。

	・const int dstStride[]：dstStride是一个指针数组，里面存储的指针指向输出图像的每个plane的跨度（stride）。

	・返回值：返回输出图像切片的高度，即已处理的总行数。

	3）销毁上下文。这一步很简单，就是直接销毁步骤1申请的上下文（swsContext）。原型如下：

	void sws_freeContext(struct SwsContext *swsContext);

13.2.2 代码实例

	上面介绍了主要函数的功能和参数的意义，本小节通过一个代码示例来介绍FFmpeg图像转换API的使用。本例中我们把一帧YUV420P图像转换为RGB24图像，原始图像的分辨率是1280× 720，目的分辨率是960×540。首先，从一个1280×720分辨率的视频中获取一帧yuv数据，ffmpeg命令如下：

	ffmpeg -i daxiongtu.mp4 -ss 0:0:20 -vframes 1 -pix_fmt yuv420p one_frame.yuv

	得到yuv文件后，用ffplay播放一下，查看原始图像的情况。

	ffplay -i one_frame.yuv -video_size 1280x720 -pix_fmt yuv420p

	原始图像如图13-2所示。

	[image:]

	图13-2 原始yuv图像

	根据13.2.1节介绍的转换流程，图像转换的代码如下：

	#include <stdio.h>

	#include <libswscale/swscale.h>

	AVFrame* alloc_buffered_frame(int w, int h, int fmt)

	{

	 AVFrame *frame = NULL;

	 int ret = 0;

	 frame = av_frame_alloc();

	 if (!frame) {

	 goto failed;

	 }

	 frame->width = w;

	 frame->height = h;

	 frame->format = fmt;

	 if ((ret = av_frame_get_buffer(frame, 0)) != 0) {

	 goto failed;

	 } else {

	 goto success;

	 }

	failed:

	 if (frame) {

	 av_frame_free(&frame);

	 }

	success:

	 return frame;

	}

	int fill_yuv_from_file(AVFrame *frame, FILE *fp)

	{

	 int w = frame->width;

	 int h = frame->height;

	 size_t y_bytes = w * h;

	 size_t u_bytes = w * h / 4;

	 size_t v_bytes = w * h / 4;

	 size_t read_bytes = 0;

	 // read Y plane

	 read_bytes = fread((void*)frame->data[0], 1, y_bytes, fp);

	 if (read_bytes != y_bytes) {

	 goto failed;

	 }

	 // read U plane

	 read_bytes = fread((void*)frame->data[1], 1, u_bytes, fp);

	 if (read_bytes != u_bytes) {

	 goto failed;

	 }

	 // read V plane

	 read_bytes = fread((void*)frame->data[2], 1, v_bytes, fp);

	 if (read_bytes != v_bytes) {

	 goto failed;

	 }

	 return 0;

	failed:

	 return -1;

	}

	int save_frame_to_file(AVFrame *frame, FILE *fp)

	{

	 size_t data_size = frame->linesize[0] * frame->height;

	 size_t write_bytes = fwrite(frame->data[0], 1, data_size, fp);

	 if (write_bytes != data_size) {

	 return -1;

	 }

	 return 0;

	}

	int main()

	{

	 const int src_frame_width = 1280;

	 const int src_frame_height = 720;

	 const int dst_frame_width = 960;

	 const int dst_frame_height = 540;

	 struct SwsContext * ctx = NULL;

	 ctx = sws_getContext(src_frame_width, src_frame_height, AV_PIX_FMT_YUV420P

	 , dst_frame_width, dst_frame_height, AV_PIX_FMT_RGB24, 0, NULL, NULL, NULL);

	 if (!ctx) {

	 printf("sws_getContext error.\n");

	 return -1;

	 }

	 AVFrame *src_frame = alloc_buffered_frame(src_frame_width, src_frame_height, AV_PIX_FMT_YUV420P);

	 AVFrame *dst_frame = alloc_buffered_frame(dst_frame_width, dst_frame_height, AV_PIX_FMT_RGB24);

	 if (!src_frame || !dst_frame) {

	 printf("alloc frame data failed.\n");

	 return -2;

	 }

	 FILE *yuv_in = fopen("./one_frame.yuv", "r");

	 if (!yuv_in) {

	 printf("open file failed.\n");

	 return -3;

	 }

	 if (fill_yuv_from_file(src_frame, yuv_in) != 0) {

	 printf("read file data error.\n");

	 return -4;

	 }

	 int h = sws_scale(ctx, (const uint8_t**)src_frame->data, src_frame->linesize, 0

	 , src_frame_height, dst_frame->data, dst_frame->linesize);

	 if (h != dst_frame_height) {

	 printf("sws_scale internal error.\n");

	 return -5;

	 }

	 FILE *rgb_out = fopen("./one_frame.rgb", "w");

	 if (!rgb_out) {

	 printf("open file failed.\n");

	 return -6;

	 }

	 if (save_frame_to_file(dst_frame, rgb_out) != 0) {

	 printf("write file failed.\n");

	 return -7;

	 }

	 return 0;

	}

	这里封装了一个有意思的函数，即alloc_buffered_frame()，它就是按照宽、高及图像格式来申请AVFrame，并且为其填充好必需的内存空间，其他代码思路如图13-1所示。程序编译成功后，运行程序，可以得到输出的RGB图像one_frame.rgb。通过如下命令进行验证：

	ffplay -i one_frame.rgb -video_size 960x540 -pix_fmt rgb24

	转换后的图像如图13-3所示。

	[image:]

	图13-3 转换后的yuv图像

	我们看到，人眼几乎无法分辨图像转换前后的差异。

	另外，针对一些流式传输的图像，FFmpeg也提供了方便的API进行slice级别的转换。主要函数如下：

	int sws_frame_start(struct SwsContext *c, AVFrame *dst, const AVFrame *src);

	初始化dst和src数据，把相关信息绑定到上下文c的成员上，同时增加对dst和src的引用，dst的data部分支持用户自己分配或者由系统分配，src的数据则需要提前分配，必须在sws_send_ slice和sws_receive_slice之前操作。

	int sws_send_slice(struct SwsContext *c, unsigned int slice_start,

	 unsigned int slice_height);

	调用这个函数时，表明src的部分切片已经准备完毕，可以进行下一步操作了。其中slice_ start是这个切片的首行，slice_height是这个切片的高度，即总行数。成功返回非负值，否则返回负值。

	int sws_receive_slice(struct SwsContext *c, unsigned int slice_start,

	 unsigned int slice_height);

	调用这个函数就会把已经处理好的切片输出到dst图像上，slice_start是这个切片的首行，slice_height是这个切片的高度。关于返回值，返回非负值表明数据成功写入输出；返回AVERROR (EAGAIN)表明输入数据不够，无法输出图像；其他的负值错误码表明出现了内部错误。

	void sws_frame_end(struct SwsContext *c);

	上述函数在所有数据处理结束后使用，必须在sws_send_slice和sws_receive_slice之后操作。

	FFmpeg还封装了一个更方便的API进行图像转换，下面简单说明一下，读者可以试一试。

	int sws_scale_frame(struct SwsContext *c, AVFrame *dst, const AVFrame *src);

	我们看到，这个函数的输入参数更简单，返回值也更容易理解：成功返回0，失败返回负值。

	这个函数相当于以下4个函数调用的封装：

	・sws_frame_start()

	・sws_send_slice(0, src->height)

	・sws_receive_slice(0, dst->height)

	・sws_frame_end()

	读者可以按照demo过程写一些代码尝试一下，增加对这几个函数的理解。

13.3 libswresample执行声音转换

	PCM有很多规格，比如s16be、s16le、s24be、s24le、u16be、u16le、f32be、f32le等，而很多第三方音频处理模块支持的规格则是有限制的，这时就会用到FFmpeg中libswresample库的swr_convert()函数进行PCM规格的转换，以适应多种场景。

	swr_convert()函数的主要作用如下：

	・转换声音的采样数，如一个采样从占用16位（2字节）空间转换为32位（4字节）。

	・转换声音的声道数，如从立体声转换为单声道。

	・转换声音的大小端，如从大端转换为小端。

	・转换声音的采样存储类型，如从signed转换为unsigned类型。

	・转换声音的采样率，如从48 000转换为44 100。

	与图像转换类似，声音的转换也可能是有损的，比如从高采样率转换为低采样率，这些转换对声音带来的损失是不可逆的。下面就介绍这个函数的用法，感受一下这个函数的强大之处。

13.3.1 声音转换流程

	FFmpeg声音转换依赖位于libswresample库的核心数据结构：SwrContext。与SwsContext结构不一样的是，这个结构对用户是不透明的，我们看不到它的具体信息，对它的修改只能通过API函数进行，而且不能直接修改这个结构的值。

	typedef struct SwrContext SwrContext;

	与图像转换流程类似，声音转换的流程如图13-4所示。据此分步骤来介绍该函数。

	[image:]

	图13-4 声音转换流程

	首先分配SwrContext上下文，并对其初始化。FFmpeg提供了两种方式来分配上下文。第1种方式：使用swr_alloc()来分配内存，使用av_opt_set_int()、av_opt_set_sample_fmt()等来设置参数，使用swr_init()来初始化设置的参数。它们的原型如下。

	struct SwrContext *swr_alloc(void);

	上述函数没有特殊说明，返回一个未初始化的数据结构。然后给上下文设置参数，使用opt_set_funcs系列函数，如av_opt_set_int()可以设置一些整数键值对，av_opt_set_sample_fmt()可以设置采样规格。

	int swr_init(struct SwrContext *s);

	上述函数对设置参数后的上下文进行初始化，可以根据返回值判断初始化是否成功。这种初始化方式的示例代码如下：

	// 声音解码器上下文，初始化步骤忽略

	AVCodecContext *aCodecCtx;

	int out_sample_rate = 48000;

	SwrContext *swr = swr_alloc();

	int64_t out_ch_layout = av_get_default_channel_layout(aCodecCtx->channels);

	// 输入参数

	av_opt_set_int(swr, "in_channel_layout", out_ch_layout, 0);

	av_opt_set_int(swr, "in_sample_rate", aCodecCtx->sample_rate, 0);

	av_opt_set_sample_fmt(swr, "in_sample_fmt", aCodecCtx->sample_fmt, 0);

	// 输出参数

	av_opt_set_int(swr, "out_channel_layout", AV_CH_LAYOUT_STEREO, 0);

	av_opt_set_int(swr, "out_sample_rate", out_sample_rate, 0);

	av_opt_set_sample_fmt(swr, "out_sample_fmt", AV_SAMPLE_FMT_S16, 0);

	swr_init(swr);

	FFmpeg还提供了第2种快速初始化上下文的方式，即使用swr_alloc_set_opts2()以同时分配和初始化上下文，这个方式简单且容易理解，也是官方推荐的初始化方式。函数原型如下：

	int swr_alloc_set_opts2(

	 struct SwrContext **ps,

	 AVChannelLayout *out_ch_layout,

	 enum AVSampleFormat out_sample_fmt,

	 int out_sample_rate,

	 AVChannelLayout *in_ch_layout,

	 enum AVSampleFormat in_sample_fmt,

	 int in_sample_rate,

	 int log_offset, void *log_ctx);

	这个函数的关键是音频参数的设置，核心参数意义如下。

	・struct SwrContext **ps：已分配的上下文或者NULL。当为NULL时，FFmpeg会主动分配一个上下文，并赋值给*ps，推荐直接传NULL。

	・out_ch_layout：输出频道的layout，使用AV_CHANNEL_LAYOUT_*的值，例如使用AV_CHANNEL_LAYOUT_STEREO来指定立体声layout。需要注意的是这个值不是频道数，事实上我们可以通过声音频道数来转换得到layout，使用av_channel_layout_ default(AVChannelLayout *ch_layout, int nb_channels)即可。

	・enum AVSampleFormat out_sample_fmt：输出的采样格式，使用AV_SAMPLE_ FMT_*的值，例如AV_SAMPLE_FMT_S16。

	・int out_sample_rate：输出采样率，单位是Hz。

	・in_ch_layout：输入的声道layout。

	・enum AVSampleFormat in_sample_fmt：输入的采样格式。

	・int in_sample_rate：输入采样率，单位是Hz。

	・int log_offset, void *log_ctx：日志相关，传0和NULL即可。

	根据上述参数的意义，相关的示例代码如下：

	// 声音解码器上下文，初始化步骤忽略

	AVCodecContext *aCodecCtx;

	SwrContext *swr = NULL;

	AVChannelLayout out_ch;

	av_channel_layout_default(&out_ch, 2);

	swr_alloc_set_opts2(

	 &swr,

	 &out_ch,

	 AV_SAMPLE_FMT_S16,

	 48000,

	 &aCodecCtx->ch_layout, a

	 CodecCtx->sample_fmt,

	 aCodecCtx->sample_rate, 0, NULL);

	从上述代码可以看出，相对于第1种初始化上下文的方式，这种方式更简单和直接，因此也推荐大家使用这种方式。

	其次是转换函数swr_convert()，原型如下：

	int swr_convert(struct SwrContext*s, uint8_t**out, int out_count,const uint8_t**in , int in_count);

	这个函数就是核心的声音转换函数，参数意义如下：

	・struct SwrContext *s：已分配的SwrContext上下文，并且设置了相关的参数。

	・uint8_t **out：输出PCM的buffer，对于packed格式的数据，只需要处理out[0]；对于planar格式的数据，则可能需要处理其他数据块。

	・int out_count：针对于单个输出声音频道的可用输出空间大小，单位是字节。

	・const uint8_t**in：输入PCM的buffer，对于packed格式的数据，只需要处理out[0]；对于planar格式的数据，则可能需要处理其他数据块。

	・int in_count：针对于单个输入声音频道的可用输出空间大小，单位是字节。

	最后是收尾函数swr_free，原型如下：

	void swr_free(struct SwrContext **s);

	传入上面申请的SwrContext上下文进行内存释放即可。

13.3.2 代码实例

	本小节实现一个声音转换的完整demo。首先用FFmpeg生成一段PCM，命令如下：

	ffmpeg -i daxiongtu.mp4 -ar 48000 -ac 2 -f s16le daxiongtu.pcm

	这个PCM的波形如图13-5所示。

	[image:]

	图13-5 PCM原始波形图

	为了方便对比，把声音通过FFmpeg转换为采样率16 000、声道为1的s16le规格。根据上述的API分析，实现转换代码如下：

	#include <libavutil/channel_layout.h>

	#include <libswresample/swresample.h>

	#define IN_CHANNEL (2)

	#define OUT_CHANNEL (1)

	#define IN_SAMPLERATE (48000)

	#define OUT_SAMPLERATE (16000)

	#define MAX_OUT_SAMPLES (1024)

	static int read_pcm(FILE *fp, char *buf, int buf_size)

	{

	 int read_bytes = 0;

	 read_bytes = fread((void*)buf, 1, buf_size, fp);

	 if (read_bytes == buf_size) {

	 return buf_size;

	 }

	 // eof set

	 if (feof(fp) != 0) {

	 return read_bytes;

	 }

	 // error set

	 if (ferror(fp) != 0) {

	 return -1;

	 }

	 return 0;

	}

	static int write_pcm(FILE *fp, char *in_buf, int write_size)

	{

	 int write_bytes = 0;

	 write_bytes = fwrite((void*)in_buf, 1, write_size, fp);

	 if (write_bytes == write_size) {

	 return write_size;

	 }

	 return -1;

	}

	int main(int argc, char *argv[])

	{

	 int ret = 0;

	 SwrContext *swr = NULL;

	 AVChannelLayout out_ch;

	 av_channel_layout_default(&out_ch, OUT_CHANNEL);

	 AVChannelLayout in_ch;

	 av_channel_layout_default(&in_ch, IN_CHANNEL);

	 // create SwrContext and set parameters

	 ret = swr_alloc_set_opts2(&swr, &out_ch, AV_SAMPLE_FMT_S16,

	 OUT_SAMPLERATE, &in_ch, AV_SAMPLE_FMT_S16,

	 IN_SAMPLERATE, 0, NULL);

	 if (ret != 0) {

	 fprintf(stderr, "swr_alloc_set_opts2() Failed.\n");

	 exit(-1);

	 }

	 // init SwrContext

	 ret = swr_init(swr);

	 if (ret != 0) {

	 fprintf(stderr, "swr_init() Failed.\n");

	 exit(-1);

	 }

	 // open in pcm file

	 FILE *in_file = fopen(argv[1], "rb");

	 if (!in_file) {

	 fprintf(stderr, "open in pcm file error, path=%s\n", argv[1]);

	 exit(-1);

	 }

	 // open out pcm file

	 FILE *out_file = fopen(argv[2], "wb");

	 if (!out_file) {

	 fprintf(stderr, "open out pcm file error, path=%s\n", argv[2]);

	 exit(-1);

	 }

	 int in_byte_per_sample = 2;

	 int out_byte_per_sample = 2;

	 int in_samples_per_channel = 1024;

	 int out_samples_per_channel = MAX_OUT_SAMPLES;

	 int in_buf_size = IN_CHANNEL * in_samples_per_channel * in_byte_per_sample;

	 int out_buf_size = OUT_CHANNEL * out_samples_per_channel * out_byte_per_sample;

	 uint8_t *in_buf = (uint8_t*)malloc(in_buf_size);

	 uint8_t *out_buf = (uint8_t*)malloc(out_buf_size);

	 for (;;) {

	 int read_bytes = read_pcm(in_file, in_buf, in_buf_size);

	 if (read_bytes <= 0) {

	 break;

	 }

	 // convert

	 uint8_t *out[4] = {0};

	 out[0] = out_buf;

	 uint8_t *in[4] = {0};

	 in[0] = in_buf;

	 int ret_samples = swr_convert(swr, out, out_samples_per_channel, in, in_samples_per_channel);

	 if (ret_samples < 0) {

	 break;

	 }

	 if (ret_samples > 0) {

	 int write_size = ret_samples * out_byte_per_sample * OUT_CHANNEL;

	 int write_bytes = write_pcm(out_file, out_buf, write_size);

	 if (write_bytes <= 0) {

	 break;

	 }

	 }

	 }

	 swr_free(&swr);

	 free(in_buf);

	 free(out_buf);

	 return 0;

	}

	编译并运行程序，比如输出程序为a_exe，则运行如下：

	a_exe ./daxiongtu.pcm ./daxiongtu_16k.pcm

	查看波形如图13-6所示。

	[image:]

	图13-6 转换后的波形图

	可以看到daxiongtu_16k.pcm转换为单声道了，并且波形和转换前保持一致。

13.4 小结

	本章对libavutil、libswscale和libswresample相关函数进行了介绍。libavutil包含很多多媒体实用工具，有时大家问：在网上搜索了一些命令行参数，它们能达到相应的效果，但不知道这些命令行参数是怎么跟C中的代码对应起来，又怎么传递给相应的函数的？希望通过本章的opt/dict的介绍，能解决大家的疑问，并对libavutil提供的函数及其功能有一定的了解。同时libswscale、libswresample也是非常强大的辅助库，前者主要用在图像的格式转换、缩放等通用操作上，后者则是高效地支持了音频格式的重采样、格式转换等。

第14章

音视频播放器开发实例

	在前面的章节中，我们学习了FFmpeg各种API的使用，通过这些API我们可以很方便地实现音视频编解码的功能。本章要讲述的播放器开发则是API运用的一个综合体。在开始讲述怎样开发一个播放器之前，先回顾FFmpeg内置的强大播放器ffplay（参考3.3节），以了解播放器相关功能和技术。接下来，我们将开发一个播放器，从解码一个文件入手，然后逐步开发，直到给播放器加上完整的控制功能，如快进、暂停等，从而了解开发播放器都需要使用哪些函数，以及如何实现音视频同步等。

14.1 播放器开发概述

	本章的主要目标是根据下面的分析和前面章节学到的FFmpeg API知识，从头到尾实现一个播放器，这个播放器具备音视频同步、暂停播放/恢复播放、全屏、获取时长、播放事件回调等基本播放器功能。首先看一个典型的播放器具备的播放流程，如图14-1所示。

	[image:]

	图14-1 播放流程
播放器实现参考代码网址如下：https://github.com/T-bagwell/FFmpeg_Book_Version2/tree/book/base_ffmpeg_6.0/doc/examples/ 014/ffmpeg-simple-player。
	图14-1是一个播放流程的概述，我们会逐个模块进行分析和子流程拆分。本章将介绍的播放器相关知识，会通过一个事先编码并调试完毕的播放器项目进行展开，这个项目放在了本书参考代码的GitHub链接里
	 [image: 播放器实现参考代码网址如下：https://github.com/T-bagwell/FFmpeg_Book_Version2/tree/book/base_ffmpeg_6.0/doc/examples/ 014/ffmpeg-simple-player。]，代码位于014目录，项目名称是ffmpeg-simple-player，开发语言为C++，主代码结构如图14-2所示。

	[image:]

	图14-2 代码结构

	播放器工程使用的第三方库是SDL2-2.0.22，负责事件循环、图像渲染、音频播放等功能。

	根据不同的平台和用户习惯，build目录中存放了不同的编译环境，包含visual studio、Makefile两种不同的自动化编译环境，读者可以根据不同的计算机环境选择不同的编译环境，如图 14-3所示。

	[image:]

	图14-3 build目录结构

	由于操作系统差异，读者需要根据自己的系统平台来配置对应的SDL库。

14.2 SDL核心功能API介绍

	SDL是一个跨平台的开发库，主要提供对音频设备、图形设备、鼠标和键盘设备的访问。通过SDL封装的便捷API，开发者只需要用同一套代码就能实现代码的跨平台运行，在媒体播放器、图像渲染、模拟器甚至游戏开发方面等有广泛的用途。下面对SDL核心API进行介绍。

14.2.1 初始化SDL库

	在使用SDL之前，需要对其进行初始化操作。

	SDL_Init(SDL_INIT_EVERYTHING);

	其中SDL_INIT_EVERYTHING代表我们想初始化SDL的所有模块，这个参数还可以是SDL_INIT_TIMER、SDL_INIT_AUDIO、SDL_INIT_VIDEO、SDL_INIT_EVENTS等，可以通过这些值按需进行初始化，这可以节省部分内存和提高性能。这个参数的取值如表14-1所示。

	表14-1 参数取值表

	[image:]

14.2.2 图像渲染

	SDL渲染主要的一个应用场景就是通过OpenGL和Direct3D进行视频渲染，也就是说SDL提供平台最优的渲染方式，在Windows上支持采用Direct3D，在Linux平台上则使用OpenGL，最新的SDL对Metal、Vulkan也提供了支持。在系统方面，SDL支持Windows、macOS、Linux、iOS、Android这几个主流平台。视频渲染技术在很多平台上差异性很大，目前主流的渲染技术有Direct3D、Desktop OpenGL、OpenGL ES、Vulkan、Metal等，PC和主流移动端平台支撑的主要方式如表14-2所示。

	表14-2 平台支撑的主要方式

	[image:]

	SDL渲染图像的流程如图14-4所示。

	[image:]

	图14-4 SDL渲染流程

	根据这个流程，本播放器项目对SDL进行了一些封装，以便让代码更清晰，使用更简单。我们把显示模块封装到类RenderView中，如下所示。

	文件：RenderView.h

	#ifndef RENDERVIEW_H

	#define RENDERVIEW_H

	#include <SDL.h>

	#include <list>

	#include <mutex>

	using namespace std;

	struct RenderItem

	{

	 SDL_Texture *texture;

	 SDL_Rect srcRect;

	 SDL_Rect dstRect;

	};

	class RenderView

	{

	public:

	 explicit RenderView();

	 void setNativeHandle(void *handle);

	 int initSDL();

	 RenderItem* createRGB24Texture(int w, int h);

	 void updateTexture(RenderItem*item, unsigned char *pixelData, int rows);

	 void onRefresh();

	private:

	 SDL_Window* m_sdlWindow = nullptr;

	 SDL_Renderer* m_sdlRender = nullptr;

	 void* m_nativeHandle = nullptr;

	 std::list<RenderItem *> m_items;

	 mutex m_updateMutex;

	};

	#endif // RENDERVIEW_H

	文件：RenderView.cpp

	#include "RenderView.h"

	#define SDL_WINDOW_DEFAULT_WIDTH (1280)

	#define SDL_WINDOW_DEFAULT_HEIGHT (720)

	static SDL_Rect makeRect(int x, int y, int w, int h)

	{

	 SDL_Rect r;

	 r.x = x;

	 r.y = y;

	 r.w = w;

	 r.h = h;

	 return r;

	}

	RenderView::RenderView()

	{

	}

	void RenderView::setNativeHandle(void *handle)

	{

	 m_nativeHandle = handle;

	}

	int RenderView::initSDL()

	{

	 if (m_nativeHandle) {

	 m_sdlWindow = SDL_CreateWindowFrom(m_nativeHandle);

	 } else {

	 m_sdlWindow = SDL_CreateWindow("ffmpeg-simple-player",

	 SDL_WINDOWPOS_CENTERED,

	 SDL_WINDOWPOS_CENTERED,

	 SDL_WINDOW_DEFAULT_WIDTH,

	 SDL_WINDOW_DEFAULT_HEIGHT,

	 SDL_WINDOW_RESIZABLE);

	 }

	 if (!m_sdlWindow) {

	 return -1;

	 }

	 m_sdlRender = SDL_CreateRenderer(m_sdlWindow, -1, SDL_RENDERER_ACCELERATED);

	 if (!m_sdlRender) {

	 return -2;

	 }

	 SDL_RenderSetLogicalSize(m_sdlRender,

	 SDL_WINDOW_DEFAULT_WIDTH, SDL_WINDOW_DEFAULT_HEIGHT);

	 SDL_SetHint(SDL_HINT_RENDER_SCALE_QUALITY, "1");

	 return 0;

	}

	RenderItem *RenderView::createRGB24Texture(int w, int h)

	{

	 m_updateMutex.lock();

	 RenderItem *ret = new RenderItem;

	 SDL_Texture *tex = SDL_CreateTexture(m_sdlRender, SDL_PIXELFORMAT_RGB24, SDL_TEXTUREACCESS_STREAMING, w, h);

	 ret->texture = tex;

	 ret->srcRect = makeRect(0, 0, w, h);

	 ret->dstRect = makeRect(0, 0, SDL_WINDOW_DEFAULT_WIDTH, SDL_WINDOW_DEFAULT_HEIGHT);

	 m_items.push_back(ret);

	 m_updateMutex.unlock();

	 return ret;

	}

	void RenderView::updateTexture(RenderItem *item, unsigned char *pixelData, int rows)

	{

	 m_updateMutex.lock();

	 void *pixels = nullptr;

	 int pitch;

	 SDL_LockTexture(item->texture, NULL, &pixels, &pitch);

	 memcpy(pixels, pixelData, pitch * rows);

	 SDL_UnlockTexture(item->texture);

	 std::list<RenderItem *>::iterator iter;

	 SDL_RenderClear(m_sdlRender);

	 for (iter = m_items.begin(); iter != m_items.end(); iter++)

	 {

	 RenderItem *item = *iter;

	 SDL_RenderCopy(m_sdlRender, item->texture, &item->srcRect, &item->dstRect);

	 }

	 m_updateMutex.unlock();

	}

	void RenderView::onRefresh()

	{

	 m_updateMutex.lock();

	 if (m_sdlRender) {

	 SDL_RenderPresent(m_sdlRender);

	 }

	 m_updateMutex.unlock();

	}

	下面我们对渲染部分核心代码进行分析。首先是创建窗口和渲染器部分。

	if (m_nativeHandle) {

	 m_sdlWindow = SDL_CreateWindowFrom(m_nativeHandle);

	 } else {

	 m_sdlWindow = SDL_CreateWindow("ffmpeg-simple-player",

	 SDL_WINDOWPOS_CENTERED,

	 SDL_WINDOWPOS_CENTERED,

	 SDL_WINDOW_DEFAULT_WIDTH,

	 SDL_WINDOW_DEFAULT_HEIGHT,

	 SDL_WINDOW_RESIZABLE);

	 }

	 if (!m_sdlWindow) {

	 return -1;

	 }

	 m_sdlRender = SDL_CreateRenderer(m_sdlWindow, -1, SDL_RENDERER_ACCELERATED);

	 if (!m_sdlRender) {

	 return -2;

	 }

	 SDL_RenderSetLogicalSize(m_sdlRender,

	 SDL_WINDOW_DEFAULT_WIDTH, SDL_WINDOW_DEFAULT_HEIGHT);

	 SDL_SetHint(SDL_HINT_RENDER_SCALE_QUALITY, "1");

	SDL通过SDL_CreateWindow()和SDL_CreateWindowFrom()来创建渲染窗口，SDL_ CreateWindow()可以直接创建一个平台独立的渲染窗口，而SDL_CreateWindowFrom()可以通过现有的窗口句柄直接创建渲染上下文，这是本节使用的方式，也是SDL和其他UI系统窗口集成采用的方式。

	extern DECLSPEC SDL_Renderer * SDLCALL SDL_CreateRenderer(SDL_Window * window,

	 int index, Uint32 flags);

	SDL_CreateRenderer()根据渲染窗口创建渲染器，其中参数意义如下。

	・index：使用的渲染方式索引，推荐使用−1，让SDL决定使用的具体渲染方式。

	・flags：这个值决定了纹理渲染的方式，直接关系到渲染性能，属于关键字段。下面我们重点解释。

	flags字段释义如表14-3所示。

	表14-3 flags字段释义

	[image:]

	与之相对应的是销毁渲染器，使用SDL_DestroyRender()。

	紧接着我们设置一些有用的特性，SDL_RenderSetLogicalSize()设置渲染窗口逻辑大小，SDL_SetHint()则可以给SDL设置一些特性，如上述的反锯齿等。

	RenderItem *RenderView::createRGB24Texture(int w, int h)

	{

	 m_updateMutex.lock();

	 RenderItem *ret = new RenderItem;

	 SDL_Texture *tex = SDL_CreateTexture(m_sdlRender, SDL_PIXELFORMAT_RGB24, SDL_TEXTUREACCESS_STREAMING, w, h);

	 ret->texture = tex;

	 ret->id = ++g_texId;

	 ret->srcRect = makeRect(0, 0, w, h);

	 ret->dstRect = makeRect(0, 0, g_viewWidth, g_viewHeight);

	 m_items << ret;

	 m_updateMutex.unlock();

	 return ret;

	}

	SDL通过SDL_CreateTexture()来创建图像纹理，创建时可以指定纹理像素格式、纹理大小等参数。函数原型如下：

	extern DECLSPEC SDL_Texture * SDLCALL SDL_CreateTexture(SDL_Renderer * renderer,

	 Uint32 format,

	 int access, int w, int h);

	其中format指定了我们期望的纹理像素格式。本节中使用SDL_PIXELFORMAT_RGB24格式，这与FFmpeg中AV_PIX_FMT_RGB24是对等的，access指定了纹理访问的方式，SDL_ TEXTUREACCESS_STREAMING指定纹理属于易变纹理，如视频播放就属于纹理易变场景，w和h分别指定了纹理的宽和高。

	SDL可以支持多种纹理像素格式的渲染，除了SDL_PIXELFORMAT_RGB24等RGB格式，还直接支持SDL_PIXELFORMAT_NV12等YUV格式，所有支持的格式详见SDL_PixelFormatEnum (SDL_pixels.h)。

	播放器项目对纹理进行了一次数据结构（RenderItem）包装，这样我们封装的类RenderView就可以支持多个纹理的同时渲染，比如在视频上面渲染字幕、渲染Logo等，只需要给每个纹理设置srcRect和dstRect即可。

	void RenderView::updateTexture(RenderItem *item, unsigned char *pixelData, int rows)

	{

	 m_updateMutex.lock();

	 void *pixels = nullptr;

	 int pitch;

	 SDL_LockTexture(item->texture, NULL, &pixels, &pitch);

	 memcpy(pixels, pixelData, pitch * rows);

	 SDL_UnlockTexture(item->texture);

	 std::list<RenderItem *>::iterator iter;

	 SDL_RenderClear(m_sdlRender);

	 for (iter = m_items.begin(); iter != m_items.end(); iter++)

	 {

	 RenderItem *item = *iter;

	 SDL_RenderCopy(m_sdlRender, item->texture, &item->srcRect, &item->dstRect);

	 }

	 m_updateMutex.unlock();

	}

	在更新纹理数据之前，必须先锁定纹理（SDL_LockTexture()），获取内部数据指针并赋值给pixels，然后把像素数据复制给pixels即可，最后解锁纹理（SDL_UnlockTexture()）。

	像素数据更新到纹理上之后，需要使用SDL_RenderCopy()把纹理数据复制给渲染器。函数原型如下：

	extern DECLSPEC int SDLCALL SDL_RenderCopy(SDL_Renderer * renderer, SDL_Texture * texture,

	 const SDL_Rect * srcrect, const SDL_Rect * dstrect);

	其中srcrect和dstrect分别对应设置的RenderItem的srcRect和dstRect，分别指定纹理的源区域和目的区域。

	需要注意的是，在调用SDL_RenderCopy()之前，需要调用SDL_RenderClear()来清除渲染器中的脏数据，不然显示的图像可能会出现脏数据。

	void RenderView::onRefresh()

	{

	 m_updateMutex.lock();

	 if (m_sdlRender) {

	 SDL_RenderPresent(m_sdlRender);

	 }

	 m_updateMutex.unlock();

	}

	要实现对画面的持续刷新，需要提供一个定时器，设定一个固定间隔并持续调用SDL_ RenderPresent()，SDL在底层使用多缓冲渲染机制，即当调用一个渲染函数时先把数据放到缓冲区里，然后当调用SDL_RenderPresent时才会把缓冲区的数据刷新到屏幕上。

	到此为止，我们封装的多纹理RenderView类的主要部分已介绍完毕，读者可以按照上面的代码介绍逐步体验SDL的渲染过程。

14.3 SDL音频播放

	SDL集成了跨平台的音频API，可以播放多种格式的PCM规格，除了可以播放声音，还可以进行音频重采样、混音等操作。与图像渲染一样，它也是全平台支持，其API简单，功能强大，可以说是软件设计的一个典范。

	SDL支持多种规格的PCM数据，可详细参照SDL_AudioFormat（在SDL_audio.h中）。

	在音频数据传输方式方面，SDL提供了两种方式：主动拉数据（Pull）和被动接数据（Push），播放器项目采用Pull的方式，通过声卡驱动主动回调的方式传递数据，这个特性适合把音频设备时钟作为音视频同步的主时钟，播放器项目就是使用音频作为主时钟。下面会重点详述音视频同步的做法和意义。

	SDL音频播放的流程如图14-5所示。

	[image:]

	图14-5 SDL音频播放流程

	播放器项目只用到了音频API的播放部分。与视频渲染一样，我们把音频播放也进行了一次封装，把核心功能封装到类AudioPlay中。代码如下。

	文件：AudioPlay.h

	#ifndef AUDIOPLAY_H

	#define AUDIOPLAY_H

	#include <SDL.h>

	class AudioPlay

	{

	public:

	 AudioPlay();

	 int openDevice(const SDL_AudioSpec *spec);

	 void start();

	 void stop();

	private:

	 SDL_AudioDeviceID m_devId = -1;

	};

	#endif // AUDIOPLAY_H

	文件：AudioPlay.cpp

	#include "AudioPlay.h"

	AudioPlay::AudioPlay()

	{

	}

	int AudioPlay::openDevice(const SDL_AudioSpec *spec)

	{

	 m_devId = SDL_OpenAudioDevice(NULL, 0, spec, NULL, 0);

	 return m_devId;

	}

	void AudioPlay::start()

	{

	 SDL_PauseAudioDevice(m_devId, 0);

	}

	void AudioPlay::stop()

	{

	 SDL_PauseAudioDevice(m_devId, 1);

	}

	SDL_OpenAudio()用于打开音频设备，其原型如下：

	extern DECLSPEC int SDLCALL SDL_OpenAudio(SDL_AudioSpec * desired, SDL_AudioSpec * obtained);

	其中desired是希望SDL回调的音频参数，obtained是SDL实际使用的参数，也就是说希望的参数和实际使用的可能是不一样的，这在一定程度上会带来不确定性。按照SDL的官方解释，给obtained传NULL即可，让SDL严格按照设定的参数运作，这也是推荐使用的方式。

	SDL_OpenAudioDevice()有一个关键的播放参数配置部分，它通过SDL_AudioSpec完成。样例配置如下：

	SDL_AudioSpec wanted_spec;

	wanted_spec.freq = 48000; // 48kHz

	wanted_spec.format = AUDIO_S16LSB; // 有符号16位小端格式数据

	wanted_spec.channels = 2; // 频道数

	wanted_spec.silence = 0;

	wanted_spec.samples = 1024; // 每次回调的采样数

	wanted_spec.callback = audio_callback; // 音频数据回调函数（audio_callback）

	wanted_spec.userdata = NULL; // 用户私有数据

	SDL_PauseAudio()是立即开启播放并回调音频数据，原型如下：

	extern DECLSPEC void SDLCALL SDL_PauseAudio(int pause_on);

	其中pause_on为0表示开启播放，非0表示停止播放。

14.3.1 SDL事件循环

	SDL把事件装进一个事件队列里，通过查询队列可以得到已经发生的事件，从而做出对应的动作。SDL支持多种事件类型，如鼠标事件（SDL_MouseMotionEvent）、键盘事件（SDL_ KeyboardEvent）、窗口事件（SDL_WindowEvent）、用户自定义事件（SDL_USEREVENT）等，详见SDL_EventType（在SDL_events.h中）。

	核心数据结构SDL_Event是一个union类型的联合体，同时支持SDL所有的事件类型。

	播放器项目把SDL的事件机制进行了一层封装（类SDLApp），使逻辑更简单，更贴近传统的UI事件循环样式。

	文件：SDLApp.h

	#ifndef SDLAPP_H

	#define SDLAPP_H

	#include <map>

	#include <functional>

	#ifdef __cplusplus

	extern "C" {

	#include <SDL.h>

	}

	#endif

	#define sdlApp (SDLApp::instance())

	class SDLApp

	{

	public:

	 SDLApp();

	public:

	 int exec();

	 void quit();

	 void registerEvent(int type, const std::function<void(SDL_Event*)> &cb);

	 static SDLApp* instance();

	private:

	 std::map<int, std::function<void(SDL_Event*)> > m_userEventMaps;

	};

	#endif // SDLAPP_H

	文件：SDLApp.cpp

	#include "SDLApp.h"

	#include <functional>

	#include "SDL.h"

	#define SDL_APP_EVENT_TIMEOUT (1)

	static SDLApp* globalInstance = nullptr;

	SDLApp::SDLApp()

	{

	 SDL_Init(SDL_INIT_EVERYTHING);

	 if (!globalInstance) {

	 globalInstance = this;

	 } else {

	 fprintf(stderr, "only one instance allowed\n");

	 exit(1);

	 }

	}

	int SDLApp::exec()

	{

	 SDL_Event event;

	 for (;;) {

	 SDL_WaitEventTimeout(&event, SDL_APP_EVENT_TIMEOUT);

	 switch(event.type) {

	 case SDL_QUIT:

	 SDL_Quit();

	 return 0;

	 case SDL_USEREVENT:

	 {

	 std::function<void()> cb = *(std::function<void()>*)event.user.data1;

	 cb();

	 }

	 break;

	 default:

	 auto iter = m_userEventMaps.find(event.type);

	 if (iter != m_userEventMaps.end()) {

	 auto onEventCb = iter->second;

	 onEventCb(&event);

	 }

	 break;

	 }

	 }

	}

	void SDLApp::quit()

	{

	 SDL_Event event;

	 event.type = SDL_QUIT;

	 SDL_PushEvent(&event);

	}

	void SDLApp::registerEvent(int type, const std::function<void (SDL_Event *)> &cb)

	{

	 m_userEventMaps[type] = cb;

	}

	SDLApp *SDLApp::instance()

	{

	 return globalInstance;

	}

	封装的事件循环采用注册的方式，只需要传入所关心的事件类型和对应的回调函数即可。

	void registerEvent(int type, const std::function<void (SDL_Event *)> &cb)

	SDL处理事件的方式有以下3种。

	・SDL_WaitEvent：不带超时的持续事件等待，直到有事件发生，这个函数在没有事件发生时会阻塞，在非阻塞场景下使用需要特别注意。

	・SDL_WaitEventTimeout：带超时的事件等待，即使没有事件发生，在设置的时间到来后也会返回，对非阻塞场景比较友好。

	・SDL_PollEvent：使用传统的事件轮询机制，非阻塞调用，有事件返回1，无事件返回0。

	SDLApp类使用SDL_WaitEventTimeout进行事件等待。

14.3.2 SDL定时器

	SDL集成了一个精确的定时器，支持循环和一次性定时任务，主要应用场景有图像的定时刷新、游戏画面刷新、定时任务等。在本章中我们使用Timer来定时刷新播放器的图像，并且对定时器进行了一层封装（类Timer），支持开始、停止、设置间隔等功能。代码如下。

	文件：Timer.h

	#ifndef TIMER_H

	#define TIMER_H

	#include "SDL.h"

	typedef void (*TimerOutCb)();

	class Timer

	{

	public:

	 Timer();

	 void start(void* cb, int interval);

	 void stop();

	private:

	 SDL_TimerID m_timerId = 0;

	};

	#endif // TIMER_H

	文件：Timer.cpp

	#include "Timer.h"

	static Uint32 callbackfunc(Uint32 interval, void *param)

	{

	 SDL_Event event;

	 SDL_UserEvent userevent;

	 userevent.type = SDL_USEREVENT;

	 userevent.code = 0;

	 userevent.data1 = param;

	 userevent.data2 = NULL;

	 event.type = SDL_USEREVENT;

	 event.user = userevent;

	 SDL_PushEvent(&event);

	 return interval;

	}

	Timer::Timer()

	{

	}

	void Timer::start(void *cb, int interval)

	{

	 // 计时器开始

	 if (m_timerId != 0) {

	 return;

	 }

	 // 添加新计时器

	 SDL_TimerID timerId = SDL_AddTimer(interval, callbackfunc, cb);

	 if (timerId == 0) {

	 return;

	 }

	 m_timerId = timerId;

	}

	void Timer::stop()

	{

	 if (m_timerId != 0) {

	 // 清理计时器

	 SDL_RemoveTimer(m_timerId);

	 m_timerId = 0;

	 }

	}

	需要注意的是，使用定时器需要在SDL初始化时传入SDL_INIT_TIMER，不然定时器开启不成功。

	SDL通过SDL_AddTimer()生成一个定时器，定时器的精度依赖操作系统的调度精度，属于典型的非实时定时器，不过在音视频场景中使用是没有问题的。函数原型如下：

	SDL_TimerID SDL_AddTimer(Uint32 interval, SDL_TimerCallback callback, void *param);

	其中interval指定了定时器的超时间隔，也就是Delay值，callback是超时后的回调函数，param则是用户私有数据。回调函数如下：

	typedef Uint32 (SDLCALL * SDL_TimerCallback) (Uint32 interval, void *param);

	此回调函数返回使用者要求的Delay值。回调函数返回0，则会取消此定时器，SDL从定时器队列中移除此任务，如果希望定时器继续，则返回下一次的Delay值。

	需要注意的是，SDL定时器回调函数允许在一个独立的线程上，如果希望最终的回调函数和事件循环属于一个线程，可以通过在定时器回调函数中“post”事件的方式，把定时器抛给事件循环线程，从而规避多线程问题。上述代码中的callbackfunc()函数就是用这个机制规避了线程问题，让定时器的回调函数在事件循环线程执行。

14.4 播放器解码和展示

	播放器项目采用多线程架构，包含事件循环线程（主线程）、demux线程、视频解码线程、音频播放线程，彼此之间的关系如图14-6所示。

	[image:]

	图14-6 播放器流程

	如图14-6所示，播放器内部线程交互频繁，属于多线程应用中较为复杂的场景，下面逐个介绍线程的功能。

14.4.1 FFmpegPlayerCtx

	FFmpegPlayerCtx是整个播放器项目的上下文，存储了非常多的信息，这一点与ffplay代码保持一致，但是比ffplay简洁得多，也更容易理解。

	FFmpegPlayerCtx原型如下：

	struct FFmpegPlayerCtx {

	 AVFormatContext *formatCtx = nullptr;

	 AVCodecContext *aCodecCtx = nullptr;

	 AVCodecContext *vCodecCtx = nullptr;

	 int videoStream = -1;

	 int audioStream = -1;

	 AVStream *audio_st = nullptr;

	 AVStream *video_st = nullptr;

	 PacketQueue audioq;

	 PacketQueue videoq;

	 uint8_t audio_buf[(MAX_AUDIO_FRAME_SIZE * 3) / 2];

	 unsigned int audio_buf_size = 0;

	 unsigned int audio_buf_index = 0;

	 AVFrame *audio_frame = nullptr;

	 AVPacket *audio_pkt = nullptr;

	 uint8_t *audio_pkt_data = nullptr;

	 int audio_pkt_size = 0;

	 // 用以记录seek操作的上下文信息

	 std::atomic<int> seek_req;

	 int seek_flags;

	 int64_t seek_pos;

	 // 用以seek操作的状态机

	 std::atomic<bool> flush_actx = false;

	 std::atomic<bool> flush_vctx = false;

	 // 用以做音视频同步的参数

	 double audio_clock = 0.0;

	 double frame_timer = 0.0;

	 double frame_last_pts = 0.0;

	 double frame_last_delay = 0.0;

	 double video_clock = 0.0;

	 // 图像队列

	 VideoPicture pictq[VIDEO_PICTURE_QUEUE_SIZE];

	 int pictq_size = 0;

	 int pictq_rindex = 0;

	 int pictq_windex = 0;

	 SDL_mutex *pictq_mutex = nullptr;

	 SDL_cond *pictq_cond = nullptr;

	 char filename[1024];

	 SwsContext *sws_ctx = nullptr;

	 SwrContext *swr_ctx = nullptr;

	 std::atomic<int> pause = UNPAUSE;

	 // 图像回调

	 Image_Cb imgCb = nullptr;

	 void *cbData = nullptr;

	 void init()

	 {

	 audio_frame = av_frame_alloc();

	 audio_pkt = av_packet_alloc();

	 pictq_mutex = SDL_CreateMutex();

	 pictq_cond = SDL_CreateCond();

	 }

	 void fini()

	 {

	 if (audio_frame) {

	 av_frame_free(&audio_frame);

	 }

	 if (audio_pkt) {

	 av_packet_free(&audio_pkt);

	 }

	 if (pictq_mutex) {

	 SDL_DestroyMutex(pictq_mutex);

	 }

	 if (pictq_cond) {

	 SDL_DestroyCond(pictq_cond);

	 }

	 }

	};

	借助于C++语言的特性，很多属性在声明时直接进行了默认赋值操作，部分变量使用了原子类型模板（std::atomic），主要考虑到这些变量需要跨线程，声明为原子类型相对于直接用锁效果更好。在接下来的播放器代码中，会经常使用FFmpegPlayerCtx上下文。

14.4.2 播放器设计

	一个典型的播放器应该具备播放、暂停、快进、快退、倍速等基础功能，在此基础上增加图像滤镜、音频滤镜等功能。FFmpegPlayer本着简洁、容易理解的原则，实现了播放、暂停、快进、快退四大主要功能，内部使用多线程架构，融合FFmpeg常用的API，并结合SDL把图像和声音进行渲染，已经具备基础的播放能力。感兴趣的读者可以自己实现扩展功能，如加入硬解、精确跳转、增加音视频滤镜、倍速等高级功能。FFmpegPlayer的实现如下。

	FFmpegPlayer类声明：

	class FFmpegPlayer

	{

	public:

	 FFmpegPlayer();

	 void setFilePath(const char *filePath);

	 void setImageCb(Image_Cb cb, void *userData);

	 int initPlayer();

	 void start();

	 void stop();

	 void pause(PauseState state);

	public:

	 void onRefreshEvent(SDL_Event *e);

	 void onKeyEvent(SDL_Event *e);

	private:

	 FFmpegPlayerCtx playerCtx;

	 std::string m_filePath;

	 SDL_AudioSpec audio_wanted_spec;

	 std::atomic<bool> m_stop = false;

	private:

	 DemuxThread *m_demuxThread = nullptr;

	 VideoDecodeThread *m_videoDecodeThread = nullptr;

	 AudioDecodeThread *m_audioDecodeThread = nullptr;

	 AudioPlay *m_audioPlay = nullptr;

	};

	FFmpegPlayer类实现：

	FFmpegPlayer::FFmpegPlayer()

	{

	}

	void FFmpegPlayer::setFilePath(const char *filePath)

	{

	 m_filePath = filePath;

	}

	void FFmpegPlayer::setImageCb(Image_Cb cb, void *userData)

	{

	 playerCtx.imgCb = cb;

	 playerCtx.cbData = userData;

	}

	int FFmpegPlayer::initPlayer()

	{

	 // 初始化播放器上下文

	 playerCtx.init();

	 strncpy(playerCtx.filename, m_filePath.c_str(), m_filePath.size());

	 // 创建demux线程

	 m_demuxThread = new DemuxThread;

	 m_demuxThread->setPlayerCtx(&playerCtx);

	 if (m_demuxThread->initDemuxThread() != 0) {

	 ff_log_line("DemuxThread init Failed.");

	 return -1;

	 }

	 // 创建音频解码线程

	 m_audioDecodeThread = new AudioDecodeThread;

	 m_audioDecodeThread->setPlayerCtx(&playerCtx);

	 // 创建视频解码线程

	 m_videoDecodeThread = new VideoDecodeThread;

	 m_videoDecodeThread->setPlayerCtx(&playerCtx);

	 // 设置音频播放的参数

	 audio_wanted_spec.freq = 48000;

	 audio_wanted_spec.format = AUDIO_S16SYS;

	 audio_wanted_spec.channels = 2;

	 audio_wanted_spec.silence = 0;

	 audio_wanted_spec.samples = SDL_AUDIO_BUFFER_SIZE;

	 audio_wanted_spec.callback = FN_Audio_Cb;

	 audio_wanted_spec.userdata = m_audioDecodeThread;

	 // 创建并打开音频播放设备

	 m_audioPlay = new AudioPlay;

	 if (m_audioPlay->openDevice(&audio_wanted_spec) <= 0) {

	 ff_log_line("open audio device Failed.");

	 return -1;

	 }

	 // 设置播放器事件

	 auto refreshEvent = [this](SDL_Event *e) {

	 onRefreshEvent(e);

	 };

	 auto keyEvent = [this](SDL_Event *e) {

	 onKeyEvent(e);

	 };

	 sdlApp->registerEvent(FF_REFRESH_EVENT, refreshEvent);

	 sdlApp->registerEvent(SDL_KEYDOWN, keyEvent);

	 return 0;

	}

	void FFmpegPlayer::start()

	{

	 m_demuxThread->start();

	 m_videoDecodeThread->start();

	 m_audioDecodeThread->start();

	 m_audioPlay->start();

	 schedule_refresh(&playerCtx, 40);

	 m_stop = false;

	}

	#define FREE(x) delete x; x = nullptr

	void FFmpegPlayer::stop()

	{

	 m_stop = true;

	 // 停止音频解码线程

	 ff_log_line("audio decode thread clean...");

	 if (m_audioDecodeThread) {

	 m_audioDecodeThread->stop();

	 FREE(m_audioDecodeThread);

	 }

	 ff_log_line("audio decode thread finished.");

	 // 停止音频处理线程

	 ff_log_line("audio play thread clean...");

	 if (m_audioPlay) {

	 m_audioPlay->stop();

	 FREE(m_audioPlay);

	 }

	 ff_log_line("audio device finished.");

	 // 停止视频解码线程

	 ff_log_line("video decode thread clean...");

	 if (m_videoDecodeThread) {

	 m_videoDecodeThread->stop();

	 FREE(m_videoDecodeThread);

	 }

	 ff_log_line("video decode thread finished.");

	 // 停止demux线程

	 ff_log_line("demux thread clean...");

	 if (m_demuxThread) {

	 m_demuxThread->stop();

	 m_demuxThread->finiDemuxThread();

	 FREE(m_demuxThread);

	 }

	 ff_log_line("demux thread finished.");

	 ff_log_line("player ctx clean...");

	 playerCtx.fini();

	 ff_log_line("player ctx finished.");

	}

	void FFmpegPlayer::pause(PauseState state)

	{

	 playerCtx.pause = state;

	 playerCtx.frame_timer = av_gettime() / 1000000.0;

	}

	void FFmpegPlayer::onRefreshEvent(SDL_Event *e)

	{

	 if (m_stop) {

	 return;

	 }

	 FFmpegPlayerCtx *is = (FFmpegPlayerCtx *)e->user.data1;

	 VideoPicture *vp;

	 double actual_delay, delay, sync_threshold, ref_clock, diff;

	 if(is->video_st) {

	 if(is->pictq_size == 0) {

	 schedule_refresh(is, 1);

	 } else {

	 vp = &is->pictq[is->pictq_rindex];

	 delay = vp->pts - is->frame_last_pts;

	 if(delay <= 0 || delay >= 1.0) {

	 delay = is->frame_last_delay;

	 }

	 // 为下一次处理保存状态

	 is->frame_last_delay = delay;

	 is->frame_last_pts = vp->pts;

	 ref_clock = get_audio_clock(is);

	 diff = vp->pts - ref_clock;

	 sync_threshold = (delay > AV_SYNC_THRESHOLD) ? delay : AV_SYNC_THRESHOLD;

	 if (fabs(diff) < AV_NOSYNC_THRESHOLD) {

	 if (diff <= -sync_threshold) {

	 delay = 0;

	 } else if (diff >= sync_threshold) {

	 delay = 2 * delay;

	 }

	 }

	 is->frame_timer += delay;

	 actual_delay = is->frame_timer - (av_gettime() / 1000000.0);

	 if (actual_delay < 0.010) {

	 actual_delay = 0.010;

	 }

	 schedule_refresh(is, (int)(actual_delay * 1000 + 0.5));

	 video_display(is);

	 if (++is->pictq_rindex == VIDEO_PICTURE_QUEUE_SIZE) {

	 is->pictq_rindex = 0;

	 }

	 SDL_LockMutex(is->pictq_mutex);

	 is->pictq_size--;

	 SDL_CondSignal(is->pictq_cond);

	 SDL_UnlockMutex(is->pictq_mutex);

	 }

	 } else {

	 schedule_refresh(is, 100);

	 }

	}

	void FFmpegPlayer::onKeyEvent(SDL_Event *e)

	{

	 double incr, pos;

	 switch(e->key.keysym.sym) {

	 case SDLK_LEFT:

	 incr = -10.0;

	 goto do_seek;

	 case SDLK_RIGHT:

	 incr = 10.0;

	 goto do_seek;

	 case SDLK_UP:

	 incr = 60.0;

	 goto do_seek;

	 case SDLK_DOWN:

	 incr = -60.0;

	 goto do_seek;

	do_seek:

	 if (true) {

	 pos = get_audio_clock(&playerCtx);

	 pos += incr;

	 if (pos < 0) {

	 pos = 0;

	 }

	 ff_log_line("seek to %lf v:%lf a:%lf", pos, get_audio_clock(&playerCtx), get_audio_clock(&playerCtx));

	 stream_seek(&playerCtx, (int64_t)(pos * AV_TIME_BASE), (int)incr);

	 }

	 break;

	 case SDLK_q:

	 // 退出

	 ff_log_line("request quit, player will quit");

	 // 停止播放器

	 stop();

	 // 退出SDL事件循环

	 sdlApp->quit();

	 break;

	 case SDLK_SPACE:

	 ff_log_line("request pause, cur state=%d", (int)playerCtx.pause);

	 if (playerCtx.pause == UNPAUSE) {

	 pause(PAUSE);

	 } else {

	 pause(UNPAUSE);

	 }

	 break;

	 default:

	 break;

	 }

	}

	根据我们的设计，FFmpegPlayer可以在主线程运行，而不会对主线程造成任务阻塞，同时包含处理键盘和鼠标事件模块、音视频同步模块、声音打开逻辑等，各个模块会进一步详细说明。

14.4.3 事件循环线程

	事件循环线程也称作主线程，负责一些简单的代码逻辑，如界面刷新、获取鼠标和键盘事件等。本项目的主线程功能主要是启动定时器更新图像、获取键盘事件并分配事件等。代码逻辑如下：

	// 渲染视频

	RenderView view;

	view.initSDL();

	Timer ti;

	std::function<void()> cb = bind(&RenderView::onRefresh, &view);

	ti.start(&cb, 30);

	RenderPairData *cbData = new RenderPairData;

	cbData->view = &view;

	FFmpegPlayer player;

	player.setFilePath("E:/temp/111.mp4"); // 测试文件，实际使用时换成自己的文件路径

	player.setImageCb(FN_DecodeImage_Cb, cbData);

	if (player.initPlayer() != 0) {

	 return -1;

	}

	ff_log_line("FFmpegPlayer init success");

	player.start();

14.4.4 demux线程

	demux线程也就是多媒体文件解封装线程（或者称为解复用线程），负责创建上下文、打开输入、读取帧等操作，属于播放器开发中最核心的模块。下面逐个函数进行分析，demux 线程在类DemuxThread 中实现，使用起来较为简单。

	文件：DemuxThread.h

	#ifndef DEMUXTHREAD_H

	#define DEMUXTHREAD_H

	#include "ThreadBase.h"

	#include <string>

	struct FFmpegPlayerCtx;

	class DemuxThread : public ThreadBase

	{

	public:

	 DemuxThread();

	 void setPlayerCtx(FFmpegPlayerCtx *ctx);

	 int initDemuxThread();

	 void finiDemuxThread();

	 void run();

	private:

	 int decode_loop();

	 int audio_decode_frame(FFmpegPlayerCtx *is, double *pts_ptr);

	 int stream_open(FFmpegPlayerCtx *is, int media_type);

	private:

	 FFmpegPlayerCtx *is = nullptr;

	};

	#endif // DEMUXTHREAD_H

	文件：DemuxThread.cpp

	#include "DemuxThread.h"

	#include <functional>

	#include "log.h"

	#include "FFmpegPlayer.h"

	DemuxThread::DemuxThread()

	{

	}

	void DemuxThread::setPlayerCtx(FFmpegPlayerCtx *ctx)

	{

	 is = ctx;

	}

	int DemuxThread::initDemuxThread()

	{

	 AVFormatContext *formatCtx = NULL;

	 if (avformat_open_input(&formatCtx, is->filename, NULL, NULL) != 0) {

	 ff_log_line("avformat_open_input Failed.");

	 return -1;

	 }

	 is->formatCtx = formatCtx;

	 if (avformat_find_stream_info(formatCtx, NULL) < 0) {

	 ff_log_line("avformat_find_stream_info Failed.");

	 return -1;

	 }

	 av_dump_format(formatCtx, 0, is->filename, 0);

	 if (stream_open(is, AVMEDIA_TYPE_AUDIO) < 0) {

	 ff_log_line("open audio stream Failed.");

	 return -1;

	 }

	 if (stream_open(is, AVMEDIA_TYPE_VIDEO) < 0) {

	 ff_log_line("open video stream Failed.");

	 return -1;

	 }

	 return 0;

	}

	void DemuxThread::finiDemuxThread()

	{

	 if (is->formatCtx) {

	 avformat_close_input(&is->formatCtx);

	 is->formatCtx = nullptr;

	 }

	 if (is->aCodecCtx) {

	 avcodec_free_context(&is->aCodecCtx);

	 is->aCodecCtx = nullptr;

	 }

	 if (is->vCodecCtx) {

	 avcodec_free_context(&is->vCodecCtx);

	 is->vCodecCtx = nullptr;

	 }

	 if (is->swr_ctx) {

	 swr_free(&is->swr_ctx);

	 is->swr_ctx = nullptr;

	 }

	 if (is->sws_ctx) {

	 sws_freeContext(is->sws_ctx);

	 is->sws_ctx = nullptr;

	 }

	}

	void DemuxThread::run()

	{

	 decode_loop();

	}

	int DemuxThread::decode_loop()

	{

	 AVPacket *packet = av_packet_alloc();

	 for(;;) {

	 if(m_stop) {

	 ff_log_line("request quit while decode_loop");

	 break;

	 }

	 // 开始seek

	 if (is->seek_req) {

	 int stream_index= -1;

	 int64_t seek_target = is->seek_pos;

	 if (is->videoStream >= 0) {

	 stream_index = is->videoStream;

	 } else if(is->audioStream >= 0) {

	 stream_index = is->audioStream;

	 }

	 if (stream_index >= 0) {

	 seek_target= av_rescale_q(seek_target, AVRational{1, AV_TIME_BASE}, is->formatCtx->streams[stream_index]->time_base);

	 }

	 if (av_seek_frame(is->formatCtx, stream_index, seek_target, is->seek_flags) < 0) {

	 ff_log_line("%s: error while seeking\n", is->filename);

	 } else {

	 if(is->audioStream >= 0) {

	 is->audioq.packetFlush();

	 is->flush_actx = true;

	 }

	 if (is->videoStream >= 0) {

	 is->videoq.packetFlush();

	 is->flush_vctx = true;

	 }

	 }

	 // 当seek操作结束后将状态重置为0

	 is->seek_req = 0;

	 }

	 if (is->audioq.packetSize() > MAX_AUDIOQ_SIZE || is->videoq.packetSize() > MAX_VIDEOQ_SIZE) {

	 SDL_Delay(10);

	 continue;

	 }

	 if (av_read_frame(is->formatCtx, packet) < 0) {

	 ff_log_line("av_read_frame error");

	 break;

	 }

	 if (packet->stream_index == is->videoStream) {

	 is->videoq.packetPut(packet);

	 } else if (packet->stream_index == is->audioStream) {

	 is->audioq.packetPut(packet);

	 } else {

	 av_packet_unref(packet);

	 }

	 }

	 while (!m_stop) {

	 SDL_Delay(100);

	 }

	 av_packet_free(&packet);

	 SDL_Event event;

	 event.type = FF_QUIT_EVENT;

	 event.user.data1 = is;

	 SDL_PushEvent(&event);

	 return 0;

	}

	int DemuxThread::stream_open(FFmpegPlayerCtx *is, int media_type)

	{

	 AVFormatContext *formatCtx = is->formatCtx;

	 AVCodecContext *codecCtx = NULL;

	 AVCodec *codec = NULL;

	 int stream_index = av_find_best_stream(formatCtx, (AVMediaType)media_type, -1, -1, (const AVCodec **)&codec, 0);

	 if (stream_index < 0 || stream_index >= (int)formatCtx->nb_streams) {

	 ff_log_line("Cannot find a audio stream in the input file\n");

	 return -1;

	 }

	 codecCtx = avcodec_alloc_context3(codec);

	 avcodec_parameters_to_context(codecCtx, formatCtx->streams[stream_index]->codecpar);

	 if (avcodec_open2(codecCtx, codec, NULL) < 0) {

	 ff_log_line("Failed to open codec for stream #%d\n", stream_index);

	 return -1;

	 }

	 switch(codecCtx->codec_type) {

	 case AVMEDIA_TYPE_AUDIO:

	 is->audioStream = stream_index;

	 is->aCodecCtx = codecCtx;

	 is->audio_st = formatCtx->streams[stream_index];

	 is->swr_ctx = swr_alloc();

	 av_opt_set_chlayout(is->swr_ctx, "in_chlayout", &codecCtx->ch_layout, 0);

	 av_opt_set_int(is->swr_ctx, "in_sample_rate", codecCtx->sample_rate, 0);

	 av_opt_set_sample_fmt(is->swr_ctx, "in_sample_fmt", codecCtx->sample_fmt, 0);

	 AVChannelLayout outLayout;

	 // use stereo

	 av_channel_layout_default(&outLayout, 2);

	 av_opt_set_chlayout(is->swr_ctx, "out_chlayout", &outLayout, 0);

	 av_opt_set_int(is->swr_ctx, "out_sample_rate", 48000, 0);

	 av_opt_set_sample_fmt(is->swr_ctx, "out_sample_fmt", AV_SAMPLE_FMT_S16, 0);

	 swr_init(is->swr_ctx);

	 break;

	 case AVMEDIA_TYPE_VIDEO:

	 is->videoStream = stream_index;

	 is->vCodecCtx = codecCtx;

	 is->video_st = formatCtx->streams[stream_index];

	 is->frame_timer = (double)av_gettime() / 1000000.0;

	 is->frame_last_delay = 40e-3;

	 is->sws_ctx = sws_getContext(codecCtx->width, codecCtx->height,

	 codecCtx->pix_fmt, codecCtx->width, codecCtx->height,

	 AV_PIX_FMT_RGB24, SWS_BILINEAR,

	 NULL, NULL, NULL);

	 break;

	 default:

	 break;

	 }

	 return 0;

	}

	其中包含了较多的FFmpeg函数调用，很有必要进行说明，根据播放器的流程图，我们逐个分析。

	AVFormatContext *formatCtx = NULL;

	if (avformat_open_input(&formatCtx, is->filename, NULL, NULL) != 0) {

	 ff_log_line("avformat_open_input Failed.");

	 return -1;

	}

	is->formatCtx = formatCtx;

	if (avformat_find_stream_info(formatCtx, NULL) < 0) {

	 ff_log_line("avformat_find_stream_info Failed.");

	 return -1;

	}

	使用avformat_open_input()自动分配上下文（formatCtx）。注意，这个函数即使已经正常返回，此时解码器仍然处于未打开状态，而且formatCtx必须通过avformat_close_input()关闭，然后通过avformat_find_stream_info()查找流信息。此时FFmpeg会预读部分数据，但是不用担心文件的读指针位置会因此发生偏移，FFmpeg内部会还原这部分的指针偏移，读取的这些数据包可能会被缓存以用于后续处理。

	if (avformat_find_stream_info(formatCtx, NULL) < 0) {

	 ff_log_line("avformat_find_stream_info Failed.");

	 return -1;

	 }

	 av_dump_format(formatCtx, 0, is->filename, 0);

	 if (stream_open(is, AVMEDIA_TYPE_AUDIO) < 0) {

	 ff_log_line("open audio stream Failed.");

	 return -1;

	 }

	 if (stream_open(is, AVMEDIA_TYPE_VIDEO) < 0) {

	 ff_log_line("open video stream Failed.");

	 return -1;

	 }

	av_dump_format()函数是可选的，通过调用此函数会把输入的文件详细信息打印出来，包括时长、码率、流、容器、解码器等，然后根据类型调用stream_open()打开音频解码器和视频解码器。stream_open()的实现如下：

	 AVFormatContext *formatCtx = is->formatCtx;

	 AVCodecContext *codecCtx = NULL;

	 AVCodec *codec = NULL;

	 int stream_index = av_find_best_stream(formatCtx, (AVMediaType)media_type, -1, -1, (const AVCodec **)&codec, 0);

	 if (stream_index < 0 || stream_index >= (int)formatCtx->nb_streams) {

	 ff_log_line("Cannot find a audio stream in the input file\n");

	 return -1;

	 }

	 codecCtx = avcodec_alloc_context3(codec);

	 avcodec_parameters_to_context(codecCtx, formatCtx->streams[stream_index]->codecpar);

	 if (avcodec_open2(codecCtx, codec, NULL) < 0) {

	 ff_log_line("Failed to open codec for stream #%d\n", stream_index);

	 return -1;

	 }

	 switch(codecCtx->codec_type) {

	 case AVMEDIA_TYPE_AUDIO:

	 is->audioStream = stream_index;

	 is->aCodecCtx = codecCtx;

	 is->audio_st = formatCtx->streams[stream_index];

	 is->swr_ctx = swr_alloc();

	 av_opt_set_int(is->swr_ctx, "in_channel_layout", av_get_default_channel_layout(codecCtx->ch_layout.nb_channels), 0);

	 av_opt_set_int(is->swr_ctx, "in_sample_rate", codecCtx->sample_rate, 0);

	 av_opt_set_sample_fmt(is->swr_ctx, "in_sample_fmt", codecCtx->sample_fmt, 0);

	 av_opt_set_int(is->swr_ctx, "out_channel_layout", AV_CH_LAYOUT_STEREO, 0);

	 av_opt_set_int(is->swr_ctx, "out_sample_rate", 48000, 0);

	 av_opt_set_sample_fmt(is->swr_ctx, "out_sample_fmt", AV_SAMPLE_FMT_S16, 0);

	 swr_init(is->swr_ctx);

	 break;

	 case AVMEDIA_TYPE_VIDEO:

	 is->videoStream = stream_index;

	 is->vCodecCtx = codecCtx;

	 is->video_st = formatCtx->streams[stream_index];

	 is->frame_timer = (double)av_gettime() / 1000000.0;

	 is->frame_last_delay = 40e-3;

	 is->sws_ctx = sws_getContext(codecCtx->width, codecCtx->height,

	 codecCtx->pix_fmt, codecCtx->width, codecCtx->height,

	 AV_PIX_FMT_RGB24, SWS_BILINEAR,

	 NULL, NULL, NULL);

	 break;

	 default:

	 break;

	 }

	av_find_best_stream()返回指定类型的最好的一个流给调用者，何为最好？按照官方的说法就是根据一些历史经验返回的值。同时av_find_best_stream()会返回对应流的解码器，此时解码器仍是未打开状态。

	avcodec_alloc_context3()根据上述返回的解码器创建解码器上下文。需要注意的是，此时分配的解码器上下文的大部分信息还未填充，通过avcodec_parameters_to_context()可以把format上的关键信息赋值给解码器上下文。这个赋值行为比较关键，如果不通过avcodec_parameters_to_context()的参数赋值，则解码器上下文中width和height字段的值为默认值0。至此，就可以执行关键的解码器打开动作了，调用avcodec_open2()即可。

	通过swr_alloc()创建的SwrContext和通过sws_getContext()创建的SwsContext，分别用于处理音频重采样和视频图像的缩放、颜色空间转换，具体用法可以参照前文中音频重采样和视频图像缩放的介绍。

	if (is->audioq.packetSize() > MAX_AUDIOQ_SIZE || is->videoq.packetSize() > MAX_VIDEOQ_SIZE) {

	 SDL_Delay(10);

	 continue;

	}

	if (av_read_frame(is->formatCtx, packet) < 0) {

	 ff_log_line("av_read_frame error");

	 break;

	}

	if (packet->stream_index == is->videoStream) {

	 is->videoq.packetPut(packet);

	} else if (packet->stream_index == is->audioStream) {

	 is->audioq.packetPut(packet);

	} else {

	 av_packet_unref(packet);

	}

	demux线程通过av_read_frame()读取数据，并把未解码数据存储在packet（AVPacket）里，然后进行判断。如果是视频帧，则把packet存放到视频队列，packet里存储的数据对于视频来说一般是单一帧视频数据，而对于音频则可能包含多个帧；同样如果判断是音频帧，则把packet存放到音频队列里，音视频之外的packet，比如字幕等，暂时不做处理，感兴趣的读者可以自行研究。本例中调用av_packet_unref()直接释放数据，当音频或者视频队列的数据大于设定的阈值时，程序会延时10毫秒（SDL_Delay(10)），然后继续读包的操作。

	 if (m_stop) {

	 ff_log_line("request quit while decode_loop");

	 break;

	 }

	 // 开始seek

	 if (is->seek_req) {

	 int stream_index= -1;

	 int64_t seek_target = is->seek_pos;

	 if (is->videoStream >= 0) {

	 stream_index = is->videoStream;

	 } else if(is->audioStream >= 0) {

	 stream_index = is->audioStream;

	 }

	 if (stream_index >= 0) {

	 seek_target= av_rescale_q(seek_target, AVRational{1, AV_TIME_BASE}, is->formatCtx->streams[stream_index]->time_base);

	 }

	 if (av_seek_frame(is->formatCtx, stream_index, seek_target, is->seek_flags) < 0) {

	 ff_log_line("%s: error while seeking\n", is->filename);

	 } else {

	 if(is->audioStream >= 0) {

	 is->audioq.packetFlush();

	 is->flush_actx = true;

	 }

	 if (is->videoStream >= 0) {

	 is->videoq.packetFlush();

	 is->flush_vctx = true;

	 }

	 }

	 // seek操作完成后将状态重置为0

	 is->seek_req = 0;

	 }

	 if (is->audioq.packetSize() > MAX_AUDIOQ_SIZE || is->videoq.packetSize() > MAX_VIDEOQ_SIZE) {

	 SDL_Delay(10);

	 continue;

	 }

	我们使用了for(;;)死循环来持续读取帧数据，考虑到多线程场景，使用了原子变量m_stop（std::atomic<bool>类型）。在这个循环里，还增加了seek操作，可以快速跳转到希望的时间点。seek操作属于跨线程操作，主线程接收鼠标或者键盘事件并转化为时间，通过av_seek_frame()进行跳转，流程如图14-7所示。

	[image:]

	图14-7 seek流程

	av_seek_frame()在前面的章节已经详细说明，这里略过。

	如何设置seek的参数呢？这段代码在类FFmpegPlayer的事件处理函数中。

	do_seek:

	 if (true) {

	 pos = get_audio_clock(&playerCtx);

	 pos += incr;

	 if (pos < 0) {

	 pos = 0;

	 }

	 ff_log_line("seek to %lf v:%lf a:%lf", pos, get_audio_clock(&playerCtx), get_audio_clock(&playerCtx));

	 stream_seek(&playerCtx, (int64_t)(pos * AV_TIME_BASE), (int)incr);

	 }

	这里的(int64_t)(pos * AV_TIME_BASE)不太好理解，先来看看AV_TIME_BASE是什么。

	#define AV_TIME_BASE 1000000

	也就是说把pos乘以1 000 000，其实就是把音频时钟从秒转到了微秒，但是av_seek_ frame()的第3个参数timestamp是基于AVStream.time_base的，明显又不是微秒，所以在调用av_seek_frame()之前还需要把pos转换成以AVStream.time_base为基准，这个转换是通过av_rescale_q()实现的，这个是关键函数，常用于在不同的时间基准中互相转换。

	那么时间基准又是什么呢？我们通过一个带刻度的尺子来举例：比如一个尺子一共有12 000个刻度，整个尺子对应1秒的物理时长，那么如果占据了1200个刻度，则代表了物理时间为1200/12000=0.1（秒）。类比到音视频的音频，如果1秒的采样率是48 000，一个音频帧的采样数是1024，则1024代表物理时长为1024/48000=0.0213333（秒）。类比到视频，如视频的帧率为25帧，则每帧占用1/25=0.04（秒）。

	音视频的时间基准是以毫秒或者秒为单位的吗？实际上并不是，音视频流有各自的时间基准。FFmpeg中处理时间基准的函数主要有下面几个。

	・av_rescale_q()：不同时间基准的转换，用于将一种时间基准转换为另一种时间基准。

	・av_q2d()：把时间从AVRational转换为double形式，单位是秒。

	・av_compare_ts()：不同基准的时间戳比对。

	其中，我们用到的av_rescale_q()原型如下：

	int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq) av_const;

	其实就是这样的数学运算：a×bq / cq。

	当执行seek操作后，原来存在于音视频队列的AVPacket已经不再使用，需要清除。同时设置flush_actx、flush_vctx为true，并在音频解码线程和视频解码线程中调用avcodec_ flush_buffers()来刷新内部buffer，并重置解码器状态。如下代码就根据flush_vctx为true的状态来重置解码器。

	if (is->flush_vctx) {

	 ff_log_line("avcodec_flush_buffers(vCodecCtx) for seeking");

	 avcodec_flush_buffers(is->vCodecCtx);

	 is->flush_vctx = false;

	 continue;

	}

14.4.5 视频解码线程

	视频解码部分的代码封装在类 VideoDecodeThread 中，主要完成从视频队列读取数据（AVPacket）、解码数据、把解码后的数据（AVFrame）放到图像队列（pictq）中的功能。下面是VideoDecodeThread的核心代码：

	#include "VideoDecodeThread.h"

	#include "FFmpegPlayer.h"

	#include "log.h"

	static double synchronize_video(FFmpegPlayerCtx *is, AVFrame *src_frame, double pts)

	{

	 double frame_delay;

	 if(pts != 0) {

	 // 如果有pts，则将视频时钟设置为pts值

	 is->video_clock = pts;

	 } else {

	 // 如果没有设置过pts，则将pts设置为时钟的值

	 pts = is->video_clock;

	 }

	 // 更新视频计时器

	 frame_delay = av_q2d(is->vCodecCtx->time_base);

	 // 如果重复1帧，就相应调整一下时钟

	 frame_delay += src_frame->repeat_pict * (frame_delay * 0.5);

	 is->video_clock += frame_delay;

	 return pts;

	}

	VideoDecodeThread::VideoDecodeThread()

	{

	}

	void VideoDecodeThread::setPlayerCtx(FFmpegPlayerCtx *ctx)

	{

	 playerCtx = ctx;

	}

	void VideoDecodeThread::run()

	{

	 int ret = video_entry();

	 ff_log_line("VideoDecodeThread finished, ret=%d", ret);

	}

	int VideoDecodeThread::video_entry()

	{

	 FFmpegPlayerCtx *is = playerCtx;

	 AVPacket *packet = av_packet_alloc();

	 AVCodecContext *pCodecCtx = is->vCodecCtx;

	 int ret = -1;

	 double pts = 0;

	 AVFrame * pFrame = av_frame_alloc();

	 AVFrame * pFrameRGB = av_frame_alloc();

	 av_image_alloc(pFrameRGB->data, pFrameRGB->linesize, pCodecCtx->width, pCodecCtx->height, AV_PIX_FMT_RGB24, 32);

	 for (;;) {

	 if (m_stop) {

	 break;

	 }

	 if (is->pause == PAUSE) {

	 SDL_Delay(5);

	 continue;

	 }

	 if (is->flush_vctx) {

	 ff_log_line("avcodec_flush_buffers(vCodecCtx) for seeking");

	 avcodec_flush_buffers(is->vCodecCtx);

	 is->flush_vctx = false;

	 continue;

	 }

	 av_packet_unref(packet);

	 if (is->videoq.packetGet(packet, m_stop) < 0) {

	 break;

	 }

	 // 解码视频

	 ret = avcodec_send_packet(pCodecCtx, packet);

	 if (ret == 0) {

	 ret = avcodec_receive_frame(pCodecCtx, pFrame);

	 }

	 if (packet->dts == AV_NOPTS_VALUE

	 && pFrame->opaque && *(uint64_t*)pFrame->opaque != AV_NOPTS_VALUE) {

	 pts = (double)*(uint64_t *)pFrame->opaque;

	 } else if(packet->dts != AV_NOPTS_VALUE) {

	 pts = (double)packet->dts;

	 } else {

	 pts = 0;

	 }

	 pts *= av_q2d(is->video_st->time_base);

	 // 已经成功得到视频帧

	 if (ret == 0) {

	 ret = sws_scale(is->sws_ctx, (uint8_t const * const *)pFrame->data, pFrame->linesize, 0,

	 pCodecCtx->height, pFrameRGB->data, pFrameRGB->linesize);

	 pts = synchronize_video(is, pFrame, pts);

	 if (ret == pCodecCtx->height) {

	 if (queue_picture(is, pFrameRGB, pts) < 0) {

	 break;

	 }

	 }

	 }

	 }

	 av_frame_free(&pFrame);

	 av_frame_free(&pFrameRGB);

	 av_packet_free(&packet);

	 return 0;

	}

	int VideoDecodeThread::queue_picture(FFmpegPlayerCtx *is, AVFrame *pFrame, double pts)

	{

	 VideoPicture *vp;

	 // 阻塞等待获得显示新图像的空间

	 SDL_LockMutex(is->pictq_mutex);

	 while (is->pictq_size >= VIDEO_PICTURE_QUEUE_SIZE) {

	 SDL_CondWaitTimeout(is->pictq_cond, is->pictq_mutex, 500);

	 if (m_stop) {

	 break;

	 }

	 }

	 SDL_UnlockMutex(is->pictq_mutex);

	 if (m_stop) {

	 return 0;

	 }

	 // windex初始化为0

	 vp = &is->pictq[is->pictq_windex];

	 if (!vp->bmp) {

	 SDL_LockMutex(is->pictq_mutex);

	 vp->bmp = av_frame_alloc();

	 av_image_alloc(vp->bmp->data, vp->bmp->linesize, is->vCodecCtx->width, is->vCodecCtx->height, AV_PIX_FMT_RGB24, 32);

	 SDL_UnlockMutex(is->pictq_mutex);

	 }

	 // 设置图像数据，并且设置pts值

	 memcpy(vp->bmp->data[0], pFrame->data[0], is->vCodecCtx->height * pFrame->linesize[0]);

	 vp->pts = pts;

	 // 现在通知显示线程我们已经准备好了图像数据

	 if(++is->pictq_windex == VIDEO_PICTURE_QUEUE_SIZE) {

	 is->pictq_windex = 0;

	 }

	 SDL_LockMutex(is->pictq_mutex);

	 is->pictq_size++;

	 SDL_UnlockMutex(is->pictq_mutex);

	 return 0;

	}

	VideoDecodeThread流程较为复杂，我们通过图14-8进行分析。

	[image:]

	图14-8 视频解码线程

	由于视频解码线程和图像展示共用一个队列（pictq），并且设置队列大小为1，这样视频解码后就需要进行等待，一旦图像显示完毕，队列空出来，就可以结束等待并把AVFrame插入pictq队列中。多线程的等待和唤醒使用了多线程中常用的锁和条件变量，不熟悉的读者可以自行学习多线程相关知识。

	while (is->pictq_size >= VIDEO_PICTURE_QUEUE_SIZE) {

	 SDL_CondWaitTimeout(is->pictq_cond, is->pictq_mutex, 500);

	 if (m_stop) {

	 break;

	 }

	}

	在等待队列的过程中，使用了 SDL_CondWaitTimeout()这种带超时功能的条件等待，主要是方便程序可以随时退出。

	 if (!vp->bmp) {

	 SDL_LockMutex(is->pictq_mutex);

	 vp->bmp = av_frame_alloc();

	 av_image_alloc(vp->bmp->data, vp->bmp->linesize, is->vCodecCtx->width, is->vCodecCtx->height, AV_PIX_FMT_RGB24, 32);

	 SDL_UnlockMutex(is->pictq_mutex);

	 }

	 // 设置图像数据，并且设置pts值

	 memcpy(vp->bmp->data[0], pFrame->data[0], is->vCodecCtx->height * pFrame->linesize[0]);

	 vp->pts = pts;

	上述代码使用av_image_alloc()给AVFrame分配图像数据。FFmpeg给AVFrame分配空间的方式主要有以下两种。

	1）av_image_alloc()：这个函数较为简单，指定图像的宽高、格式、内存对齐方式即可。

	int av_image_alloc(uint8_t *pointers[4], int linesizes[4],

	 int w, int h, enum AVPixelFormat pix_fmt, int align);

	2）av_frame_get_buffer()：既能给视频AVFrame分配空间，也能给音频AVFrame分配空间。有一些使用上的注意项，在分配空间之前必须设置以下必要的字段，否则就会失败。

	・format：音频或者视频包的格式。

	・width：视频图像宽度。

	・height：视频图像高度。

	・nb_samples：音频采样数。

	・ch_layout：音频声道layout。

	在复制图像数据时，通过计算is->vCodecCtx->height * pFrame->linesize[0]来获取图像所占用存储空间大小。

	memcpy(vp->bmp->data[0], pFrame->data[0], is->vCodecCtx->height * pFrame->linesize[0]);

14.4.6 音视频同步

	音视频同步是播放器开发中最需要做的一个步骤，不然整个播放过程可能会出现角色口型和声音对不上的情况，其主要目的就是使声音播放和画面播放保持一致。可能有人觉得让音视频同时开始播放就可以实现音视频同步了，理论上说只要同时播放是可以达到同步的，但是计算机环境会受多方面的影响，同时视频文件的音视频帧是否有异常也会影响同步，随着时间的流逝，可能播放就会出现不一致。为了解决这个问题，提出了时钟（clock）的概念。

	目前主要有以下3种时钟。

	・音频时钟：主流播放器均使用音频时钟作为主时钟。

	・视频时钟：较少使用。

	・外部时钟：较少使用。

	3种时钟有不同的同步策略。

	・音频时钟：以音频的时间为基准时间，把视频同步到音频。在显示的过程中，视频如果受到多种因素的影响变慢了，则加快视频播放，甚至可以直接丢帧，本播放器使用加快播放策略；如果视频快了，则加大延时时间。

	・视频时钟：以视频的时间为基准，把音频同步到视频上。同样如果音频慢了，则加快音频播放，可以通过重采样来快速播放，甚至也可以直接丢帧；如果音频快了，则降低音频的播放速度。

	・外部时钟：用一个外部时间线作为时钟，把音频和视频都同步到这个时钟上。同步的策略和上述一致。

	那么不包含音频的文件需要同步吗？事实上是不需要的，只需要按照固定延时播放视频图像即可。同样对于音频文件也不需要同步，按照音频设备回调，补给音频缓冲区数据即可，同步只针对音视频共存的文件。

	本播放器项目使用第1种时钟，即音频时钟，它稳定性高，时间线性增长，故播放器基本都是使用音频时钟。本书对其他两种时钟不做详细代码讲解，本播放器时钟参照了ffplay的思路，但比ffplay简单很多，更容易理解，主要是方便开发者入门。

	音频解码线程相关的功能封装在类AudioDecodeThread中，通过SDL持续的回调，读取数据和解码数据，同时更新音频时钟，流程图如图14-9所示。

	[image:]

	图14-9 音频解码线程

	对应的核心代码如下：

	void AudioDecodeThread::getAudioData(unsigned char *stream, int len)

	{

	 // 解码器未准备好或处于暂停状态，输出静音

	 if (!is->aCodecCtx || is->pause == PAUSE) {

	 memset(stream, 0, len);

	 return;

	 }

	 int len1, audio_size;

	 double pts;

	 while(len > 0) {

	 if (is->audio_buf_index >= is->audio_buf_size) {

	 audio_size = audio_decode_frame(is, &pts);

	 if (audio_size < 0) {

	 is->audio_buf_size = 1024;

	 memset(is->audio_buf, 0, is->audio_buf_size);

	 } else {

	 is->audio_buf_size = audio_size;

	 }

	 is->audio_buf_index = 0;

	 }

	 len1 = is->audio_buf_size - is->audio_buf_index;

	 if (len1 > len)

	 len1 = len;

	 memcpy(stream, (uint8_t *)is->audio_buf + is->audio_buf_index, len1);

	 len -= len1;

	 stream += len1;

	 is->audio_buf_index += len1;

	 }

	}

	void AudioDecodeThread::run()

	{

	 // 什么都不用做

	}

	int AudioDecodeThread::audio_decode_frame(FFmpegPlayerCtx *is, double *pts_ptr)

	{

	 int len1, data_size = 0, n;

	 AVPacket *pkt = is->audio_pkt;

	 double pts;

	 int ret = 0;

	 for(;;) {

	 while (is->audio_pkt_size > 0) {

	 ret = avcodec_send_packet(is->aCodecCtx, pkt);

	 if(ret != 0) {

	 // 出错的时候跳过帧

	 is->audio_pkt_size = 0;

	 break;

	 }

	 av_frame_unref(is->audio_frame);

	 ret = avcodec_receive_frame(is->aCodecCtx, is->audio_frame);

	 if (ret != 0) {

	 // 出错的时候跳过帧

	 is->audio_pkt_size = 0;

	 break;

	 }

	 if (ret == 0) {

	 int upper_bound_samples = swr_get_out_samples(is->swr_ctx, is->audio_frame->nb_samples);

	 uint8_t *out[4] = {0};

	 out[0] = (uint8_t*)av_malloc(upper_bound_samples * 2 * 2);

	 // 每个通道输出的采样

	 int samples = swr_convert(is->swr_ctx,

	 out,

	 upper_bound_samples,

	 (const uint8_t**)is->audio_frame->data,

	 is->audio_frame->nb_samples

);

	 if (samples > 0) {

	 memcpy(is->audio_buf, out[0], samples * 2 * 2);

	 }

	 av_free(out[0]);

	 data_size = samples * 2 * 2;

	 }

	 len1 = pkt->size;

	 is->audio_pkt_data += len1;

	 is->audio_pkt_size -= len1;

	 if (data_size <= 0) {

	 // 没有获得数据，需要继续获得数据

	 continue;

	 }

	 pts = is->audio_clock;

	 *pts_ptr = pts;

	 n = 2 * is->aCodecCtx->ch_layout.nb_channels;

	 is->audio_clock += (double)data_size / (double)(n * (is->aCodecCtx->sample_rate));

	 return data_size;

	 }

	 if (m_stop) {

	 ff_log_line("request quit while decode audio");

	 return -1;

	 }

	 if (is->flush_actx) {

	 is->flush_actx = false;

	 ff_log_line("avcodec_flush_buffers(aCodecCtx) for seeking");

	 avcodec_flush_buffers(is->aCodecCtx);

	 continue;

	 }

	 av_packet_unref(pkt);

	 if (is->audioq.packetGet(pkt, m_stop) < 0) {

	 return -1;

	 }

	 is->audio_pkt_data = pkt->data;

	 is->audio_pkt_size = pkt->size;

	 if (pkt->pts != AV_NOPTS_VALUE) {

	 is->audio_clock = av_q2d(is->audio_st->time_base) * pkt->pts;

	 }

	 }

	}

	根据上述代码，我们重点解决如何更新音频时钟的问题。核心代码如下：

	 n = 2 * is->aCodecCtx->ch_layout.nb_channels;

	 is->audio_clock += (double)data_size / (double)(n * (is->aCodecCtx->sample_rate));

	if (pkt->pts != AV_NOPTS_VALUE) {

	 is->audio_clock = av_q2d(is->audio_st->time_base) * pkt->pts;

	}

	上面代码中，首先把音频时钟设置为包的pts，并转换为以秒为单位（av_q2d()），在得到解码数据后，再补充此帧数据所占的时间，相当于时钟已经到了下一帧的开始处。

	播放器的音频时钟代码如下：

	static double get_audio_clock(FFmpegPlayerCtx *is)

	{

	 double pts;

	 int hw_buf_size, bytes_per_sec, n;

	 pts = is->audio_clock;

	 hw_buf_size = is->audio_buf_size - is->audio_buf_index;

	 bytes_per_sec = 0;

	 n = is->aCodecCtx->ch_layout.nb_channels * 2;

	 if(is->audio_st) {

	 bytes_per_sec = is->aCodecCtx->sample_rate * n;

	 }

	 if (bytes_per_sec) {

	 pts -= (double)hw_buf_size / bytes_per_sec;

	 }

	 return pts;

	}

	其中hw_buf_size是已经解码出来但还没有取走的数据大小，而pts已经在解码后进行了更新，所以需要减去这段数据占用的时间（(double)hw_buf_size / bytes_per_sec），然后重新返回即可。

	接下来看看视频是怎样驱动并显示的。通过一个流程图先观察一下，如图14-10所示。

	[image:]

	图14-10 视频显示流程

	下面是音视频同步并且计算下一次刷新事件的代码。

	if(is->pictq_size == 0) {

	 schedule_refresh(is, 1);

	 } else {

	 vp = &is->pictq[is->pictq_rindex];

	 delay = vp->pts - is->frame_last_pts;

	 if(delay <= 0 || delay >= 1.0) {

	 delay = is->frame_last_delay;

	 }

	 is->frame_last_delay = delay;

	 is->frame_last_pts = vp->pts;

	 ref_clock = get_audio_clock(is);

	 diff = vp->pts - ref_clock;

	 sync_threshold = (delay > AV_SYNC_THRESHOLD) ? delay : AV_SYNC_THRESHOLD;

	 if (fabs(diff) < AV_NOSYNC_THRESHOLD) {

	 if (diff <= -sync_threshold) {

	 delay = 0;

	 } else if (diff >= sync_threshold) {

	 delay = 2 * delay;

	 }

	 }

	 is->frame_timer += delay;

	 actual_delay = is->frame_timer - (av_gettime() / 1000000.0);

	 if (actual_delay < 0.010) {

	 actual_delay = 0.010;

	 }

	 schedule_refresh(is, (int)(actual_delay * 1000 + 0.5));

	 video_display(is);

	 if (++is->pictq_rindex == VIDEO_PICTURE_QUEUE_SIZE) {

	 is->pictq_rindex = 0;

	 }

	 SDL_LockMutex(is->pictq_mutex);

	 is->pictq_size--;

	 SDL_CondSignal(is->pictq_cond);

	 SDL_UnlockMutex(is->pictq_mutex);

	 }

	上述代码涉及不少变量，核心上下文（FFmpegPlayerCtx）中涉及同步的变量如下：

	// for sync

	double audio_clock = 0.0;

	double frame_timer = 0.0;

	double frame_last_pts = 0.0;

	double frame_last_delay = 0.0;

	double video_clock = 0.0;

	宏如下：

	#define AV_SYNC_THRESHOLD 0.01

	#define AV_NOSYNC_THRESHOLD 10.0

	上述代码的主要目的是计算下一帧的延时，并显示当前帧。

	假如视频帧率是25，我们分析以下3种情况：

	・音视频一切正常，delay一直是0.04秒（delay = vp->pts - is->frame_last_pts;），下一帧延时0.04秒继续显示即可。

	・如果视频比音频慢（diff < 0），计算sync_threshold，对于25帧的视频，sync_threshold为0.04秒，如果延时超过1帧，则delay=0即可，相当于丢帧了。

	if (diff <= -sync_threshold) {

	 delay = 0;

	} else if (diff >= sync_threshold) {

	 delay = 2 * delay;

	}

	・如果视频比音频快（diff > 0），如果快了超过1帧的时间0.04秒，则直接增大2倍延时。这个策略未必是最完美的，但是从整体播放效果来看，还是可以接受的。

	然后计算实际延时。

	is->frame_timer += delay;

	actual_delay = is->frame_timer - (av_gettime() / 1000000.0);

	if (actual_delay < 0.010) {

	 actual_delay = 0.010;

	}

	通过计算视频累计的时间和系统时间的差值，让实际延时一直大于或者等于0.01秒，这个值是可以调整的。

14.4.7 音视频扩展

	本播放器主要实现了基础的播放、同步和seek。作为一个生产环境的播放器，考虑的因素可能会更多一些，同样也有很多新特性。

	・精确seek：在精确的时间点上seek，而不仅仅在关键帧上。

	・视频滤镜：可以通过FFmpeg内置视频滤镜（vf），或者通过图像处理直接给解码后的图像加特效，如增强图像、降低噪点等。

	・特效处理：如AI人脸识别、动作识别、美颜等。

	・音频处理：可以通过FFmpeg内置音频滤镜（af），或者通过特定的音频处理库来处理音频，如音频增强、噪声抑制等。

	感兴趣的读者可以尝试加一些特殊的滤镜，来增强对播放器开发的理解。

14.5 小结

	本章通过分析SDL在播放器开发中的使用、音视频解码、音视频同步等相关知识，带领读者一步一步完成了一个简易的播放器。播放器的实际播放效果如图14-11所示，同步和seek均支持得很好。

	[image:]

	图14-11 播放器显示

	在播放器开发中，如何播放和展示视频当然是最重要的内容，但比较难的内容却是音视频同步。读者可以根据本书附带的demo实例，加深对FFmpeg API和播放器开发的理解。

第15章

FFmpeg在RTC中的实例解析

	在大部分多媒体应用中，帧率和带宽通常是比较固定的。但在RTC应用中，由于网络条件的不确定性，帧率和带宽甚至视频的分辨率等都可能是实时变化的，所以编解码器也要能实时地适应这些变化。此外，在RTC中还涉及拥塞控制、丢包处理、关键帧请求等问题，在实际使用中就更复杂了。下面我们结合一些开源软件中的实例，分析一下RTC中的FFmpeg应用，以帮助读者更好地了解FFmpeg在实际环境中的用法。FFmpeg包罗万象、功能强大，但在实际的应用中可能不会用到FFmpeg的所有功能。结合这些实际应用，大家可以看到在不同的应用场景中对FFmpeg功能的取舍和考量。

15.1 RTC的特点

	我们先来看一下RTC的基本概念和流媒体传输的特点。

15.1.1 什么是RTC

	RTC起源于WebRTC。WebRTC的全称是Web Real-Time Communication，即基于Web的实时通信。大家都知道，早期的互联网应用是通过浏览器看网页、进行文字聊天，或者听音乐、看视频等，但双向的音视频交互却比较困难。早期基于Web的交互式音视频尝试主要通过IE浏览器中的ActiveX插件，以及比较通用的插件技术，如Flash（有较好的跨浏览器支持）等。但由于技术以及网络条件的限制，这类应用并不普及。

	随着宽带上网的普及，在网络上传输交互式高清音视频逐渐变成现实，同时，谷歌的Chrome浏览器也占有越来越多的份额，很快超越FireFox，打破了IE浏览器一家独大的局面。谷歌牵头做了WebRTC，并首先在自己的浏览器中进行实验。WebRTC直接将音视频双向互动能力内置于浏览器中，而不需要各种插件，不仅简化了应用，还提高了安全性，使得WebRTC迅速普及。

	实际上WebRTC提供了在浏览器中使用JavaScript API来访问本地音频和视频设备的手段，以及点对点流媒体实时传输等功能，时至今日，大部分浏览器（Chrome、FireFox、Safari、Microsoft Edge、Opera等）都已经支持WebRTC，也包括一些移动端浏览器。

	当然，移动端浏览器对WebRTC的支持尚不够好，这当然有很多原因，但更多是由移动端应用的特殊性所决定的。实际上，WebRTC最初的设计可能根本就没有考虑移动端。但从第一代iPhone开始，移动设备及移动应用迅速发展起来。而Chrome及WebRTC都是开源的，很多人就直接将代码移植到移动端，做成各种各样的App和SDK。由于独立的App脱离了Web，因而没有Web的WebRTC就直接被称为RTC，通俗来讲RTC就是双向实时音视频通信。

15.1.2 RTC媒体传输

	WebRTC只是媒体层的标准，没有规定信令。实际上，双向通信的建立和释放是需要信令支持的。那什么是媒体、信令呢？简单来讲，双向通信实时互动所传输的音视频就是媒体，而跟谁通信、怎么通信就是信令。WebRTC没有规定信令的做法有好处也有缺点。好处是考虑到现有的各种通信场景间可能已经有了消息收发机制，它可以承载信令，这样信令没有限制，大家可以自由发挥，各显其能；当然缺点就是大家各自为政，互联互通比较困难。不过，互联互通更大的问题可能不是技术上的（考虑一下微信、钉钉、飞书间是否可以互通），但这些都已经超出了本书讨论的范围，所以，我们在此抛开信令，只谈媒体。

	WebRTC中使用的很多技术其实在十几甚至几十年前就有了。谷歌收购了很多公司（比较有代表性的就是GIPS和On2），它把这些公司的技术跟自家在gTalk中的一些技术相结合，就推出了WebRTC。当然，后期基于WebRTC的实践又有很多优化和改进。简单来说，这些技术如下：

	・音视频编解码技术

	・流媒体传输技术

	・安全加密技术

	・回声消除、降噪等技术

	・NAT穿透技术

	・网络拥塞控制、丢包补偿等技术

	实际上，在浏览器中完成一个简单的WebRTC通信主要使用两个组件和API：GetUserMedia()和PeerConnection。前者用于打开设备的麦克风和摄像头进行音视频采集，后者用于建立点对点网络连接，从而进行媒体传输。

	GetUserMedia()函数返回一个SDP。SDP的全称是Session Description Protocol，即会话描述协议，它其实就是一个文本字符串。下面是笔者在Chrome浏览器中抓到的一个SDP（非常长，篇幅所限，仅保留其中重要的部分，括号里的内容为作者注释）。

	v=0 （v即version，版本号）

	a=group:BUNDLE 0 1 （a即attribute，BUNDLE可以将音视频合到一个RTP流上传输）

	m=audio 56202 UDP/TLS/RTP/SAVPF 111 63 103 104 9 0 8 106 105 13 110 112 113 126

	（m即media媒体，audio是音频，56202是端口，采用UDP传输，后面的数字是音频编码的类型，详见后文）

	a=rtcp:9 IN IP4 0.0.0.0 （RTCP是RTP的姊妹协议，详见后文）

	a=candidate:682017941 1 udp 2122260223 192.168.7.8 56202 typ host generation 0 network-id 1 network-cost 10（candidate是ICE媒体候选IP）

	a=candidate:1713715301 1 tcp 1518280447 192.168.7.8 9 typ host tcptype active generation 0 network-id 1 network-cost 10

	a=mid:0 （媒体ID）

	a=sendrecv （sendrecv是双向收发，其他如sendonly是单发，recvonly是单收等）

	a=rtpmap:111 opus/48000/2（这个rtpmap是映射表，111与上面m=audio行对应，对于这个对应关系，每个会话可能不一样）

	a=rtcp-fb:111 transport-cc（RTCP反馈，用于拥塞控制）

	a=fmtp:111 minptime=10;useinbandfec=1;x-google-max-bitrate=2048;x-google-min-bitrate=1024;x-google-start-bitrate=1024; stereo=1; sprop-stereo=1

	（码率范围，x-google代表只在Chrome浏览器中有效）

	（此处省略很多行。理论上m=audio中的编码类型都会有一行对应的）

	m=video 49409 UDP/TLS/RTP/SAVPF 96 97 98 99 100 101 102 121 127 120 125 107 108 109 35 36 124 119 123 118 114 115 116（m=video是视频，其他含义与音频类似）

	b=AS:2048 （最大带宽，这里是2M）

	a=candidate:682017941 1 udp 2122260223 192.168.7.8 49409 typ host generation 0 network-id 1 network-cost 10

	a=candidate:1713715301 1 tcp 1518280447 192.168.7.8 9 typ host tcptype active generation 0 network-id 1 network-cost 10

	（视频传输候选IP）

	a=mid:1 （媒体ID）

	a=sendrecv

	a=rtcp-mux (表示可以在与RTP相同的媒体端口上传RTCP消息)

	a=rtcp-rsize

	a=rtpmap:96 VP8/90000 （Chrome视频默认使用VP8编码，96对应m=video行上的数字）

	a=rtcp-fb:96 goog-remb （带宽控制机制）

	a=rtcp-fb:96 transport-cc （拥塞控制）

	a=rtcp-fb:96 ccm fir （fir即Fresh Intra Request，请求一个新的关键帧）

	a=rtcp-fb:96 nack （丢包重传）

	a=rtcp-fb:96 nack pli （丢包重传和丢包指示）

	a=rtpmap:98 VP9/90000 （VP9，在此省略了下面的参数）

	a=rtpmap:102 H264/90000 （H264，下面是相关的参数）

	a=fmtp:102 level-asymmetry-allowed=1;packetization-mode=1;profile-level-id=42001f;x-google-max-bitrate=2048;x-google-min-bitrate=1024;x-google-start-bitrate=1024

	a=rtpmap:127 H264/90000

	a=fmtp:127 level-asymmetry-allowed=1;packetization-mode=0;profile-level-id=42001f;x-google-max-bitrate=2048;x-google-min-bitrate=1024;x-google-start-bitrate=1024

	a=rtpmap:125 H264/90000

	a=rtpmap:108 H264/90000

	a=rtpmap:35 AV1/90000

	如果两个人用浏览器进行视频通信，那么，他们就分别调用GetUserMedia()以获取自己的SDP，然后通过信令交换SDP，也就是说各自知道自己的SDP和对方的SDP了。前面说了，SDP的交换没有固定的标准，可以使用任何方式交换（如通过HTTP或Websocket等，甚至可以打印到纸上递给对方看）。彼此有了对方的SDP后，就可以建立PeerConnection了。由于SDP中有对方的媒体信息和网络地址，因而PeerConnection完全知道该怎么做。
当然B也可以选择支持多种编码，那么双方必须都准备好对多种编码的收发支持，用起来要复杂得多。
	当然，在实际应用中，媒体有个协商的过程。协商机制很简单，叫做Offer/Answer。比如A呼叫B，A的SDP到达B以后，A的SDP就是一个Offer（提供者），而B根据A的SDP中描述的媒体信息，选择它支持的媒体编解码进行应答（Answer），产生一个应答SDP。比如上述SDP中，A支持VP8、H264、AV1视频编码，B决定使用VP8，则可以在应答的SDP中只包含VP8
	 [image: 当然B也可以选择支持多种编码，那么双方必须都准备好对多种编码的收发支持，用起来要复杂得多。]。

	接下来是UDP的网络连接和握手。由于彼此知道对方的候选IP（本例中只有本地IP，如果启用了STUN、TURN等，服务候选IP中还会有公网IP等），因而都可以往对方的IP地址和端口上发包，直至握手成功。在比较复杂的网络情况下（比如穿越多层NAT），握手时间可能比较长，也可能不成功，但这不是我们的重点，因此也就不展开说明了。我们可以简单地认为A与B建立了一个点对点的UDP的传输通道。这个握手过程称为交互式连接建立（Interactive Connection Establishment，ICE）。

	一般来说，音视频通道要分别进行握手，建立独立的传输通道。但ICE是比较费劲的操作，通过将“a=group:BUNDLE 0 1”和“a=msid: 0”以及“a=msid: 1”进行配合，可以把音频和视频放在同一个RTP端口上传输。
实际的标准比这里说得要复杂得多。这个Marker位主要是用于提示视频解码器一帧结束，以方便进行缓存组包等。但标准里又说解码器在某些情况下必须不能依赖该特性，详见https://www.rfc-editor.org/rfc/rfc6184中的5.1节。
	RTP的全称是Real-Time Protocol，即实时传输协议。它一般是基于UDP的，常用的RTP包头有12字节（也可以根据需要扩展），包含媒体类型（Payload Type，PT）、序号（Seq）、时间戳等。PT对应SDP中m=audio或m=video行末尾的数字，取值范围是0～127，如在上述SDP中，111代表opus、96代表VP8。小于96的值是有固定含义的，如0代表PCMU、8代表PCMA、34代表H263等。由于opus、VP8、H264等编码标准出现得比较晚，无法使用小于96的数字，它们所用的PT值只能在大于或等于96的区间内选，称为动态PT。所以，它们需要与SDP中的a=fmtp行配合才能知道具体的含义。序号比较容易理解，它占2字节，取值范围为0～65535，在相邻的两个包中，后包比前包大1（除非到了65535，发生归零情况）。通过它可以检查丢包或乱序。在视频流中，当一帧视频画面编码出来的数据比较长（超过MTU，如1500字节）时，会发生分包（即分到多个RTP包中传输），分包时同一帧视频的时间戳是一样的。时间戳占4字节，是一个无符号整数。除此之外，RTP头域中还有一个m（Marker）位，在音频中，m=1表示音频流重置（如发生音源切换、时间戳变化等）；视频中，如果发生分包时，同一帧中最后一个分包的m=1，也就是说下一个包的时间戳将发生变化
	 [image: 实际的标准比这里说得要复杂得多。这个Marker位主要是用于提示视频解码器一帧结束，以方便进行缓存组包等。但标准里又说解码器在某些情况下必须不能依赖该特性，详见https://www.rfc-editor.org/rfc/rfc6184中的5.1节。]。

	WebRTC标准规定RTP传输必须是加密的，加密的RTP被称为sRTP。如同大家熟知的HTTPS协议底层是TLS（Transport Layer Security）一样，基于UDP的TLS被称为DTLS（Datagram Transport Layer Security）。因而，PeerConnection建立RTP连接后还需要进行DTLS握手，之后媒体传输通道才算真正打通。不过，加密只是针对RTP包的数据（Payload）部分而言，对RTP头是不加密的。

	RTCP是RTP的姊妹协议，全称是Real-Time Control Protocol，即实时控制协议，用于控制RTP传输。一般来说，RTCP需要独立的端口号，通常RTP使用偶数端口，RTCP使用与之相邻的下一个奇数端口。但是在使用rtcp-mux的情况下，RTCP也可以与RTP在同一个端口上传输（这样可以节省端口及ICE开销）。

	NACK（Negtive Acknowlegement，负反馈）常用于丢包重传。比如在视频应用中，接收端收到Seq为“1，3”号的包，“2”号包丢失了，接收端就可以通过RTCP给发送端发一个NACK消息，让发送端把“2”号包重发一下。但是当丢包个数太多时，全部重传就比较慢，也不实用，这时候接收端可以发一个FIR消息，让发送端直接产生一个关键帧发过来。
所谓前向就是预防性地多发一些包或在现有包中多包含一些冗余信息，以便在接收方有丢包时不需要重发就能通过现有的包计算出丢失的包中的内容。与之相对应，前面讲过的NACK属于后向纠错。
	当然，实际的情况比这个更复杂，丢包可能是因为带宽不够，重发关键帧势必会增加带宽占用，过于频繁的关键帧请求也会增加码率，这样就得降低帧率或分辨率等，以便降低码率以减小丢包概率，总之鱼与熊掌不可兼得。而这些就涉及对当前带宽评估及对未来可用带宽的预测，就更为复杂了。WebRTC使用trasport-cc做拥塞控制，也使用ulpfec及FlexFEC前向纠错机制
	 [image: 所谓前向就是预防性地多发一些包或在现有包中多包含一些冗余信息，以便在接收方有丢包时不需要重发就能通过现有的包计算出丢失的包中的内容。与之相对应，前面讲过的NACK属于后向纠错。]，这些内容也是靠RTCP控制的，在上面的SDP中也有所体现。不过，这些机制都需要对前后一段时间内的包进行统计，更加复杂，也超出了本书的范围，就不多讨论了。

	上面讨论的内容基本上能够帮助读者理解本章剩余的内容。接下来，看一看FFmpeg的一些实际应用。

15.2 FFmpeg在Chromium中的应用

	Chrome是由Google开发的免费网页浏览器，其相应的开放源代码计划名为Chromium。可以简单理解为Chrome是Google公司的产品，而Chromium是一个开源的社区版本，前者主要包含Google公司的品牌配色方案、Logo、API Key、自动更新等。在下面的介绍中，我们将忽略二者的不同。

	作为一家搜索引擎公司，Google一开始并不做浏览器。第一个Chrome测试版本发布于2008年9月，并同时发布了开源版本的Chromium。Chrome一经发布，就占了1%的浏览器份额，虽然后来有回落，但很快就超过1%并稳步增长。据StatCounter统计，截至2022年12月初，Google Chrome在全球桌面浏览器中有65.84%的占有率。作为搜索引擎公司，Google本来就有大量的互联网资料，借助Chrome，Google更是可以方便地获取大量的一手资料。同时，Google也在自家的浏览器中试验各种新的协议和功能，包括SPDY（后来演化为HTTP/2）和WebRTC。受益于Google强大的开发能力，Chrome（Chromium）的版本迭代非常快，目前主版本号已超过100，很多年前就被“江湖人”称为“版本帝”。
IPC：Inter-Process Communication，进程间通信。Chromium中的IPC叫做mojo。当然，这种方案也不是万能的。在写作本书时，笔者就遇到Chrome（Version 97.0.4692.99）在访问Google Drive网盘路径时（比如保存文件时）被卡住（新的Google Drive在无法访问Google服务器时会长时间卡住）而导致整体崩溃的情况，可能这部分代码是在主线程中的。
	Chromium使用开源的Apple WebKit HTML渲染引擎，并开发出被称为“V8”的高性能JavaScript引擎。Chromium代码采用多进程多线程的架构，主线程用于窗口显示和综合处理，而系统的每一个Tab页都由一个独立的线程处理，进程间有相应的IPC通信机制
	 [image: IPC：Inter-Process Communication，进程间通信。Chromium中的IPC叫做mojo。]。这种架构最大的好处是当一个Tab页“卡住”或崩溃时，不影响其他Tab页的显示和使用
	 [image: 当然，这种方案也不是万能的。在写作本书时，笔者就遇到Chrome（Version 97.0.4692.99）在访问Google Drive网盘路径时（比如保存文件时）被卡住（新的Google Drive在无法访问Google服务器时会长时间卡住）而导致整体崩溃的情况，可能这部分代码是在主线程中的。]。世界是复杂的，浏览器的世界更是如此，即使Google工程师写出来的代码也不能完全避免崩溃。比较经典的Chrome进程崩溃页面如图15-1所示，但关闭该Tab页后不影响后续使用。

	[image:]

	图15-1 Chrome进程崩溃页面

15.2.1 FFmpeg在Chromium WebRTC中的应用

实际上，Chromium的代码仓库仅供参考，Google有完整（且复杂）的编译工具链用于编译Chromium，而且Google内部和社区的编译工具链是不一样的。如何编译Chromium超出本书范围，本章仅解析相关的源代码，感兴趣的读者可以参考Chromium项目网站上的相关说明。
	如同FFmpeg，Chromium也是一个超级大的项目
	 [image: 实际上，Chromium的代码仓库仅供参考，Google有完整（且复杂）的编译工具链用于编译Chromium，而且Google内部和社区的编译工具链是不一样的。如何编译Chromium超出本书范围，本章仅解析相关的源代码，感兴趣的读者可以参考Chromium项目网站上的相关说明。]，使用了大量的第三方组件和库（有些组件是Google自己开发的）。WebRTC相关代码在以下独立的代码仓库中。
本章中的WebRTC代码基于该仓库main分支2022年2月5日版本Commit：6cd64b6b。
	・主代码仓库
	 [image: 本章中的WebRTC代码基于该仓库main分支2022年2月5日版本Commit：6cd64b6b。]：https://webrtc.googlesource.com。

	・在Chromium中引用的WebRTC代码库：https://chromium.googlesource.com/external/ webrtc。

	Chromium使用自己维护的FFmpeg版本，在编译时会下载到主代码树的src/third_party/ ffmpeg目录中。在WebRTC中，主要使用FFmpeg进行H264视频解码。WebRTC使用C++编写，实现代码在modules/video_coding/codecs/h264/h264_decoder_impl.cc文件中。为了方便阅读，这里给源文件加了行号。同时为了节约篇幅，删掉了一部分不重要的代码和空行。

	 2 /* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. */

	 14 // WebRTC中的H264支持可选编译，只有需要时才编译，由以下宏控制

	 15 #ifdef WEBRTC_USE_H264

	 17 #include "modules/video_coding/codecs/h264/h264_decoder_impl.h"

	 19 #include <algorithm>

	 20 #include <limits>

	 21 #include <memory>

	 23 extern "C" { // 在C++中调用C的API的标准方法，因为FFmpeg是用C写的

	 24 #include "third_party/ffmpeg/libavcodec/avcodec.h"

	 25 #include "third_party/ffmpeg/libavformat/avformat.h"

	 26 #include "third_party/ffmpeg/libavutil/imgutils.h"

	 27 } // extern "C"

	 28 // 下面头文件中基本都是结构体定义，没有API函数，故不需要放在extern "C"中

	 29 #include "api/video/color_space.h"

	 30 #include "api/video/i010_buffer.h"

	 31 #include "api/video/i420_buffer.h"

	 32 #include "common_video/include/video_frame_buffer.h"

	 33 #include "modules/video_coding/codecs/h264/h264_color_space.h"

	 34 #include "rtc_base/checks.h"

	 35 #include "rtc_base/logging.h"

	 36 #include "system_wrappers/include/field_trial.h"

	 37 #include "system_wrappers/include/metrics.h"

	 38 #include "third_party/libyuv/include/libyuv/convert.h"

	 39

	 40 namespace webrtc { // Chrome中webrtc使用专门的命名空间

	 42 namespace {

	 44 const AVPixelFormat kPixelFormatDefault = AV_PIX_FMT_YUV420P; // Chrome中使用的视频图像格式

	 45 const AVPixelFormat kPixelFormatFullRange = AV_PIX_FMT_YUVJ420P; // 完整色彩空间

	 46 const size_t kYPlaneIndex = 0; // YUV平面在内存中的数组索引分别对应0、1、2

	 47 const size_t kUPlaneIndex = 1;

	 48 const size_t kVPlaneIndex = 2;

	 50 // 用于Chrome中调试页面的直方图常量，需要与Chrome中的对应起来，不得更改

	 51 enum H264DecoderImplEvent {

	 52 kH264DecoderEventInit = 0,

	 53 kH264DecoderEventError = 1,

	 54 kH264DecoderEventMax = 16,

	 55 };

	 57 struct ScopedPtrAVFreePacket { // 定义一个有作用域的安全的FFmpeg AVPacket Free结构

	 58 void operator()(AVPacket* packet) { av_packet_free(&packet); }

	 59 };

	 60 typedef std::unique_ptr<AVPacket, ScopedPtrAVFreePacket> ScopedAVPacket;

	 61 // 定义一个有作用域的安全的FFmpeg AVPacket结构

	 62 ScopedAVPacket MakeScopedAVPacket() {

	 63 ScopedAVPacket packet(av_packet_alloc());

	 64 return packet;

	 65 }

	 67 } // namespace

	 68 // Impl是Implementation的缩写，即H264解码器在WebRTC中的具体实现类，该函数用于申请一个AVFrame缓冲区

	 69 int H264DecoderImpl::AVGetBuffer2(AVCodecContext* context,

	 70 AVFrame* av_frame,

	 71 int flags) {

	 72 // 在Configure阶段实现的

	 73 H264DecoderImpl* decoder = static_cast<H264DecoderImpl*>(context->opaque);

	 74 // 该DCHECK的值是在Configure阶段实现的

	 75 RTC_DCHECK(decoder); // 非空检查

	 76 // 检查该codec是否允许使用WebRTC自己申请的缓冲区，而不是使用FFmpeg内部缓冲区

	 77 RTC_DCHECK(context->codec->capabilities | AV_CODEC_CAP_DR1);

	 79 // 检查Chrome支持的像素色彩范围

	 80 RTC_CHECK(context->pix_fmt == kPixelFormatDefault ||

	 81 context->pix_fmt == kPixelFormatFullRange);

	 83 // av_frame->width与av_frame->height是由FFmpeg设置的，这是图像实际的分辨率

	 84 // 当发生reordering（解码顺序不一致）时，可能与context->width和context->coded_width有所不同

	 86 int width = av_frame->width;

	 87 int height = av_frame->height;

	 88 // 如果使用的话，解码器会将图像缩为原来的1/2^(lowres)，在此并未使用

	 89 // 详见WebRTC中的lowres相关说明。

	 90 RTC_CHECK_EQ(context->lowres, 0); // Equal，相等检查

	 91 // 将width和height调整为解码器可以接受的值，否则，FFmpeg可能会发生缓冲区溢出

	 92 // 如果修改后，width和（或）height比实际的图像要大，则解码后的图像必须从左上角剪裁

	 94 // 以免看到实际图像右侧及下侧本不应该看到的部分

	 96 avcodec_align_dimensions(context, &width, &height);

	 98 RTC_CHECK_GE(width, 0); // Great Than，大于检查，即width和height必须大于0

	 99 RTC_CHECK_GE(height, 0);

	 // 调用FFmpeg函数检查图像尺寸是否合法

	100 int ret = av_image_check_size(static_cast<unsigned int>(width),

	101 static_cast<unsigned int>(height), 0, nullptr);

	102 if (ret < 0) { // 错误处理

	103 RTC_LOG(LS_ERROR) << "Invalid picture size " << width << "x" << height;

	104 decoder->ReportError();

	105 return ret;

	106 }

	107

	108 // WebRTC的视频帧存在frame_buffer中。av_frame是FFmpeg中的视频图像结构体

	109 // 为了避免内存拷贝，av_frame中的数据缓冲区指针将会直接指向WebRTC中的frame_buffer

	111 // 根据http://crbug.com/390941，FFmpeg期望新申请的数据缓冲区全部置为0

	115 rtc::scoped_refptr<I420Buffer> frame_buffer =

	116 decoder->ffmpeg_buffer_pool_.CreateI420Buffer(width, height);

	118 int y_size = width * height; // Y平台的大小

	119 int uv_size = frame_buffer->ChromaWidth() * frame_buffer->ChromaHeight();// UV平面的大小

	120 // 需要一个连续的缓冲区，以便简化代码实现

	121 RTC_DCHECK_EQ(frame_buffer->DataU(), frame_buffer->DataY() + y_size);

	122 RTC_DCHECK_EQ(frame_buffer->DataV(), frame_buffer->DataU() + uv_size);

	123 int total_size = y_size + 2 * uv_size; // 全部的YUV数据缓冲区大小

	125 av_frame->format = context->pix_fmt; // 设置av_frame的像素格式

	126 av_frame->reordered_opaque = context->reordered_opaque; // 与图像解码顺序重排序相关

	128 // 设置av_frame的数据缓冲区，指向WebRTC申请的内存区域

	129 av_frame->data[kYPlaneIndex] = frame_buffer->MutableDataY();

	130 av_frame->linesize[kYPlaneIndex] = frame_buffer->StrideY();

	131 av_frame->data[kUPlaneIndex] = frame_buffer->MutableDataU();

	132 av_frame->linesize[kUPlaneIndex] = frame_buffer->StrideU();

	133 av_frame->data[kVPlaneIndex] = frame_buffer->MutableDataV();

	134 av_frame->linesize[kVPlaneIndex] = frame_buffer->StrideV();

	135 RTC_DCHECK_EQ(av_frame->extended_data, av_frame->data);

	136

	137 // 创建一个VideoFrame对象，保存到缓冲区的指针引用

	140 av_frame->buf[0] = av_buffer_create(

	141 av_frame->data[kYPlaneIndex], total_size, AVFreeBuffer2,

	142 static_cast<void*>(

	143 std::make_unique<VideoFrame>(VideoFrame::Builder()

	144 .set_video_frame_buffer(frame_buffer)

	145 .set_rotation(kVideoRotation_0)

	146 .set_timestamp_us(0)

	147 .build())

	148 .release()),

	149 0);

	150 RTC_CHECK(av_frame->buf[0]);

	151 return 0;

	152 }

	153

	154 void H264DecoderImpl::AVFreeBuffer2(void* opaque, uint8_t* data) {

	155 // video_frame使用的内存缓冲区会被内存池回收，但video_frame本身占很少内存而不会被自动回收

	158 VideoFrame* video_frame = static_cast<VideoFrame*>(opaque);

	159 delete video_frame;

	160 }

	161

	162 H264DecoderImpl::H264DecoderImpl() // 构造函数

	163 : ffmpeg_buffer_pool_(true),

	164 decoded_image_callback_(nullptr),

	165 has_reported_init_(false),

	166 has_reported_error_(false),

	167 preferred_output_format_(field_trial::IsEnabled("WebRTC-NV12Decode")

	168 ? VideoFrameBuffer::Type::kNV12

	169 : VideoFrameBuffer::Type::kI420) {}

	171 H264DecoderImpl::~H264DecoderImpl() { // 析构函数

	172 Release(); // 释放内存

	173 }

	175 bool H264DecoderImpl::Configure(const Settings& settings) { // 配置

	182 // 先调用一次Release，这在重新初始化时是必要的

	183 int32_t ret = Release();

	188 RTC_DCHECK(!av_context_); // 检查av_context_必须为空

	191 av_context_.reset(avcodec_alloc_context3(nullptr)); // 初始化AVCodecContext

	193 av_context_->codec_type = AVMEDIA_TYPE_VIDEO; // 设为视频

	194 av_context_->codec_id = AV_CODEC_ID_H264; // 设为H264

	195 const RenderResolution& resolution = settings.max_render_resolution(); // 分辨率

	196 if (resolution.Valid()) {

	197 av_context_->coded_width = resolution.Width();

	198 av_context_->coded_height = resolution.Height();

	199 }

	200 av_context_->pix_fmt = kPixelFormatDefault;

	201 av_context_->extradata = nullptr;

	202 av_context_->extradata_size = 0;

	206 av_context_->thread_count = 1; // 仅使用一个解码线程（多线程解码在有多个解码器时可能未完全测试稳定）

	207 av_context_->thread_type = FF_THREAD_SLICE;

	208 // 告诉FFmpeg使用WebRTC版本的函数来申请内存而不使用FFmpeg内置的函数，该内存将用于存放解码后的图像数据

	209 // 该函数申请的内存可以由WebRTC自己管理，可以避免内存拷贝，提高效率

	210 av_context_->get_buffer2 = AVGetBuffer2;

	213 av_context_->opaque = this; // 调用时将this指针传入AVGetBuffer2函数，以便保持关联关系

	215 const AVCodec* codec = avcodec_find_decoder(av_context_->codec_id); // 查找FFmpeg的codec

	216 if (!codec) { /* 错误处理，略 */}

	224 int res = avcodec_open2(av_context_.get(), codec, nullptr); // 打开FFmpeg解码器

	225 if (res < 0) { /* 错误处理，略 */ }

	232 av_frame_.reset(av_frame_alloc()); // 申请AVFrame内存，并置0

	234 if (absl::optional<int> buffer_pool_size = settings.buffer_pool_size()) {

	235 if (!ffmpeg_buffer_pool_.Resize(*buffer_pool_size) ||

	236 !output_buffer_pool_.Resize(*buffer_pool_size)) {

	237 return false;

	238 }

	239 }

	240 return true;

	241 }

	243 int32_t H264DecoderImpl::Release() { // 释放内存

	244 av_context_.reset();

	245 av_frame_.reset();

	246 return WEBRTC_VIDEO_CODEC_OK;

	247 }

	249 int32_t H264DecoderImpl::RegisterDecodeCompleteCallback(// 注册回调函数，当解码完成时回调

	250 DecodedImageCallback* callback) {

	251 decoded_image_callback_ = callback;

	252 return WEBRTC_VIDEO_CODEC_OK;

	253 }

	254 // 解码，输入参数input_image是WebRTC中的图像格式

	255 int32_t H264DecoderImpl::Decode(const EncodedImage& input_image,

	256 bool /*missing_frames*/,

	257 int64_t /*render_time_ms*/) {

	258 // ... 此处跳过一些合法性检查 ...

	274 ScopedAVPacket packet = MakeScopedAVPacket(); // 申请一个FFmpeg AVPacket结构体指针

	280 // 直接将packet->data指向WebRTC中的图像内存

	281 packet->data = const_cast<uint8_t*>(input_image.data());

	287 packet->size = static_cast<int>(input_image.size());

	288 int64_t frame_timestamp_us = input_image.ntp_time_ms_ * 1000; // 将ms转换成μs

	289 av_context_->reordered_opaque = frame_timestamp_us; // 如果发生解码顺序重排，传入这个时间戳

	290 // 将待解码的图像数据发送给解码器，这是FFmpeg中新的解码函数

	291 int result = avcodec_send_packet(av_context_.get(), packet.get());

	298 // 检查是否有解码后的数据（与上一行调用中的图像可能不是同一帧，比如有B帧的情况），放入av_frame中

	299 result = avcodec_receive_frame(av_context_.get(), av_frame_.get());

	306 // 在此，我们不使用解码重排序（不使用B帧），因而解码后的时间戳必然与传入的时间戳是一致的

	308 RTC_DCHECK_EQ(av_frame_->reordered_opaque, frame_timestamp_us);

	310 // 暂时不知道如何直接从FFmpeg函数中获取QP，这里需要解析一下H264码流以便获取QP

	311 h264_bitstream_parser_.ParseBitstream(input_image);

	312 absl::optional<int> qp = h264_bitstream_parser_.GetLastSliceQp();

	314 // 将解码后的数据转换成WebRTC中的video_frame对象，这是WebRTC中的图像格式

	315 VideoFrame* input_frame =

	316 static_cast<VideoFrame*>(av_buffer_get_opaque(av_frame_->buf[0]));

	317 RTC_DCHECK(input_frame);

	318 rtc::scoped_refptr<VideoFrameBuffer> frame_buffer =

	319 input_frame->video_frame_buffer();

	320 const webrtc::I420BufferInterface* i420_buffer =

	321 frame_buffer->GetI420();

	322 // 在必要的情况下，FFmpeg解码后对图像进行剪裁时会移动YUV平面的指针并修改图像的width/height

	323 // 确保剪裁后的缓冲区不会超出所申请的内存空间范围

	325 RTC_DCHECK_LE(av_frame_->width, i420_buffer->width());

	326 RTC_DCHECK_LE(av_frame_->height, i420_buffer->height());

	327 RTC_DCHECK_GE(av_frame_->data[kYPlaneIndex], i420_buffer->DataY());

	328 RTC_DCHECK_LE(

	329 av_frame_->data[kYPlaneIndex] +

	330 av_frame_->linesize[kYPlaneIndex] * av_frame_->height,

	331 i420_buffer->DataY() + i420_buffer->StrideY() * i420_buffer->height());

	332 RTC_DCHECK_GE(av_frame_->data[kUPlaneIndex], i420_buffer->DataU());

	333 RTC_DCHECK_LE(av_frame_->data[kUPlaneIndex] +

	334 av_frame_->linesize[kUPlaneIndex] * av_frame_->height / 2,

	335 i420_buffer->DataU() +

	336 i420_buffer->StrideU() * i420_buffer->height() / 2);

	337 RTC_DCHECK_GE(av_frame_->data[kVPlaneIndex], i420_buffer->DataV());

	338 RTC_DCHECK_LE(av_frame_->data[kVPlaneIndex] +

	339 av_frame_->linesize[kVPlaneIndex] * av_frame_->height / 2,

	340 i420_buffer->DataV() +

	341 i420_buffer->StrideV() * i420_buffer->height() / 2);

	342 // 剪裁后的缓冲区

	343 rtc::scoped_refptr<webrtc::VideoFrameBuffer> cropped_buffer = WrapI420Buffer(

	344 av_frame_->width, av_frame_->height, av_frame_->data[kYPlaneIndex],

	345 av_frame_->linesize[kYPlaneIndex], av_frame_->data[kUPlaneIndex],

	346 av_frame_->linesize[kUPlaneIndex], av_frame_->data[kVPlaneIndex],

	347 av_frame_->linesize[kVPlaneIndex],

	348 // To keep reference alive.

	349 [frame_buffer] {});

	350 // 如果Chrome希望输出NV12格式（在Android中常用），则从I420转换为NV12，这里调用libyuv中的函数

	351 if (preferred_output_format_ == VideoFrameBuffer::Type::kNV12) {

	352 const I420BufferInterface* cropped_i420 = cropped_buffer->GetI420();

	353 auto nv12_buffer = output_buffer_pool_.CreateNV12Buffer(

	354 cropped_i420->width(), cropped_i420->height());

	355 libyuv::I420ToNV12(cropped_i420->DataY(), cropped_i420->StrideY(),

	356 cropped_i420->DataU(), cropped_i420->StrideU(),

	357 cropped_i420->DataV(), cropped_i420->StrideV(),

	358 nv12_buffer->MutableDataY(), nv12_buffer->StrideY(),

	359 nv12_buffer->MutableDataUV(), nv12_buffer->StrideUV(),

	360 i420_buffer->width(), i420_buffer->height());

	361 cropped_buffer = nv12_buffer;

	362 }

	364 // 如果有明确指定color space，则从输入中传递到输出

	365 const ColorSpace& color_space =

	366 input_image.ColorSpace() ? *input_image.ColorSpace()

	367 : ExtractH264ColorSpace(av_context_.get());

	368 // 创建一个解码后的视频图像帧

	369 VideoFrame decoded_frame = VideoFrame::Builder()

	370 .set_video_frame_buffer(cropped_buffer)

	371 .set_timestamp_rtp(input_image.Timestamp())

	372 .set_color_space(color_space)

	373 .build();

	375 // 执行回调函数返回解码后的图像

	378 decoded_image_callback_->Decoded(decoded_frame, absl::nullopt, qp);

	380 // 解除引用，有可能会导致input_frame被自动回收（调用free函数）

	381 av_frame_unref(av_frame_.get());

	382 input_frame = nullptr;

	384 return WEBRTC_VIDEO_CODEC_OK;

	385 }

	387 const char* H264DecoderImpl::ImplementationName() const {

	388 return "FFmpeg";

	389 }

	391 bool H264DecoderImpl::IsInitialized() const { // 检查是否已初始化

	392 return av_context_ != nullptr;

	393 }

	403 void H264DecoderImpl::ReportError() { // 报错

	404 if (has_reported_error_)

	405 return;

	406 RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264DecoderImpl.Event",

	407 kH264DecoderEventError, kH264DecoderEventMax);

	408 has_reported_error_ = true;

	409 }

	411 } // namespace webrtc

	413 #endif // WEBRTC_USE_H264

	从以上代码可以看出，H264解码在WebRTC中的实现还是比较简单的。WebRTC通过向FFmpeg注入一个AVGetBuffer2函数，可以自行申请缓冲区，避免了从内存来回拷贝，既节省内存，又提高了效率。在使用I420格式时，WebRTC内部使用的图像缓冲区与FFmpeg是兼容的，这就避免了像素格式转换。
Cisco开源的H264编解码实现，参见https://github.com/cisco/openh264。
	Chromium仅使用FFmpeg的H264解码器，编码器却使用了OpenH264
	 [image: Cisco开源的H264编解码实现，参见https://github.com/cisco/openh264。]，这可能是由于许可证和版权问题。FFmpeg默认使用libx264进行H264编码，libx264使用的是GPL的许可证，且版权不明确。而在OpenH264中明确说明只要使用它们编译的二进制版本，就可以免版税。当然Google的Chrome版本可能也与Cisco有正式的使用协议。

	至于Chromium为什么没有使用OpenH264解码，主要是因为FFmpeg在Chromium中已经广泛使用了。

	当然，最新的FFmpeg其实也支持使用OpenH264作为H264编码器，但考虑到与旧版本的兼容问题，以及OpenH264的API其实也很易于使用，Chromium还是直接使用了OpenH264的API。

	除此之外，通过分析Chromium代码还可以看出，Chromium中也实现了H264码流，以及SPS、PPS的解析函数（如common_video/h264/sps_parser.cc），这些函数在处理H264码流时是必要的。虽然FFmpeg中也有相关的代码，但FFmpeg并没有对外暴露这些API。由于这些代码与FFmpeg无关，在此就不进一步解析了。

15.2.2 FFmpeg在Chromium中的其他应用

	上一小节已经提到，除了在WebRTC中，FFmpeg在Chromium中也被广泛使用。虽然本章主要是讨论RTC，但既然已经讲到Chromium，不妨简略看一下FFmpeg在Chromium中的其他应用。Chromium源代码可以从以下地址获取。

	・Chromium源代码：https://chromium.googlesource.com/chromium/src.git。

	・Chromium源代码浏览器：https://source.chromium.org/chromium/chromium/src。

	・Chromium源代码GitHub镜像：https://github.com/chromium/chromium。

	本小节的Chromium源代码基于Commit 7b7ecfe3（2022年2月6日版本）。FFmpeg相关代码位于media/ffmpeg目录。主要有以下文件：

	BUILD.gn # 编译相关的工程文件

	ffmpeg_common.cc # 通用函数

	ffmpeg_common.h # 通用函数头文件

	ffmpeg_common_unittest.cc # 单元测试

	ffmpeg_decoding_loop.cc # 解码循环

	ffmpeg_decoding_loop.h # 头文件

	ffmpeg_deleters.h # 删除

	ffmpeg_regression_tests.cc # 回归测试

	先看看ffmpeg_common.cc。代码节选如下：

	 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.

	 5 #include "media/ffmpeg/ffmpeg_common.h"

	 9 #include "base/strings/string_number_conversions.h" // Chromium自己的字符串函数

	 10 #include "base/strings/string_split.h"

	 11 #include "base/strings/string_util.h"

	 13 #include "media/base/audio_decoder_config.h" // Chromium内部的音频解码

	 14 #include "media/base/decoder_buffer.h" // Chromium内部的解码缓冲区

	 16 #include "media/base/media_util.h" // Chromium内部的媒体工具

	 17 #include "media/base/video_aspect_ratio.h" // Chromium内部的视频宽高比

	 18 #include "media/base/video_decoder_config.h" // Chromium内部的视频解码器配置

	 19 #include "media/base/video_util.h" // Chromium内部的视频工具

	 20 #include "media/formats/mp4/box_definitions.h" // Chromium内部的MP4封装工具

	 21 #include "media/media_buildflags.h" // Chromium编译相关参数

	 23 #if BUILDFLAG(USE_PROPRIETARY_CODECS) // 是否支持版权相关的编码

	 24 #include "media/formats/mp4/aac.h" // 支持AAC编码

	 25 #endif

 26

	 27 namespace media { // 媒体相关的命名空间

	 29 namespace {

	 31 EncryptionScheme GetEncryptionScheme(const AVStream* stream) {

	 32 AVDictionaryEntry* key =

	 33 av_dict_get(stream->metadata, "enc_key_id", nullptr, 0);

	 34 return key ? EncryptionScheme::kCenc : EncryptionScheme::kUnencrypted;

	 35 }

	 37 } // namespace

	 38 // FFmpeg期望所有的输入缓冲区都有正常的padding空间

	 39 AV_INPUT_BUFFER_PADDING_SIZE

	 40 // 这样可便于内存数据对齐，提高效率

	 42 static_assert(DecoderBuffer::kPaddingSize >= AV_INPUT_BUFFER_PADDING_SIZE,

	 43 "DecoderBuffer padding size does not fit ffmpeg requirement");

	 45 // 不同CPU有不同的对齐策略，要与FFmpeg中的值对应

	 47 #if defined(ARCH_CPU_ARM_FAMILY)

	 48 static const int kFFmpegBufferAddressAlignment = 16;

	 49 #else

	 50 static const int kFFmpegBufferAddressAlignment = 32;

	 51 #endif

	 53 // 确定Chromium中的数据对齐与FFmpeg中一致

	 54 static_assert(

	 55 DecoderBuffer::kAlignmentSize >= kFFmpegBufferAddressAlignment &&

	 56 DecoderBuffer::kAlignmentSize % kFFmpegBufferAddressAlignment == 0,

	 57 "DecoderBuffer alignment size does not fit ffmpeg requirement");

	 58

	 59 // 允许快速SIMD YUV转换，而且FFmpeg有时会在读写缓冲区时超界

	 60 // 详见libavcodec/utils.c代码中的video_get_buffer()

	 61 static const int kFFmpegOutputBufferPaddingSize = 16;

	 63 static_assert(VideoFrame::kFrameSizePadding >= kFFmpegOutputBufferPaddingSize,

	 64 "VideoFrame padding size does not fit ffmpeg requirement");

	 66 static_assert(

	 67 VideoFrame::kFrameAddressAlignment >= kFFmpegBufferAddressAlignment &&

	 68 VideoFrame::kFrameAddressAlignment % kFFmpegBufferAddressAlignment == 0,

	 69 "VideoFrame frame address alignment does not fit ffmpeg requirement");

	 70 // 时间基准

	 71 static const AVRational kMicrosBase = { 1, base::Time::kMicrosecondsPerSecond };

	 72 // 将Chromium时间转换为FFmpeg时间

	 73 base::TimeDelta ConvertFromTimeBase(const AVRational& time_base,

	 74 int64_t timestamp) {

	 75 int64_t microseconds = av_rescale_q(timestamp, time_base, kMicrosBase);

	 76 return base::Microseconds(microseconds);

	 77 }

	 78 // 将FFmpeg时间转换为Chromium时间

	 79 int64_t ConvertToTimeBase(const AVRational& time_base,

	 80 const base::TimeDelta& timestamp) {

	 81 return av_rescale_q(timestamp.InMicroseconds(), kMicrosBase, time_base);

	 82 }

	 83 // Chromium的Codec格式转为FFmpeg Codec格式

	 84 AudioCodec CodecIDToAudioCodec(AVCodecID codec_id) {

	 85 switch (codec_id) {

	 86 case AV_CODEC_ID_AAC:

	 87 return AudioCodec::kAAC;

	 88 #if BUILDFLAG(ENABLE_PLATFORM_AC3_EAC3_AUDIO)

	 89 case AV_CODEC_ID_AC3:

	 90 return AudioCodec::kAC3;

	 91 case AV_CODEC_ID_EAC3:

	 92 return AudioCodec::kEAC3;

	 93 #endif

	 94 case AV_CODEC_ID_MP3:

	 95 return AudioCodec::kMP3;

	 96 case AV_CODEC_ID_VORBIS:

	 97 return AudioCodec::kVorbis;

	 98 case AV_CODEC_ID_PCM_U8:

	 99 case AV_CODEC_ID_PCM_S16LE:

	100 case AV_CODEC_ID_PCM_S24LE:

	101 case AV_CODEC_ID_PCM_S32LE:

	102 case AV_CODEC_ID_PCM_F32LE:

	103 return AudioCodec::kPCM;

	... // 略

	120 case AV_CODEC_ID_OPUS:

	121 return AudioCodec::kOpus;

	122 case AV_CODEC_ID_ALAC:

	123 return AudioCodec::kALAC;

	124 #if BUILDFLAG(ENABLE_PLATFORM_MPEG_H_AUDIO)

	125 case AV_CODEC_ID_MPEGH_3D_AUDIO:

	126 return AudioCodec::kMpegHAudio;

	127 #endif

	128 default:

	129 DVLOG(1) << "Unknown audio CodecID: " << codec_id;

	130 }

	131 return AudioCodec::kUnknown;

	132 }

	133 // Chromium中的音频编码转为FFmpeg中的音频编码

	134 AVCodecID AudioCodecToCodecID(AudioCodec audio_codec,

	135 SampleFormat sample_format) {

	136 switch (audio_codec) {

	137 case AudioCodec::kAAC:

	138 return AV_CODEC_ID_AAC;

	139 case AudioCodec::kALAC:

	140 return AV_CODEC_ID_ALAC;

	141 case AudioCodec::kMP3:

	142 return AV_CODEC_ID_MP3;

	143 case AudioCodec::kPCM:

	144 switch (sample_format) {

	145 case kSampleFormatU8:

	146 return AV_CODEC_ID_PCM_U8;

	147 case kSampleFormatS16:

	148 return AV_CODEC_ID_PCM_S16LE;

	149 case kSampleFormatS24:

	150 return AV_CODEC_ID_PCM_S24LE;

	151 case kSampleFormatS32:

	152 return AV_CODEC_ID_PCM_S32LE;

	153 case kSampleFormatF32:

	154 return AV_CODEC_ID_PCM_F32LE;

	155 default:

	156 DVLOG(1) << "Unsupported sample format: " << sample_format;

	157 }

	158 break;

	... // 略

	177 case AudioCodec::kOpus:

	178 return AV_CODEC_ID_OPUS;

	179 #if BUILDFLAG(ENABLE_PLATFORM_MPEG_H_AUDIO)

	180 case AudioCodec::kMpegHAudio:

	181 return AV_CODEC_ID_MPEGH_3D_AUDIO;

	182 #endif

	183 default:

	184 DVLOG(1) << "Unknown AudioCodec: " << audio_codec;

	185 }

	186 return AV_CODEC_ID_NONE;

	187 }

	189 // 将FFmpeg视频codec id转为Chromium支持的codec id

	190 static VideoCodec CodecIDToVideoCodec(AVCodecID codec_id) {

	191 switch (codec_id) {

	192 case AV_CODEC_ID_H264:

	193 return VideoCodec::kH264;

	194 #if BUILDFLAG(ENABLE_PLATFORM_HEVC)

	195 case AV_CODEC_ID_HEVC:

	196 return VideoCodec::kHEVC;

	197 #endif

	198 case AV_CODEC_ID_THEORA:

	199 return VideoCodec::kTheora;

	200 case AV_CODEC_ID_MPEG4:

	201 return VideoCodec::kMPEG4;

	202 case AV_CODEC_ID_VP8:

	203 return VideoCodec::kVP8;

	204 case AV_CODEC_ID_VP9:

	205 return VideoCodec::kVP9;

	206 case AV_CODEC_ID_AV1:

	207 return VideoCodec::kAV1;

	208 default:

	209 DVLOG(1) << "Unknown video CodecID: " << codec_id;

	210 }

	211 return VideoCodec::kUnknown;

	212 }

	213 // 将Chromium中的视频codec id转为FFmpeg的codec id

	214 AVCodecID VideoCodecToCodecID(VideoCodec video_codec) {

	215 switch (video_codec) {

	216 case VideoCodec::kH264:

	217 return AV_CODEC_ID_H264;

	218 #if BUILDFLAG(ENABLE_PLATFORM_HEVC)

	219 case VideoCodec::kHEVC:

	220 return AV_CODEC_ID_HEVC;

	221 #endif

	222 case VideoCodec::kTheora:

	223 return AV_CODEC_ID_THEORA;

	224 case VideoCodec::kMPEG4:

	225 return AV_CODEC_ID_MPEG4;

	226 case VideoCodec::kVP8:

	227 return AV_CODEC_ID_VP8;

	228 case VideoCodec::kVP9:

	229 return AV_CODEC_ID_VP9;

	230 case VideoCodec::kAV1:

	231 return AV_CODEC_ID_AV1;

	232 default:

	233 DVLOG(1) << "Unknown VideoCodec: " << video_codec;

	234 }

	235 return AV_CODEC_ID_NONE;

	236 }

	237 // 接下来，该文件中大都是此Chrome与FFmpeg结构互转的代码，就不多罗列了，以下几行可见一斑

	238 static VideoCodecProfile ProfileIDToVideoCodecProfile(int profile) {...}

	264 static int VideoCodecProfileToProfileID(VideoCodecProfile profile) {...}

	286 SampleFormat AVSampleFormatToSampleFormat(AVSampleFormat sample_format,

	287 AVCodecID codec_id) {...}

	312 static AVSampleFormat SampleFormatToAVSampleFormat(SampleFormat sample_format) {...}

	865 } // namespace media

	ffmpeg_decoding_loop.cc中是解码循环。

	 1 // Copyright 2017 The Chromium Authors. All rights reserved.

	 5 #include "media/ffmpeg/ffmpeg_decoding_loop.h"

	 6 #include "base/callback.h"

	 7 #include "base/logging.h"

	 8 #include "media/ffmpeg/ffmpeg_common.h"

 9

	 10 namespace media {

	 12 FFmpegDecodingLoop::FFmpegDecodingLoop(AVCodecContext* context,

	 14 bool continue_on_decoding_errors)

	 15 : continue_on_decoding_errors_(continue_on_decoding_errors),

	 16 context_(context),

	 17 frame_(av_frame_alloc()) {}

	 18

	 19 FFmpegDecodingLoop::~FFmpegDecodingLoop() = default;

	 20

	 21 FFmpegDecodingLoop::DecodeStatus FFmpegDecodingLoop::DecodePacket(

	 22 const AVPacket* packet,

	 23 FrameReadyCB frame_ready_cb) {

	 24 bool sent_packet = false, frames_remaining = true, decoder_error = false;

	 25 while (!sent_packet || frames_remaining) { // 循环，如果发送失败则重试发送

	 26 if (!sent_packet) {

	 27 const int result = avcodec_send_packet(context_, packet); // 将待解码数据发送到解码器

	 28 if (result < 0 && result != AVERROR(EAGAIN) && result != AVERROR_EOF) {

	 29 DLOG(ERROR) << "Failed to send packet for decoding: " << result;

	 30 return DecodeStatus::kSendPacketFailed;

	 31 }

	 33 sent_packet = result != AVERROR(EAGAIN); // 检查是否发送成功，如果上述函数返回EAGAIN，则下次重试

	 34 }

	 36 // 检查是否有解码后的帧。如果收到EOF或EAGAIN，那此时就没有什么可做了

	 37 // 因为我们已经将唯一的输入数据送入解码器了

	 39 const int result = avcodec_receive_frame(context_, frame_.get());

	 40 if (result == AVERROR_EOF || result == AVERROR(EAGAIN)) {

	 41 frames_remaining = false;

	 42

	 43 // 这段代码被标志为TODO(dalecurtis)：这里应该使用DCHECK()或MEDIA_LOG，但由于这里使用的是新的解码API

	 44 // 使用CHECK宏（该宏打印日志而不报错），然后可以观察日志。可见Chromium开发者对FFmpeg的新API的使用也是慎重的

	 45 if (result == AVERROR(EAGAIN)) { // 这一段不可能出现，如果出现，就是Bug

	 46 CHECK(sent_packet) << "avcodec_receive_frame() and "

	 47 "avcodec_send_packet() both returned EAGAIN, "

	 48 "which is an API violation.";

	 49 }

	 51 continue;

	 52 } else if (result < 0) { // 失败处理

	 53 DLOG(ERROR) << "Failed to decode frame: " << result;

	 54 last_averror_code_ = result;

	 55 if (!continue_on_decoding_errors_)

	 56 return DecodeStatus::kDecodeFrameFailed;

	 57 decoder_error = true;

	 58 continue;

	 59 }

	 60 // 通过回调函数将解码后的图像数据返回调用者

	 61 const bool frame_processing_success = frame_ready_cb.Run(frame_.get());

	 62 av_frame_unref(frame_.get()); // 释放内存引用计数

	 63 if (!frame_processing_success) // 出错处理

	 64 return DecodeStatus::kFrameProcessingFailed;

	 65 }

	 67 return decoder_error ? DecodeStatus::kDecodeFrameFailed : DecodeStatus::kOkay;

	 68 }

	 70 } // namespace media

	上述代码非常短，它实际上包括了FFmpeg解码函数。FFmpeg新版本的解码函数是异步的，发送和接收并不一定是同一帧，这与在RTC中不同。在RTC中一般不使用B帧，但MP4或非RTC的网络视频流通常有B帧（B帧会节省带宽）。此外，由于解码器的异步效应，在“喂”（发送）进一帧后，可能会得到多个解码后的帧（以前“喂”的数据）。这时候，应该在下一次“喂”数据前尽快循环读出来，本函数就是起这个作用。

	此外，在media/filters/目录下也有一些FFmpeg应用，如ffmpeg_audio_decoder. cc、ffmpeg_ demuxer.cc等，感兴趣的读者可以自己阅读分析，在此就不多介绍了。

15.3 FFmpeg在FreeSWITCH中的应用

	FreeSWITCH是一个软交换系统和媒体引擎，支持PSTN互通、音视频会议和MCU功能，内部也使用了FFmpeg库。

15.3.1 FreeSWITCH简介

	FreeSWITCH最初是一个开源的电话软交换系统，基于MPL1.1协议发布，可以用作IP-PBX，支持IP电话通信，多用于企业电话交换机、呼叫中心和视频会议等。FreeSWITCH主要用于服务器端，它虽然没有FFmpeg和Chrome那么流行，但在日常生活中拨打一个服务电话并听到“XX请按1……”时，可能就是由FreeSWITCH播放的。

	FreeSWITCH主要支持的协议是SIP和RTP。SIP的全称是Session Initialization Protocol，即会话初始协议，它负责电话的建立和释放。比如，当你拿起电话拨打一个号码时，你的号码就称为“主叫号码”，对方的号码称为“被叫号码”，主被叫号码都会在SIP消息中携带。SIP消息的流程图如图15-2所示。

	[image:]

	图15-2 SIP消息流程图

	从图15-2中可以看出，Bob呼叫Alice，发起一个INVITE请求，该请求中带了它自己的SDP，而Alice应答（200 OK）的消息中也带了一个SDP，这就是SDP的交换过程。通过SDP的交换，双方就可以互相传输RTP（语音）了。其中ACK是一个证实消息，用于对“200 OK”响应的确认。INVITE-200-ACK是一个三次握手机制，与TCP的三次握手异曲同工，用于保障接下来的媒体传输。如果有一方挂机，就会给对方发送BYE消息，对方收到后回复“200 OK”，挂机流程不需要ACK。

	SIP消息通常基于UDP承载，但也支持TCP和TLS，事实上，SIP标准（RFC3261）规定，所有SIP实现必须至少同时支持UDP和TCP，这主要是考虑到有时候SDP比较长，在超过网络MTU时（如1500字节），SIP消息会发生分包，而UDP分包后无法可靠地重组。
参见https://www.rfc-editor.org/rfc/rfc7118。
	有了WebRTC以后，FreeSWITCH也开始支持WebRTC。由于WebRTC最初是在浏览器里实现的，而浏览器里没有底层的UDP和TCP接口，因而，一种新的SIP规范被提出来并迅速实现，称为SIP over Websocket
	 [image: 参见https://www.rfc-editor.org/rfc/rfc7118。]，人们就可以在浏览器里通过JavaScript控制WebRTC进行电话通话。接着FreeSWITCH实现了视频通话和视频会议MCU（多点控制单元，一种传统的视频会议单元）功能，那都是后话了。
FreeSWITCH中的模块是动态可加载的，模块在Linux上是.so，在Windows上就是大家熟知的.dll，可以根据需要加载不同的模块。在UNIX类平台上，主要使用dlopen和dlsym函数打开和查找符号表，在Windows上则使用LoadLibraryEx和GetProcAddress。
	FreeSWITCH主要使用C语言实现，是一个模块化的结构，核心是一些通信状态机及媒体处理，外围是一些模块实现
	 [image: FreeSWITCH中的模块是动态可加载的，模块在Linux上是.so，在Windows上就是大家熟知的.dll，可以根据需要加载不同的模块。在UNIX类平台上，主要使用dlopen和dlsym函数打开和查找符号表，在Windows上则使用LoadLibraryEx和GetProcAddress。]。在这一点上，跟FFmpeg也类似，当然，更类似的是，FreeSWITCH也是一个超级应用，有很多的依赖，毕竟重新发明轮子也需要在别人的轮子的基础上做。其中一个依赖就是FFmpeg。

15.3.2 FreeSWITCH的FFmpeg模块开发环境准备

	笔者是FreeSWITCH视频代码的主要贡献者，早在FreeSWITCH支持视频之前我们就在探索各种视频功能了，这些探索最终得以实现并合并进FreeSWITCH主分支。最初笔者尝试基于FFmpeg写一个模块mod_ffmpeg。第一个可以运行的版本是在某一年从美国Cluecon大会回来的飞机上调试成功的。

	不久以后，FFmpeg社区的部分开发者另起炉灶，将FFmpeg项目Fork一下，起名Libav。但问题是，虽然项目名称改了，但为了与大多数现有应用兼容，库名依然叫libavcodec、libavformat之类。
主要是当时的FreeSWITCH版本在CentOS 6.0开始的几个版本上性能表现不佳，而同样的代码换到Debian 7上性能就好得多。
	后来，由于FreeSWITCH在CentOS上的异常表现
	 [image: 主要是当时的FreeSWITCH版本在CentOS 6.0开始的几个版本上性能表现不佳，而同样的代码换到Debian 7上性能就好得多。]，FreeSWITCH开发团队将开发平台从CentOS迁移到了Debian，而Debian从8开始由FFmpeg换成了Libav，我们趁机将mod_ffmpeg改为mod_avcodec和mod_avformat两个模块。

	Libavcodec用于编解码处理，libavformat用于处理多媒体文件。与此相对应，mod_avcodec就实现了H264、H263等视频编解码，而mod_avformat就支持MP4等文件的播放和录像等。

	再后来，这两个模块又合并成了一个模块（因为两个模块都尝试初始化一些公共数据，这会有冲突），命名为mod_av，就是大家现在看到的模块。

	考虑到对当时操作系统的支持（最初是CentOS 6、Debian 7），当时并不能随意选择最新的FFmpeg版本。最初开发是基于FFmpeg 0.8.x开发的，后来又适配了Libav 11.3、11.4、11.6，FFmpeg 2.6.x、2.8.x、3.0等。现在的FreeSWITCH最新应该支持到FFmpeg 4.x，截至本书截稿时，尚未适配5.x版本。

	为了同时测试多个版本，我们需要一些技巧。首先是测试系统自带的版本，这一点，通过apt-get（Debian）或yum（CentOS）就可以安装。FreeSWITCH是一个标准的Linux程序，使用autotools（autoconf、automake）等工程文件，因而，使用标准的./configure、make、make install就可以完成编译及安装。

	当使用自己编译的FFmpeg版本时，就需要先卸载所有随系统安装的版本（主要是为了防止冲突）。然后，编译安装各个版本的Libav和FFmpeg。本书前面的章节也提到过FFmpeg的编译步骤。在与FreeSWITCH配合使用时用到的参数如下：

	--prefix=/opt/av

	上述命令用于将Libav安装到/opt/av目录，当然也可以安装到/opt/av-11.3、/opt/ av-11.6，FFmpeg类似。

	在开发过程中笔者还遇到由libx264新版本导致的问题，所以还测试了其他版本的libx264。

	./configure --prefix=/opt/x264

	为了让Libav找到我们自己编译的x264，编译FFmpeg或Libav时需要指定PKG_ CONFIG_PATH。

	PKG_CONFIG_PATH=/opt/x264/lib/pkgconfig ./configure --prefix=/opt/av

	其他参数需要根据实际需求进行选择。下面是笔者在macOS上编译Libav的例子：

	/configure --prefix=/opt/av --enable-shared --enable-pthreads --enable-gpl –enable-version3 --enable-hardcoded-tables --enable-avresample --cc=clang --host-cflags= --host-ldflags= --enable-libx264 --enable-libmp3lame --enable-libvo-aacenc --enable-libxvid --enable-libvorbis --enable-libvpx --enable-libfaac --enable-libspeex --enable-libx265 --enable-nonfree --enable-vda

	FFmpeg的命令行类似。实际上，最重要的是--enable-libx264，因为我们要用它做H264编解码。

	当然，执行configure后需要执行make && make install，这是UNIX类软件编译安装的标准步骤，不赘述。

	有了多个Libav和FFmpeg后，怎么让FreeSWITCH找到它们呢？

	到FreeSWITCH源代码目录下，执行以下命令行：

	cd src/mod/applications/mod_av

	创建如下Makefile（如果已经有了就替换掉）：

	AV=/usr/local/Cellar/ffmpeg/2.8.6

	LOCAL_CFLAGS=-I$(AV)/include

	LOCAL_LDFLAGS=-L$(AV)/lib -lavcodec -lavformat -lavutil -lavresample -lswscale

	LOCAL_OBJS=avcodec.o avformat.o

	include ../../../../build/modmake.rules

	然后在mod_av下执行make install（当然，FreeSWITCH必须先正常编译一遍，具体步骤就不赘述了）。如果一切顺利的话，就可以在FreeSWITCH里面执行load mod_av了（动态加载该模块）。

	如果在加载时出错，可能是因为FFmpeg的动态库不在标准的搜索路径上。在Linux上，还需要设置动态库的加载路径。最简单的办法是在启动FreeSWITCH时将其加到环境变量里，例如可以用以下命令启动FreeSWITCH：

	LD_LIBRARY_PATH=/opt/av/lib /usr/local/freeswitch

	另一种办法就是放到/etc/ld.so.conf或/etc/ld.so.conf.d里，并执行ldconfig。如果需要经常切换多个版本，还是用环境变量更便捷。

	当然，除此之外，还可以在配置FreeSWITCH时直接指定库文件的搜索路径，如：

	PKG_CONFIG_PATH=/opt/ffmpeg-2.8.6 ./configure

	PKG_CONFIG_PATH环境变量也是autotools的标准功能，在配置时它会先查找对应目录下的.pc文件，进而找到对应的头文件和库文件。

	当然，如果你使用的是Docker，则测试多个版本可能更容易。可以在测试版本时从宿主机上将不同版本的源代码目录在不同的时刻挂载到Docker容器中，也可以启动不同版本的容器。

	这一小节主要讲如何让FreeSWITCH在编译和运行时“找到”FFmpeg，尤其是当需要测试多个版本的FFmpeg时。一般开发者或许不会用到这些，但是，如果在开发过程中遇到各种不兼容的环境、版本，以及不同版本的库之间有不同的表现时，则解决这些问题比较有效的方法就是对比它们之间的不同，进而找出其中的差异，缩小范围以便最终找到问题所在。好了，准备好了环境，下面来看一些代码实例。

15.3.3 FFmpeg初始化和加载

	FreeSWITCH是一个模块化结构，可以在运行时自由地加载和卸载模块（FreeSWITCH核心有引用计数，保证正在使用中的模块无法卸载）。FreeSWITCH的模块定义了一个宏。

	SWITCH_MODULE_DEFINITION(mod_av, mod_av_load, mod_av_shutdown, NULL);
本章中的FreeSWITCH代码基于1.10.7版本，由于篇幅所限，在不影响阅读的情况下删除了一些空行、打印日志和错误处理的代码行。编解码主要以H264讲解，其他编码如H263也有删减。详细代码可参阅https://github.com/signalwire/freeswitch/tree/ master/src/mod/applications/mod_av。
	其中，mod_av_load指定模块加载时运行的回调函数，mod_av_shutdown指定模块卸载时运行的函数。前者代码如下
	 [image: 本章中的FreeSWITCH代码基于1.10.7版本，由于篇幅所限，在不影响阅读的情况下删除了一些空行、打印日志和错误处理的代码行。编解码主要以H264讲解，其他编码如H263也有删减。详细代码可参阅https://github.com/signalwire/freeswitch/tree/ master/src/mod/applications/mod_av。]：

	SWITCH_MODULE_LOAD_FUNCTION(mod_av_load)

	{

	 switch_api_interface_t *api_interface = NULL;

	// 旧版本的FFmpeg需要这个初始化函数，新版本已经不需要了

	#if (LIBAVCODEC_VERSION_INT < AV_VERSION_INT(58,9,100))

	 av_lockmgr_register(&mod_av_lockmgr_cb);

	#endif

	 // 设置日志回调，可以将FFmpeg日志写入FreeSWITCH日志文件，具体的log_callback函数略

	 av_log_set_callback(log_callback);

	 av_log_set_level(AV_LOG_INFO); // 设置FFmpeg日志级别

	 avformat_network_init(); // 初始化FFmpeg网络，以便支持rtmp、rtsp等

	// 旧版本的FFmpeg还需要注册所有的媒体封装格式，新版本不需要了

	#if (LIBAVFORMAT_VERSION_INT < AV_VERSION_INT(58,9,100))

	 av_register_all();

	#endif

	 // 将下面两个函数放到独立的文件中，分别初始化，下面会讲到这两个函数

	 mod_avformat_load(module_interface, pool);

	 mod_avcodec_load(module_interface, pool);

	 return SWITCH_STATUS_SUCCESS;

	}

	当mod_av模块被加载时，就会执行上面这段代码，执行FFmpeg相应函数进行初始化。其中LIBAVCODEC_VERSION_INT、LIBAVFORMAT_VERSION_INT分别是libavcodec和libavformat的版本号。FFmpeg是个巨型项目，历史也非常久，因而有些函数会随着时代的发展发生变化或被废弃，至于哪些函数在哪些版本里被废弃了，需要查看FFmpeg的Release Notes甚至源代码才能知道。作为一个开源项目，FreeSWITCH会尽量支持更多的操作系统和库版本，因而代码中有很多这样的预处理宏。

15.3.4 avcodec实例

虽然H263是上一个时代的编码，但是FreeSWITCH还是支持了它，以便与一些旧的设备进行通信。在此处提到它也是为了在代码中可以提供多种编码实现的参考。较新的编码是H265，业界已经有很多支持，在FreeSWITCH中也有相应的补丁，但在本书写作时尚未合并进主分支，在此就不提了。
	H263、H264
	 [image: 虽然H263是上一个时代的编码，但是FreeSWITCH还是支持了它，以便与一些旧的设备进行通信。在此处提到它也是为了在代码中可以提供多种编码实现的参考。较新的编码是H265，业界已经有很多支持，在FreeSWITCH中也有相应的补丁，但在本书写作时尚未合并进主分支，在此就不提了。]的编解码模块主要在mod_av的avcodec.c中实现。从上一小节的代码可以看出，当模块被加载时，会执行mod_avcodec_load函数进行初始化。

	SWITCH_MODULE_LOAD_FUNCTION(mod_avcodec_load)

	{

	 switch_codec_interface_t *codec_interface;

	 // 初始化FreeSWITCH模块级全局结构体变量

	 memset(&avcodec_globals, 0, sizeof(struct avcodec_globals));

	 load_config(); // 架构模块相关的配置文件

	 SWITCH_ADD_CODEC(codec_interface, "H264 Video"); // 向核心注册一个H264编解码模块

	 // 设置该编解码相关的回调函数

	 switch_core_codec_add_video_implementation(pool, codec_interface, 99, "H264", NULL,

	 switch_h264_init, switch_h264_encode, switch_h264_decode, switch_h264_control, switch_h264_destroy);

	 // 除H264外，也支持H263和H263+

	 SWITCH_ADD_CODEC(codec_interface, "H263 Video");

	 switch_core_codec_add_video_implementation(pool, codec_interface, 34, "H263", NULL,

	 switch_h264_init, switch_h264_encode, switch_h264_decode, switch_h264_control, switch_h264_destroy);

	 SWITCH_ADD_CODEC(codec_interface, "H263+ Video");

	 switch_core_codec_add_video_implementation(pool, codec_interface, 115, "H263-1998", NULL,

	 switch_h264_init, switch_h264_encode, switch_h264_decode, switch_h264_control, switch_h264_destroy);

	 /* indicate that the module should continue to be loaded */

	 return SWITCH_STATUS_SUCCESS;

	}

	SWITCH_MODULE_SHUTDOWN_FUNCTION(mod_avcodec_shutdown)

	{

	 int i;

	 // 模块卸载时清理现场，不需要关注细节

	 for (i = 0; i < MAX_PROFILES; i++) {

	 avcodec_profile_t *profile = avcodec_globals.profiles[i];

	 if (!profile) break;

	 if (profile->options) {

	 switch_event_destroy(&profile->options);

	 }

	 if (profile->codecs) {

	 switch_event_destroy(&profile->codecs);

	 }

	 free(profile);

	 }

	 return SWITCH_STATUS_SUCCESS;

	}
细心的读者可以发现，H263和H264编码器实际上调用了同样的回调函数，这是因为它们差别不大，具体的区别是在函数内部。
	上面的代码块其实跟FFmpeg关系不大，因而也无须关注细节，其中最主要的就是注册了下面的回调函数
	 [image: 细心的读者可以发现，H263和H264编码器实际上调用了同样的回调函数，这是因为它们差别不大，具体的区别是在函数内部。]，它们在不同的阶段被FreeSWITCH核心回调。

	・switch_h264_init：初始化编解码器。

	・switch_h264_encode：编码。

	・switch_h264_decode：解码。

	・switch_h264_control：运行中控制。

	・switch_h264_destroy：销毁。

	FreeSWITCH主要是以会话（即Session）为单位的。每当来了一路通话，如果需要视频编码，就会启动一个编码器，执行该编码器对应的_init回调函数。同理，当电话挂断时，执行_destroy。其他函数以此类推。

	1. switch_h264_init

	该函数在编码器初始化时调用，参数如下。

	・codec：FreeSWITCH中的编解码结构体指针。

	・flags：一些标志位。

	・codec_settings：编解码相关参数。

	可以看出，这些参数与FFmpeg无关，这样就可以做到代码隔离，与FFmpeg相关的代码都在函数内部，没有FFmpeg只会导致该模块无法编译和加载，却不会影响FreeSWITCH的功能。其他解释见代码内注释。

	static switch_status_t switch_h264_init(switch_codec_t *codec, switch_codec_flag_t flags, const switch_codec_settings_t *codec_settings)

	{

	 int encoding, decoding;

	 h264_codec_context_t *context = NULL;

	 avcodec_profile_t *profile = NULL;

	 encoding = (flags & SWITCH_CODEC_FLAG_ENCODE); // 该编码器支持编码

	 decoding = (flags & SWITCH_CODEC_FLAG_DECODE); // 该编码器支持解码

	 if (codec->fmtp_in) { // fmtp通常是从SDP里来的，当然，也可以在使用编码器时人为设置

	 // in是输入，out是输出，可以在这里协商，但这里为简单起见，直接让输出与输入一致，没有做过多处理

	 codec->fmtp_out = switch_core_strdup(codec->memory_pool, codec->fmtp_in);

	 }

	 // 初始化一个context，用来代表这个编解码器，memory_pool是编解码器的内存池，该函数调用时已存在

	 context = switch_core_alloc(codec->memory_pool, sizeof(h264_codec_context_t));

	 if (codec_settings) { // 将输入codec_settings复制一份存在context里，以备用

	 context->codec_settings = *codec_settings;

	 }

	 // 将FreeSWITCH的编解码名称与FFmpeg中的av_codec_id相对应

	 if (!strcmp(codec->implementation->iananame, "H263")) {

	 context->av_codec_id = AV_CODEC_ID_H263;

	 } else if (!strcmp(codec->implementation->iananame, "H263-1998")) {

	 context->av_codec_id = AV_CODEC_ID_H263P;

	 } else {

	 context->av_codec_id = AV_CODEC_ID_H264;

	 }

	 // 这时原profile是FreeSWITCH侧的配置文件，配置了不同的编解码器参数

	 profile = find_profile(get_profile_name(context->av_codec_id), SWITCH_FALSE);

	 if (decoding) { // 解码器的单独处理

	 // 初始化一个FFmpeg解码器，存在context里

	 context->decoder = avcodec_find_decoder(context->av_codec_id);

	 // 申请FFmpeg解码器的decoder context

	 context->decoder_ctx = avcodec_alloc_context3(context->decoder);

	 // 使用几个线程，一般是一个，可以在配置文件中配置

	 context->decoder_ctx->thread_count = profile->decoder_thread_count;

	 // 可以打开解码器了，如果初始化失败，则报错

	 if (avcodec_open2(context->decoder_ctx, context->decoder, NULL) < 0) {

	 switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Error openning codec\n");

	 goto error;

	 }

	 }

	 // 创建一个缓冲区用于存放NALU，该缓冲区可能是一串连续的内存区域，在空间不够时会自动扩展

	 switch_buffer_create_dynamic(&(context->nalu_buffer), H264_NALU_BUFFER_SIZE, H264_NALU_BUFFER_SIZE * 8, 0);

	 codec->private_info = context; // 记住这个context，以便在其他函数中引用

	 return SWITCH_STATUS_SUCCESS;

	error:

	 return SWITCH_STATUS_FALSE;

	}

	可见，在初始化函数中仅初始化了FFmpeg解码器，并没有初始化FFmpeg编码器，这是因为编码器初始化需要更多参数，有些目前还不具备，因此使用了“懒”初始化方式，这种方法在后面会介绍。

	2. switch_h264_encode

	这个是编码函数，对于每一帧视频，都会多次调用该函数。为什么是多次呢？这是因为该函数不仅需要编码，还需要分包，FreeSWITCH核心需要多次调用该函数，直到获得最后一个分包（marker标志为1，其他为0）。函数参数如下。

	・codec：FreeSWITCH中的编码器指针。

	・frame：FreeSWITCH中的视频帧结构，待编码图像在frame->img中，编码后的数据放在frame->data中。

	static switch_status_t switch_h264_encode(switch_codec_t *codec, switch_frame_t *frame)

	{ // 从编码器指针中获取context结构体

	 h264_codec_context_t *context = (h264_codec_context_t *)codec->private_info;

	 AVCodecContext *avctx = context->encoder_ctx;

	 int ret;

	 int *got_output = &context->got_encoded_output;

	 AVFrame *avframe = NULL; // FFmpeg中的视频帧

	 // FFmpeg中的Packet内存，用于存放编码后的数据，记住它以便后面继续使用

	 AVPacket *pkt = &context->encoder_avpacket;

	 uint32_t width = 0; // 视频宽度

	 uint32_t height = 0; // 视频高度

	 switch_image_t *img = frame->img; // FreeSWITCH中的一帧图像

	 frame->m = 0;

	 width = img->d_w; // 记住图像的大小

	 height = img->d_h;

	 // H263仅支持一些特定分辨率

	 if (context->av_codec_id == AV_CODEC_ID_H263 && (!is_valid_h263_dimension(width, height))) {

	 switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_WARNING,

	 "You want %dx%d, but valid H263 sizes are 128x96, 176x144, 352x288, 704x576, and 1408x1152. Try H.263+\n", width, height);

	 goto error;

	 }

	 // SAME_IMAGE代码是对同一帧图像的多次编码，这说明编码器已编码成功并发生了分包

	 if (frame->flags & SFF_SAME_IMAGE) {

	 // 直接返回缓冲区中后续的分包数据

	 return consume_nalu(context, frame);

	 }

	 if (!avctx || !avcodec_is_open(avctx)) {

	 // 初始化FFmpeg中的编码器

	 if (open_encoder(context, width, height) != SWITCH_STATUS_SUCCESS) {

	 goto error;

	 }

	 avctx = context->encoder_ctx;

	 }

	 // 在实时应用中，下一帧图像的分辨率可能会发生变化，这时候需要重新初始化编码器

	 if (avctx->width != width || avctx->height != height) {

	 switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "picture size changed from %dx%d to %dx%d, reinitializing encoder\n",

	 avctx->width, avctx->height, width, height);

	 if (open_encoder(context, width, height) != SWITCH_STATUS_SUCCESS) {

	 goto error;

	 }

	 avctx = context->encoder_ctx;

	 }

	 // 带宽也可能发生变化，需要重新计算并重新初始化编码器

	 if (context->change_bandwidth) {

	 context->codec_settings.video.bandwidth = context->change_bandwidth;

	 context->change_bandwidth = 0;

	 if (open_encoder(context, width, height) != SWITCH_STATUS_SUCCESS) {

	 goto error;

	 }

	 avctx = context->encoder_ctx;

	 switch_set_flag(frame, SFF_WAIT_KEY_FRAME); // 通知FreeSWITCH核心等待下一个关键帧

	 }

	 av_init_packet(pkt); // FFmpeg中的pkt在编码前需要初始化

	 pkt->data = NULL; // 确保内存是空的，编码器将会自动初始化它

	 pkt->size = 0;

	 avframe = context->encoder_avframe; // 这个avframe是给FFmpeg用的

	 if (avframe) { // 如果avframe已存在，但分辨率变了，则释放它以便后面重新申请内存

	 if (avframe->width != width || avframe->height != height) {

	 av_frame_free(&avframe);

	 }

	 }

	 if (!avframe) { // 首次使用时初始化，以后在编码器生命周期内可以重用

	 avframe = av_frame_alloc();

	 context->encoder_avframe = avframe; // 记住这个avframe，以便以后重用

	 if (!avframe) goto error;

	 // 初始化这个avframe，这个format代表图像原始数据在内存中的格式，一般是YUV420P

	 avframe->format = avctx->pix_fmt;

	 avframe->width = avctx->width;

	 avframe->height = avctx->height;

	 avframe->pts = frame->timestamp / 1000; // FreeSWITCH中的时间转成FFmpeg时间戳

	 ret = av_frame_get_buffer(avframe, 32); // 申请avframe内存

	 }

	 fill_avframe(avframe, img); // 将FreeSWITCH的img图像内存格式转成FFmpeg要求的格式

	 avframe->pts = context->pts++;

	 // 如果有关键帧请求，则需要告诉FFmpeg立即生成一个关键帧

	 if (context->need_key_frame && (context->last_keyframe_request + avcodec_globals.key_frame_min_freq) < switch_time_now()) {

	 avframe->pict_type = AV_PICTURE_TYPE_I; // 这两行配置用于告诉编码器立即生成一个关键帧

	 avframe->key_frame = 1;

	 context->last_keyframe_request = switch_time_now(); // 记住当前时间，以防请求太频繁

	 }

	 memset(context->nalus, 0, sizeof(context->nalus));

	 context->nalu_current_index = 0;

	// 下面的函数实际上是旧函数，使用这个宏告诉编译器不要产生警告

	GCC_DIAG_OFF(deprecated-declarations)

	 // 用编码器进行编码，编码前的图像是avframe，pkt存放编码后的数据

	 ret = avcodec_encode_video2(avctx, pkt, avframe, got_output);

	GCC_DIAG_ON(deprecated-declarations)

	 if (*got_output) { // 编码器会有延迟，比如说输入4帧图像后编码器才吐出第1帧的数据

	 const uint8_t *p = pkt->data; // 编码输出的数据都在data里

	 int i = 0;

	 *got_output = 0;

	 if (context->av_codec_id == AV_CODEC_ID_H263) {

	#ifdef H263_MODE_B

	 fs_rtp_parse_h263_rfc2190(context, pkt);

	#endif

	 context->nalu_current_index = 0;

	 return consume_nalu(context, frame); // 263分包

	 } else if (context->av_codec_id == AV_CODEC_ID_H263P){

	 fs_rtp_parse_h263_rfc4629(context, pkt);

	 context->nalu_current_index = 0;

	 return consume_nalu(context, frame); // 263+分包

	 }

	 // 264码流，先切成NALU，即根据0 0 1或0 0 0 1将H264数据切开

	 memset(context->nalus, 0, sizeof(context->nalus));

	 // fs_avc_find_startcode是从FFmpeg代码里复制过来的，用于找到NALU的起始位置

	 while ((p = fs_avc_find_startcode(p, pkt->data+pkt->size)) < (pkt->data + pkt->size)) {

	 if (!context->nalus[i].start) { // 第1个起始位置

	 while (!(*p++)) ; // 兼容0 0 1或0 0 0 1

	 context->nalus[i].start = p;

	 context->nalus[i].eat = p;

	 if ((*p & 0x1f) == 7) { // 这是一个SPS，后面有关键帧

	 // 防止后续有关键帧请求时产生太多关键帧

	 context->last_keyframe_request = switch_time_now();

	 }

	 } else { // 后续的NALU

	 context->nalus[i].len = p - context->nalus[i].start;

	 while (!(*p++)) ; // 兼容0 0 1或0 0 0 1

	 i++;

	 context->nalus[i].start = p;

	 context->nalus[i].eat = p;

	 }

	 }

	 context->nalus[i].len = p - context->nalus[i].start;

	 context->nalu_current_index = 0;

	 return consume_nalu(context, frame); // 切好NALU后，如果NALU还是比较大，继续分包

	 }

	error:

	 frame->datalen = 0;

	 return SWITCH_STATUS_FALSE;

	}

	这里我们仅考虑H264的情况。从上面代码可以看出，最终调用consume_nalu对NALU数据进行分包。该函数返回不大于SWITCH_DEFAULT_VIDEO_SIZE（默认为1200）的分包，该分包会有相应的marker位，FreeSWITCH核心获取分包后通过RTP发送出去，并继续使用同一帧图像调用该函数，直至返回的数据中marker = 1，也就是最后一个分包。FreeSWITCH核心调用模块中视频编码函数的流程如图15-3所示。当前编码结束后FreeSWITCH核心会继续编码下一帧图像（如果有的话）。

	[image:]

	图15-3 FreeSWITCH视频编码函数流程

	fs_avc_find_startcode实际上是FFmpeg代码中ff_avc_find_startcode的翻版，由于后者没有公开的API，因而不能直接调用，只好复制一份并改了名字。同理，对H264分包的代码在FFmpeg里也是有的，但无法调用，因而在FreeSWITCH的consume_nalu中重新实现了分包算法。由于FreeSWITCH核心中支持很多不同的视频编码，不同视频编码的分包算法是不同的，因而直接在编码阶段在对应的模块中实现了分包算法。
这段代码在FreeSWITCH master版本中有一个Bug，由于timebase设置不当导致FFmpeg内部一些参数未正确设置，无法达到目标带宽，因此代码中使用了context->bandwidth *=3，试图绕过该问题。该代码是包含 https://github.com/signalwire/ freeswitch/ pull/824/files中这个补丁的，但在本书写作时该补丁尚未合并进master分支。
	open_encoder函数主要用于设置编码器的参数和打开编码器，有必要分析一下。代码注释如下
	 [image: 这段代码在FreeSWITCH master版本中有一个Bug，由于timebase设置不当导致FFmpeg内部一些参数未正确设置，无法达到目标带宽，因此代码中使用了context->bandwidth *=3，试图绕过该问题。该代码是包含 https://github.com/signalwire/ freeswitch/ pull/824/files中这个补丁的，但在本书写作时该补丁尚未合并进master分支。]。

	static switch_status_t open_encoder(h264_codec_context_t *context, uint32_t width, uint32_t height)

	{

	 avcodec_profile_t *aprofile = NULL;

	 char codec_string[1024];

	 if (!context->encoder) { // 首次使用初始化

	 if (context->av_codec_id == AV_CODEC_ID_H264) { // H264

	 // 尝试使用硬件编码，需要GPU支持

	 if (context->codec_settings.video.try_hardware_encoder && (context->encoder = avcodec_find_encoder_by_name("nvenc_h264"))) {

	 switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_NOTICE, "NVENC HW CODEC ENABLED\n");

	 context->hw_encoder = 1;

	 }

	 }

	 }

	 if (!context->encoder) { // 查找FFmpeg是否实现该编码器

	 context->encoder = avcodec_find_encoder(context->av_codec_id);

	 }

	 if (!context->encoder) {

	 switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Cannot find encoder id: %d\n", context->av_codec_id);

	 return SWITCH_STATUS_FALSE;

	 }

	 // 这个aprofile是FreeSWITCH侧对编码器的配置，不同的aprofile对应一组不同的配置

	 if (!zstr(context->codec_settings.video.config_profile_name)) {

	 aprofile = find_profile(context->codec_settings.video.config_profile_name, SWITCH_FALSE);

	 }

	 if (!aprofile) {

	 aprofile = find_profile(get_profile_name(context->av_codec_id), SWITCH_FALSE);

	 }

	 if (!aprofile) return SWITCH_STATUS_FALSE;

	 if (context->encoder_ctx) { // 如果是则重新打开编码器，释放历史数据

	 if (avcodec_is_open(context->encoder_ctx)) {

	 avcodec_close(context->encoder_ctx);

	 }

	 av_free(context->encoder_ctx);

	 context->encoder_ctx = NULL;

	 }

	 // 初始化FFmpeg的codec context

	 context->encoder_ctx = avcodec_alloc_context3(context->encoder);

	 if (!context->encoder_ctx) {

	 return SWITCH_STATUS_FALSE;

	 }

	 if (width && height) { // 记住分辨率

	 context->codec_settings.video.width = width;

	 context->codec_settings.video.height = height;

	 }

	 // FreeSWITCH核心会计算帧率，如果计算不出来，则使用15.0作为初始帧率

	 context->encode_fps = fps = context->codec_settings.video.fps > 0 ? context->codec_settings.video.fps : 15.0;

	 // 使用预设带宽或根据分辨率和帧率自动计算一个合适的带宽

	 if (context->codec_settings.video.bandwidth) {

	 context->bandwidth = context->codec_settings.video.bandwidth;

	 } else {

	 context->bandwidth = switch_calc_bitrate(context->codec_settings.video.width, context->codec_settings.video.height, 1, fps);

	 }

	 if (context->bandwidth > avcodec_globals.max_bitrate) {

	 context->bandwidth = avcodec_globals.max_bitrate; // 防止带宽超标

	 }

	 context->encoder_ctx->bit_rate = context->bandwidth * 1000; // 调整为FFmpeg中的带宽

	 context->encoder_ctx->rc_min_rate = context->encoder_ctx->bit_rate; // 固定码率

	 context->encoder_ctx->rc_max_rate = context->encoder_ctx->bit_rate; // 固定码率

	 context->encoder_ctx->rc_buffer_size = context->encoder_ctx->bit_rate;

	 context->encoder_ctx->rc_initial_buffer_occupancy = context->encoder_ctx->rc_buffer_size * 3 / 4;

	 context->encoder_ctx->qcompress = 0.6;

	 context->encoder_ctx->gop_size = 1000; // 默认的关键帧间隔

	 context->encoder_ctx->keyint_min = 1000; // 最小关键帧间隔

	 context->encoder_ctx->width = context->codec_settings.video.width;

	 context->encoder_ctx->height = context->codec_settings.video.height;

	 if (context->pts) { // 适用于已知fps的情况

	 context->encoder_ctx->time_base = (AVRational){1, fps};

	 context->encoder_ctx->framerate = (AVRational){fps, 1};

	 context->encoder_ctx->ticks_per_frame = 1;

	 } else { // 否则使用自然时间

	 context->encoder_ctx->ticks_per_frame = 1000000 / fps;

	 context->encoder_ctx->time_base = (AVRational){1, 1000000};

	 }

	 context->encoder_ctx->pkt_timebase = context->encoder_ctx->time_base;

	 context->encoder_ctx->max_b_frames = aprofile->ctx.max_b_frames; // 实时应用一般不使用B帧，默认为0

	 context->encoder_ctx->pix_fmt = AV_PIX_FMT_YUV420P;

	 context->encoder_ctx->thread_count = aprofile->ctx.thread_count;

	 if (context->av_codec_id == AV_CODEC_ID_H263 || context->av_codec_id == AV_CODEC_ID_H263P) {

	 // 让H263底层自己分包

	 av_opt_set_int(context->encoder_ctx->priv_data, "mb_info", SLICE_SIZE - 8, 0);

	 } else if (context->av_codec_id == AV_CODEC_ID_H264) {

	 context->encoder_ctx->profile = context->profile_idc > 0 ? context->profile_idc : aprofile->ctx.profile;

	 context->encoder_ctx->level = context->level_id > 0 ? context->level_id : aprofile->ctx.level;

	 set_h264_private_data(context, aprofile); // 设置H264编码器参数

	 }

	 // 打开FFmpeg编码器

	 if (avcodec_open2(context->encoder_ctx, context->encoder, NULL) < 0) {

	 if (!context->hw_encoder) { // 如果是软件编码器，返回错误

	 return SWITCH_STATUS_FALSE;

	 }

	 // 如果打开硬件编码器失败，则关掉硬件编码，尝试以软件方式打开

	 context->hw_encoder = 0;

	 context->codec_settings.video.try_hardware_encoder = 0;

	 return open_encoder(context, width, height);

	 }

	 return SWITCH_STATUS_SUCCESS;

	}

	打开编码器的操作不复杂，关键是根据不同的情况填充不同的参数。FreeSWITCH中默认使用CBR（固定码率）编码，若关键帧请求过于频繁，或画面变化比较大，就会导致画面模糊。但FreeSWITCH的应用场景一般是一对一视频通话或简单的视频会议场景，画面变化不大，在实际使用时总体效果还不错。VBR（动态码率）能节省带宽，但是最大带宽不好控制。
参见http://blog.sporv.com/restoration-tips-kush-gauge。
	FreeSWITCH的码率使用Kush Gauge
	 [image: 参见http://blog.sporv.com/restoration-tips-kush-gauge。]算法。参考代码如下：

	static inline int32_t switch_calc_bitrate(int w, int h, float quality, double fps)

	{

	 int r;

	 if (quality == 0) quality = 1;

	 if (!fps) fps = 15;

	 r = (int32_t)((double)(w * h * fps * quality) * 0.07) / 1000;

	 if (!quality) r /= 2;

	 if (quality < 0.0f) {

	 r = (int) ((float)r * quality);

	 }

	 return r;

	}

	Kush Gauge公式定义为：宽×高×fps×运动系数×固定常数0.07，可以看出，目标带宽与帧率是正相关的，运动系数取值为1、2、4，可以简单理解为低、中、高，如人在摄像头前讲话，背景基本不动，取值为“1”，而电影宣传片动作与场景切换都很快且不可预测，则取值为“4”。0.07是个经验常数，该值是基于H264编码的，如果是其他编码，可以调整这个常数。目标码率单位为bit/s。

	对于H264编码，有一些私有参数可以传给底层的编码器，如libx264等。代码如下：

	static void set_h264_private_data(h264_codec_context_t *context, avcodec_profile_t *profile)

	{

	 if (context->hw_encoder) { // 硬件编码器的可控参数较少

	 av_opt_set(context->encoder_ctx->priv_data, "preset", "llhp", 0);

	 av_opt_set_int(context->encoder_ctx->priv_data, "2pass", 1, 0);

	 av_opt_set_int(context->encoder_ctx->priv_data, "delay", 0, 0);

	 av_opt_set(context->encoder_ctx->priv_data, "forced-idr", "true", 0);

	 return;

	 }

	 // 软件编码器参数很多，但preset是预设的一组参数，在实际应用中使用veryfast是一个比较好的选择

	 av_opt_set(context->encoder_ctx->priv_data, "preset", "veryfast", 0);

	 av_opt_set(context->encoder_ctx->priv_data, "intra-refresh", "1", 0);

	 av_opt_set(context->encoder_ctx->priv_data, "tune", "animation+zerolatency", 0);

	 // 后续代码可以根据FreeSWITCH配置文件中的配置来调整这些预设参数，在此不叙述

	}

	3. switch_h264_decode

	这个是解码函数，FreeSWITCH收到的每一个RTP包（可能是整个NALU，也可能是个分包），都会调用该函数。该函数会执行组包操作（分包的逆操作），它有一个缓冲区，会等待一个完整的包到达后再进行解码。该函数的参数如下。

	・codec：当前编解码器指针。

	・frame：FreeSWITCH中的视频帧，待解码的数据放在frame->data中，解码后的图像放在frame->img中。

	static switch_status_t switch_h264_decode(switch_codec_t *codec, switch_frame_t *frame)

	{

	 h264_codec_context_t *context = (h264_codec_context_t *)codec->private_info;

	 AVCodecContext *avctx= context->decoder_ctx;

	 switch_status_t status;

	 context->last_received_timestamp = frame->timestamp; // 记住最后一个包的时间戳

	 // 如果这个包marker = 1，则是最后一个分包

	 context->last_received_complete_picture = frame->m ? SWITCH_TRUE : SWITCH_FALSE;

	 // 根据编码类型使用相应的组包算法

	 if (context->av_codec_id == AV_CODEC_ID_H263) {

	 status = buffer_h263_packets(context, frame);

	 } else if (context->av_codec_id == AV_CODEC_ID_H263P) {

	 status = buffer_h263_rfc4629_packets(context, frame);

	 } else { // 这是H264的组包

	 status = buffer_h264_nalu(context, frame);

	 }

	 if (status == SWITCH_STATUS_RESTART) { // 如果组包过程中校验出错（如发生丢包或错包）

	 switch_set_flag(frame, SFF_WAIT_KEY_FRAME); // 告诉核心无法解码，需要请求一个关键帧

	 switch_buffer_zero(context->nalu_buffer); // 清空已缓存的NALU缓冲区

	 context->nalu_28_start = 0; // 清除FU-A包的组包标志

	 return SWITCH_STATUS_MORE_DATA; // 告诉核心需要更多数据才能解码

	 }

	 if (frame->m) { // 收到marker = 1的包，可以解码了

	 uint32_t size = switch_buffer_inuse(context->nalu_buffer);

	 AVPacket pkt = { 0 };

	 AVFrame *picture;

	 int got_picture = 0;

	 int decoded_len;

	 if (size > 0) { // 缓冲区中的码流长度大于0才解码

	 av_init_packet(&pkt); // 初始化FFmpeg中解码前的数据缓冲区

	 // 往FreeSWITCH组包后的数据中额外写入一些占位数据，FFmpeg需要用这些额外空间

	 switch_buffer_write(context->nalu_buffer, ff_input_buffer_padding, sizeof(ff_input_buffer_padding));

	 // 将FFmpeg中的pkt.data指针指向FreeSWITCH组包后的数据缓冲区，无Copy，数据包含padding

	 switch_buffer_peek_zerocopy(context->nalu_buffer, (const void **)&pkt.data);

	 pkt.size = size; // 设置FFmpeg中数据的大小

	 if (!context->decoder_avframe) context->decoder_avframe = av_frame_alloc();// decoder_avframe用于存放FFmpeg解码后的图像数据，首次使用时先初始化

	 picture = context->decoder_avframe;

	GCC_DIAG_OFF(deprecated-declarations) // 避免编码器警告，使用旧的解码函数解码

	 decoded_len = avcodec_decode_video2(avctx, picture, &got_picture, &pkt);

	GCC_DIAG_ON(deprecated-declarations)

	 if (got_picture && decoded_len > 0) { // 如果解码成功

	 int width = picture->width; // 获取解码后图像的分辨率、宽度

	 int height = picture->height; // 高度

	 if (!context->img || (context->img->d_w != width || context->img->d_h != height)) {

	 // FreeSWITCH中的图像缓存，首次使用或者图像分辨率变化后要重新初始化

	 switch_img_free(&context->img);

	 context->img = switch_img_alloc(NULL, SWITCH_IMG_FMT_I420, width, height, 1);

	 }

	 // 解码后的图像是YUV420P格式，复制到FreeSWITCH的图像缓冲区context->img中

	 switch_I420_copy2(picture->data, picture->linesize,

	 context->img->planes, context->img->stride,

	 width, height);

	 frame->img = context->img; // 修改返回的视频图像指针指向最新解码的图像

	 }

	 av_frame_unref(picture); // 解除FFmpeg中的图像缓冲区引用

	 }

	 switch_buffer_zero(context->nalu_buffer); // 清空组包缓冲区

	 context->nalu_28_start = 0;

	 return SWITCH_STATUS_SUCCESS;

	 }

	 return SWITCH_STATUS_SUCCESS;

	}

	解码的函数相对简单，组包的主要逻辑在buffer_h264_nalu中，它用于将收到的RTP包中的H264数据组合成完整的一帧图像的码流，然后送入FFmpeg解码器。FreeSWITCH核心有一个Jitter Buffer，以处理RTP抖动和丢包，如果有必要会通过RTCP发送NACK或FIR消息以请求对方重传丢包或请求关键帧。如果经过核心处理后还有丢包或不合法的包，buffer_h264_ nalu也能进行一些检测，尽量避免不完整的H264码流进入FFmpeg解码器。如果有不完整的数据，则解码后可能出现花屏，甚至可能解码失败。FreeSWITCH核心调用解码模块的解码函数进行解码的流程如图15-4所示（仅供参考）。

	4. switch_h264_control

	该函数用于在编解码器生存期间对其进行控制，输入参数如下。

	[image:]

	图15-4 FreeSWITCH核心解码流程示意图

	・codec：当前编码器。

	・cmd：控制指令。

	・ctype：数据类型，整数或字符串。

	・cmd_data：指令数据。

	・atype：参数类型，整数或字符串。

	・cmd_arg：参数数据。

	・rtype：返回值数据类型。

	・ret_data：返回数据指针地址。

	static switch_status_t switch_h264_control(switch_codec_t *codec,

	 switch_codec_control_command_t cmd,

	 switch_codec_control_type_t ctype,

	 void *cmd_data,

	 switch_codec_control_type_t atype,

	 void *cmd_arg,

	 switch_codec_control_type_t *rtype,

	 void **ret_data) {

	 h264_codec_context_t *context = (h264_codec_context_t *)codec->private_info;

	 switch(cmd) {

	 case SCC_DEBUG: // 动态控制调试级别，打印不同级别的日志

	 {

	 int32_t level = *((uint32_t *) cmd_data);

	 mod_av_globals.debug = level;

	 }

	 break;

	 case SCC_VIDEO_GEN_KEYFRAME: // 对方或核心要求编码器立即产生一个关键帧

	 context->need_key_frame = 1; // 详见switch_h264_encode函数

	 break;

	 case SCC_VIDEO_BANDWIDTH: // 动态调整带宽

	 {

	 switch(ctype) {

	 case SCCT_INT: // 详见switch_h264_encode函数

	 context->change_bandwidth = *((int *) cmd_data);

	 break;

	 case SCCT_STRING: // 如果参数为字符串则需要先转成整数

	 {

	 char *bwv = (char *) cmd_data;

	 context->change_bandwidth = switch_parse_bandwidth_string(bwv);

	 }

	 }

	 }

	 }

	 return SWITCH_STATUS_SUCCESS;

	}

	该函数根据传入的指令和参数设置一些参数，具体的逻辑在switch_h264_encode中执行，主要用于在编码器生存期间（通话中）根据情况动态调整编解码器。

	5. switch_h264_destroy

	该函数主要用于销毁FFmpeg编码器，释放内存。代码不长，列在这里供参考，内容比较直观，就不多解释了。

	static switch_status_t switch_h264_destroy(switch_codec_t *codec)

	{

	 h264_codec_context_t *context = (h264_codec_context_t *)codec->private_info;

	 switch_img_free(&context->encimg);

	 switch_buffer_destroy(&context->nalu_buffer);

	 if (context->decoder_ctx) {

	 if (avcodec_is_open(context->decoder_ctx)) avcodec_close(context->decoder_ctx);

	 av_free(context->decoder_ctx);

	 }

	 switch_img_free(&context->img);

	 if (context->encoder_ctx) {

	 if (avcodec_is_open(context->encoder_ctx)) avcodec_close(context->encoder_ctx);

	 av_free(context->encoder_ctx);

	 }

	 if (context->encoder_avframe) {

	 av_frame_free(&context->encoder_avframe);

	 }

	 if (context->decoder_avframe) {

	 av_frame_free(&context->decoder_avframe);

	 }

	 return SWITCH_STATUS_SUCCESS;

	}

15.3.5 avformat实例

	FreeSWITCH中实现了一个文件接口，用于音视频文件的读（播放）写（录像）。mod_av使用FFmpeg的功能实现了MP4、MKV等文件的播放和录像，也支持RTMP的推拉流，支持播放RTSP流媒体文件和摄像头实时视频等。这些是在avformat.c中实现的。下面我们从mod_avformat_ load函数开始看，该函数在模块加载时执行。

	SWITCH_MODULE_LOAD_FUNCTION(mod_avformat_load)

	{

	 switch_file_interface_t *file_interface; // 定义一个FreeSWITCH的文件接口

	 int i = 0;

	 memset(&avformat_globals, 0, sizeof(struct avformat_globals));

	 load_config(); // 加载相关的配置参数

	 // 在FreeSWITCH中支持如下媒体文件和网络协议

	 supported_formats[i++] = "av";

	 supported_formats[i++] = "rtmp";

	 supported_formats[i++] = "rtmps";

	 supported_formats[i++] = "rtsp";

	 supported_formats[i++] = "mp4";

	 supported_formats[i++] = "m4a";

	 supported_formats[i++] = "mov";

	 supported_formats[i++] = "mkv";

	 supported_formats[i++] = "webm";

	 file_interface = (switch_file_interface_t *)switch_loadable_module_create_interface(*module_interface, SWITCH_FILE_INTERFACE);

	 file_interface->interface_name = modname;

	 file_interface->extens = supported_formats;

	 // 设置相关的回调函数

	 file_interface->file_open = av_file_open; // FreeSWITCH核心打开文件时执行

	 file_interface->file_close = av_file_close; // 关闭文件时执行

	 file_interface->file_read = av_file_read; // 读音频

	 file_interface->file_write = av_file_write; // 写音频

	 file_interface->file_read_video = av_file_read_video; // 读视频

	 file_interface->file_write_video = av_file_write_video; // 写视频

	 file_interface->file_seek = av_file_seek; // 跳到其他位置

	 file_interface->file_command = av_file_command; // 运行时对文件的动态控制

	 return SWITCH_STATUS_SUCCESS;

	}

	文件的初始化操作主要是向FreeSWITCH核心注入文件接口，同时初始化一些回调函数。FFmpeg的文件初始化已经在模块加载时做过了（如旧版中的av_register_all），因此这里无须再进行额外的初始化操作。FreeSWITCH在每次用到一个文件时（比如来了一路电话时需要播放一个文件），就会调用这些指定的回调函数来打开文件并读取其中的音视频。

	1. av_file_open

	打开文件。输入参数是FreeSWITCH中的一个文件句柄（handle）及一个文件路径（path）字符串。输入参数本身与FFmpeg没有关系，与FFmpeg有关的代码都在函数内部，这样做也是为了隔离FFmpeg代码。

	static switch_status_t av_file_open(switch_file_handle_t *handle, const char *path)

	{

	 av_file_context_t *context = NULL; // 初始化一个文件context结构体

	 AVOutputFormat *fmt; // FFmpeg的文件结构体，写文件时使用

	 char file[1024];

	 switch_set_string(file, path); // 复制文件路径

	 if (handle->stream_name && (!strcasecmp(handle->stream_name, "rtmp") || !strcasecmp(handle->stream_name, "rtmps") || !strcasecmp(handle->stream_name, "youtube"))) {

	 // 对rtmp和rtmps的特殊处理，比如将用户名和密码写入文件路径等

	 char *secure = "";

	 format = "flv";

	 if ((ext = strrchr((char *)path, '.')) == 0) {

	 ext = ".flv";

	 }

	 if (!strcasecmp(handle->stream_name, "rtmps")) secure = "s";

	 if (handle->mm.auth_username && handle->mm.auth_password) {

	 switch_snprintf(file, sizeof(file), "rtmp%s://%s pubUser=%s pubPasswd=%s flashver=FMLE/3.0", secure, path, handle->mm.auth_username, handle->mm.auth_password);

	 } else {

	 switch_snprintf(file, sizeof(file), "rtmp%s://%s", secure, path);

	 }

	 } else if (handle->stream_name && !strcasecmp(handle->stream_name, "rtsp")) { // 对rtsp路径的处理

	 format = "rtsp";

	 if ((ext = strrchr((char *)path, '.')) == 0) {

	 ext = ".rtsp";

	 }

	 switch_snprintf(file, sizeof(file), "rtsp://%s", path);

	 disable_write_buffer = 1;

	 }

	 // 初始化FreeSWITCH内部的context结构体，用于记住该文件的各种参数

	 if ((context = (av_file_context_t *)switch_core_alloc(handle->memory_pool, sizeof(av_file_context_t))) == 0) {

	 switch_goto_status(SWITCH_STATUS_MEMERR, end);

	 }

	 memset(context, 0, sizeof(av_file_context_t));

	 handle->private_info = context; // 与FreeSWITCH内部文件句柄关联

	 if (handle->params) {

	 // FreeSWITCH内部传入的文件参数处理，略

	 }

	 // FreeSWITCH是一个多线程系统，读写文件有时候是阻塞的，需要多线程处理，初始化mutex和condition

	 switch_mutex_init(&context->mutex, SWITCH_MUTEX_NESTED, handle->memory_pool);

	 switch_thread_cond_create(&context->cond, handle->memory_pool);

	 // 创建FreeSWITCH音频缓冲区

	 switch_buffer_create_dynamic(&context->audio_buffer, 512, 512, 0);

	 if (switch_test_flag(handle, SWITCH_FILE_FLAG_READ)) { // 打开文件准备读

	 if (open_input_file(context, handle, path) != SWITCH_STATUS_SUCCESS) {

	 //clean up;

	 switch_goto_status(SWITCH_STATUS_GENERR, end);

	 }

	 if (context->has_video) { // 如果是视频文件，准备一些视频参数和缓冲区，略

	 ...

	 }

	 // 启动一个新的线程读文件，执行file_read_thread_run函数

	 switch_thread_create(&context->file_read_thread, thd_attr, file_read_thread_run, context, handle->memory_pool);

	 return SWITCH_STATUS_SUCCESS; // 如果文件是只读的，到这里就可以返回了

	 }

	 // 后面是写文件的代码，如果是录像操作，继续初始化一些参数

	 mod_avformat_alloc_output_context2(&context->fc, NULL, format, (char *)file, context);

	 fmt = context->fc->oformat; // 这是FFmpeg内部的Output Context，用于文件输出

	 if (!(fmt->flags & AVFMT_NOFILE)) { // 普通文件，使用avio_open打开

	 ret = avio_open(&context->fc->pb, file, AVIO_FLAG_WRITE);

	 }

	 if (switch_test_flag(handle, SWITCH_FILE_FLAG_VIDEO) && fmt->video_codec != AV_CODEC_ID_NONE) {

	 const AVCodecDescriptor *desc;

	 if ((handle->stream_name && (!strcasecmp(handle->stream_name, "rtmp") || !strcasecmp(handle->stream_name, "rtmps") || !strcasecmp(handle->stream_name, "youtube")))) {

	 // rtmp及youtube推流需要一些固定参数

	 fmt->audio_codec = AV_CODEC_ID_AAC;

	 handle->samplerate = 44100;

	 handle->mm.samplerate = 44100;

	 handle->mm.ab = 128;

	 handle->mm.cbr = 1;

	 }

	 }

	 if (fmt->audio_codec != AV_CODEC_ID_NONE) { // 如果有音频

	 context->audio_st[0].channels = handle->channels;

	 context->audio_st[1].sample_rate = handle->samplerate;

	 if (!context->audio_st[0].active) { // 向文件中添加一个音频流

	 add_stream(context, &context->audio_st[0], context->fc, &context->audio_codec, fmt->audio_codec, &handle->mm);

	 }

	 // 打开音频流以备写入

	 if (open_audio(context->fc, context->audio_codec, &context->audio_st[0]) != SWITCH_STATUS_SUCCESS) {

	 switch_goto_status(SWITCH_STATUS_GENERR, end);

	 }

	 context->has_audio = 1;

	 if (context->audio_st[1].active) { // 打开第2路音频流

	 if (open_audio(context->fc, context->audio_codec, &context->audio_st[1]) != SWITCH_STATUS_SUCCESS) {

	 switch_goto_status(SWITCH_STATUS_GENERR, end);

	 }

	 context->has_audio++;

	 }

	 }

	 return SWITCH_STATUS_SUCCESS;

	}

	上述代码大部分是在FreeSWITCH中打开文件的一些预处理，与FFmpeg关系不大，具体的以只读方式打开文件的代码在open_input_file函数中实现，它依赖FFmpeg中的很多函数，如果需要写文件，则在文件打开后再使用add_stream函数添加音频流。open_input_file函数代码如下：

	static switch_status_t open_input_file(av_file_context_t *context, switch_file_handle_t *handle, const char *filename)

	{

	 AVCodec *audio_codec = NULL;

	 AVCodec *video_codec = NULL;

	 AVDictionary *opts = NULL;

	 // 以FFmpeg默认的格式打开文件，如果希望以特定的格式打开，也可以传入字典参数，如

	 // av_dict_set(&opts, "c:v", "libvpx", 0); // 这段代码只是一个例子，默认是注释掉的

	 if (!context->fc) { // 首次打开文件，初始化一个FFmpeg Format Context用于跟踪文件

	 context->fc = avformat_alloc_context();

	 }

	 // 设置回调函数，以便在播放网络文件时能中断播放，防止在网络发包而对方无响应时卡死整个系统

	 context->fc->interrupt_callback.callback = interrupt_cb;

	 context->fc->interrupt_callback.opaque = context;

	 // 可以调用FFmpeg函数打开文件了

	 if ((error = avformat_open_input(&context->fc, filename, NULL, NULL)) < 0) {

	 // 错误处理

	 }

	 // 判断文件是否支持播放中跳转

	 handle->seekable = context->fc->iformat->read_seek2 ? 1 : (context->fc->iformat->read_seek ? 1 : 0);

	 // 获取文件信息

	 if ((error = avformat_find_stream_info(context->fc, opts ? &opts : NULL)) < 0) {

	 }

	 av_dump_format(context->fc, 0, filename, 0); // 在日志中打印文件信息，方便调试

	 for (i = 0; i< context->fc->nb_streams; i++) { // 遍历文件中所有的音视频流

	GCC_DIAG_OFF(deprecated-declarations) // 这里用到一些旧函数，该宏用于防止编译器警告

	 if (context->fc->streams[i]->codec->codec_type == AVMEDIA_TYPE_AUDIO && context->has_audio < 2 && idx < 2) {

	 context->audio_st[idx++].st = context->fc->streams[i];

	 context->has_audio++; // 发现音频流

	 } else if (context->fc->streams[i]->codec->codec_type == AVMEDIA_TYPE_VIDEO && !context->has_video) {

	GCC_DIAG_ON(deprecated-declarations)

	 context->video_st.st = context->fc->streams[i];

	 if (switch_test_flag(handle, SWITCH_FILE_FLAG_VIDEO)) {

	 context->has_video = 1; // 发现视频流

	 // 计算视频长度

	 handle->duration = av_rescale_q(context->video_st.st->duration != AV_NOPTS_VALUE ? context->video_st.st->duration : context->fc->duration / AV_TIME_BASE * 1000,

	 context->video_st.st->time_base, AV_TIME_BASE_Q);

	 }

	 if (context->fc->bit_rate) { // 视频码率

	 handle->mm.source_kps = context->fc->bit_rate / 1024;

	 }

	 if (context->video_st.st->avg_frame_rate.num) { // 获取帧率

	 handle->mm.source_fps = ceil(av_q2d(context->video_st.st->avg_frame_rate));

	 } else { // 无法获取帧率，设置一个固定帧率

	 handle->mm.source_fps = 25;

	 }

	 context->read_fps = (int)handle->mm.source_fps; // 将帧率告诉FreeSWITCH核心

	 }

	 }

	GCC_DIAG_OFF(deprecated-declarations) // 查找音频解码器

	 if (context->has_audio && !(audio_codec = avcodec_find_decoder(context->audio_st[0].st->codec->codec_id))) {

	 context->has_audio = 0; // 如果找不到解码器就不开音频

	 }

	 // 查找视频解码器

	 if (context->has_video && !(video_codec = avcodec_find_decoder(context->video_st.st->codec->codec_id))) {

	 context->has_video = 0; // 如果找不到解码器就不开视频

	 }

	 // 打开音频解码器，如果失败就不开音频

	 if (context->has_audio && (error = avcodec_open2(context->audio_st[0].st->codec, audio_codec, NULL)) < 0) {

	 context->has_audio = 0;

	 }

	 // 如果有多个音频流也打开

	 if (context->has_audio == 2 && (error = avcodec_open2(context->audio_st[1].st->codec, audio_codec, NULL)) < 0) {

	 }

	 // 打开视频解码器，如果失败就不开视频

	 if (context->has_video && (error = avcodec_open2(context->video_st.st->codec, video_codec, NULL)) < 0) {

	 context->has_video = 0;

	 }

	GCC_DIAG_ON(deprecated-declarations)

	 context->video_st.active = 1;

	 if ((!context->has_audio) && (!context->has_video)) {

	 // 音视频都没有，返回错误

	 }

	 if (context->has_audio) {

	GCC_DIAG_OFF(deprecated-declarations)

	 AVCodecContext *c[2] = { NULL }; // 最多支持两个声道

	 c[0] = context->audio_st[0].st->codec; // 声道0的codec

	 if (context->audio_st[1].st && context->audio_st[1].st->codec) {

	 c[1] = context->audio_st[1].st->codec; // 如果有声道1，也处理

	 }

	GCC_DIAG_ON(deprecated-declarations)

	 context->audio_st[0].frame = av_frame_alloc(); // 初始化FFmpeg中的avframe

	 context->audio_st[0].active = 1;

	 if (c[1]) { // 每个声道都需要有一个对应的avframe

	 context->audio_st[1].frame = av_frame_alloc();

	 }

	 if (c[0] && c[1]) { // 多声道处理

	 context->audio_st[0].channels = 1;

	 context->audio_st[1].channels = 1;

	 } else { // 单个音频流里也可能有两个声道，但最多处理两个声道

	 handle->channels = c[0]->channels > 2 ? 2 : c[0]->channels;

	 context->audio_st[0].channels = handle->channels;

	 }

	 context->audio_st[0].sample_rate = handle->samplerate; // 采样率

	 context->audio_st[1].sample_rate = handle->samplerate;

	GCC_DIAG_OFF(deprecated-declarations)

	 if (context->audio_st[0].st->codec->sample_fmt != AV_SAMPLE_FMT_S16 || context->audio_st[0].st->codec->sample_rate != handle->samplerate) {

	GCC_DIAG_ON(deprecated-declarations)

	 // FreeSWITCH内部使用16位PCM线性编码，对应AV_SAMPLE_FMT_S16，如果不一致，则需要转码

	 int x;

	 for (x = 0; x < context->has_audio && x < 2 && c[x]; x++) {

	 struct SwrContext *resample_ctx = swr_alloc(); // 重采样

	 if (resample_ctx) {

	 int ret;

	 // 设置输出、输出声道数、编码和采样率等，以便转码

	 av_opt_set_int(resample_ctx, "in_channel_count", c[x]->channels, 0);

	 av_opt_set_int(resample_ctx, "in_sample_rate", c[x]->sample_rate, 0);

	 av_opt_set_int(resample_ctx, "in_sample_fmt", c[x]->sample_fmt, 0);

	 av_opt_set_int(resample_ctx, "in_channel_layout",

	 (c[x]->channel_layout == 0 && c[x]->channels == 2) ? AV_CH_LAYOUT_STEREO : c[x]->channel_layout, 0);

	 av_opt_set_int(resample_ctx, "out_channel_count", handle->channels, 0);

	 av_opt_set_int(resample_ctx, "out_sample_rate", handle->samplerate,0);

	 av_opt_set_int(resample_ctx, "out_sample_fmt", AV_SAMPLE_FMT_S16, 0);

	 av_opt_set_int(resample_ctx, "out_channel_layout", handle->channels == 2 ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO, 0);

	 if ((ret = swr_init(resample_ctx)) < 0) { // 初始化转码器

	 }

	 context->audio_st[x].resample_ctx = resample_ctx;

	 }

	 }

	 }

	 }

	 if (!context->has_video) { // 如果文件中没有视频，告诉FreeSWITCH核心

	 switch_clear_flag(handle, SWITCH_FILE_FLAG_VIDEO);

	 } else { // 有视频

	GCC_DIAG_OFF(deprecated-declarations)

	 // FreeSWITCH内部支持ARGB和I420两种视频格式，不管视频文件是何种格式，只能以这两种格式打开

	 switch (context->video_st.st->codec->pix_fmt) {

	 case AV_PIX_FMT_YUVA420P:

	 case AV_PIX_FMT_RGBA:

	 case AV_PIX_FMT_ARGB:

	 case AV_PIX_FMT_BGRA:

	 context->handle->mm.fmt = SWITCH_IMG_FMT_ARGB;

	 break;

	 default:

	 context->handle->mm.fmt = SWITCH_IMG_FMT_I420;

	 break;

	 }

	GCC_DIAG_ON(deprecated-declarations)

	 }

	 return status;

	}

	上述代码是读文件的接口，如果打开文件是为了写入（如录像或推流），则参数有所不同。它是在以下函数中实现的：

	static int mod_avformat_alloc_output_context2(AVFormatContext **avctx, AVOutputFormat *oformat,

	 const char *format, const char *filename, av_file_context_t *context)

	{

	 AVFormatContext *s = avformat_alloc_context(); // 初始化一个AVFormatContext

	 // 也要设置打断回调函数，作用与open_input_file中相同

	 s->interrupt_callback.callback = interrupt_cb;

	 s->interrupt_callback.opaque = context;

	 *avctx = NULL;

	 if (!oformat) { oformat是一个AVOutputFormat指针

	 if (format) { // 如果有相关提示

	 oformat = av_guess_format(format, NULL, NULL);

	 } else { // 缺少文件相关信息，根据文件名filename考虑

	 oformat = av_guess_format(NULL, filename, NULL);

	 }

	 }

	 s->oformat = oformat; // 记住这个输出格式

	 if (s->oformat->priv_data_size > 0) { // 获取一些内部信息

	 s->priv_data = av_mallocz(s->oformat->priv_data_size);

	 if (s->oformat->priv_class) {

	 *(const AVClass**)s->priv_data= s->oformat->priv_class;

	 av_opt_set_defaults(s->priv_data);

	 }

	 } else

	 s->priv_data = NULL;

	 if (filename) {

	#if (LIBAVCODEC_VERSION_INT < AV_VERSION_INT(58,7,100))

	 av_strlcpy(s->filename, filename, sizeof(s->filename));

	#else

	 s->url = av_strdup(filename);

	 switch_assert(s->url);

	#endif

	 }

	 *avctx = s; // 打开成功，返回这个AVFormatContext

	 return 0;

	}

	另外，如果打开文件准备写的话，也会调用open_audio函数打开音频媒体流。该函数实现如下：

	static switch_status_t open_audio(AVFormatContext *fc, AVCodec *codec, MediaStream *mst)

	{

	 AVCodecContext *c;

	 int ret;

	 switch_status_t status = SWITCH_STATUS_FALSE;

	GCC_DIAG_OFF(deprecated-declarations)

	 c = mst->st->codec;

	GCC_DIAG_ON(deprecated-declarations)

	 ret = avcodec_open2(c, codec, NULL); // 打开这个音频流

	 if (ret == AVERROR_EXPERIMENTAL) { // 如果是实验型编码，则添加参数强制打开

	 c->strict_std_compliance = FF_COMPLIANCE_EXPERIMENTAL;

	 ret = avcodec_open2(c, codec, NULL);

	 }

	 mst->frame = av_frame_alloc(); // 申请一个AVStream

	 mst->frame->sample_rate = c->sample_rate; // 采样率

	 mst->frame->format = AV_SAMPLE_FMT_S16; // 使用与FreeSWITCH中一致的PCM格式

	 mst->frame->channel_layout = c->channel_layout;

	 // 设置音频帧一帧的采样点数

	 if (c->codec->capabilities & AV_CODEC_CAP_VARIABLE_FRAME_SIZE) {

	 mst->frame->nb_samples = (mst->frame->sample_rate / 50) * c->channels;

	 } else {

	 mst->frame->nb_samples = c->frame_size;

	 }

	 if (c->sample_fmt != AV_SAMPLE_FMT_S16 || c->sample_rate != mst->sample_rate) {

	 // 需要重采样

	 mst->resample_ctx = swr_alloc();

	 // 设置重采样输入输出参数

	 av_opt_set_int(mst->resample_ctx, "in_channel_count", c->channels, 0);

	 av_opt_set_int(mst->resample_ctx, "in_sample_rate", c->sample_rate, 0);

	 av_opt_set_int(mst->resample_ctx, "in_sample_fmt", AV_SAMPLE_FMT_S16, 0);

	 av_opt_set_int(mst->resample_ctx, "in_channel_layout", c->channel_layout, 0);

	 av_opt_set_int(mst->resample_ctx, "out_channel_count", c->channels, 0);

	 av_opt_set_int(mst->resample_ctx, "out_sample_rate", c->sample_rate, 0);

	 av_opt_set_int(mst->resample_ctx, "out_sample_fmt", c->sample_fmt, 0);

	 av_opt_set_int(mst->resample_ctx, "out_channel_layout", c->channel_layout, 0);

	 if ((ret = swr_init(mst->resample_ctx)) < 0) { // 出错处理，略

	 }

	 }

	 ret = av_frame_get_buffer(mst->frame, 0);

	 if (mst->resample_ctx) {

	 mst->tmp_frame = av_frame_alloc(); // 初始化一个临时AVFrame，备用

	 mst->tmp_frame->sample_rate = c->sample_rate;

	 mst->tmp_frame->format = c->sample_fmt;

	 mst->tmp_frame->channel_layout = c->channel_layout;

	 mst->tmp_frame->nb_samples = mst->frame->nb_samples;

	 ret = av_frame_get_buffer(mst->tmp_frame, 0); // 初始化该AVFrame的缓冲区

	 }

	 return SWITCH_STATUS_SUCCESS;

	}

	open_audio函数主要是为了打开输出的音频码流，并申请一些AVFrame备用，这些AVFrame在该文件句柄生存期间都可以重用，不用重复申请。

	2. av_file_read

	读音频比较简单，它只需要把音频读到FreeSWITCH传入的缓冲区里即可。输入参数如下。

	・handle：文件句柄。

	・data：音频缓冲区。

	・len：长度指针，输入是期望读到的采样点数，输出是实际读到的采样点数。

	FreeSWITCH内部使用16位PCM线性编码，一个采样点的每个声道占2字节，是一个16位整数（short类型或int_16）。代码如下：

	static switch_status_t av_file_read(switch_file_handle_t *handle, void *data, size_t *len)

	{

	 av_file_context_t *context = (av_file_context_t *)handle->private_info;

	 int size;

	 size_t need = *len * 2 * context->audio_st[0].channels; // 计算需要的字节数

	 if (!context->has_audio && context->has_video && context->file_read_thread_running) {

	 // 如果文件中没有音频，则返回对应长度的静音数据

	 memset(data, 0, *len * handle->channels * 2);

	 return SWITCH_STATUS_SUCCESS;

	 }

	 // 数据缓冲区是由另一个线程负责的，因此需要加锁

	 switch_mutex_lock(context->mutex);

	 while (!context->file_read_thread_started) {

	 // 等待读线程启动，这个过程通常非常短，而且由于这里有一个condition，忙等待是允许的

	 // 这是FreeSWITCH内部的一个同步机制，无须深究

	 switch_thread_cond_wait(context->cond, context->mutex);

	 }

	 switch_mutex_unlock(context->mutex);

	 if (context->closed || (!context->file_read_thread_running && switch_buffer_inuse(context->audio_buffer) == 0)) {

	 *len = 0; // 如果读到结尾则退出

	 return SWITCH_STATUS_FALSE;

	 }

	 while (context->has_video && !context->vid_ready && !context->closed) {

	 switch_yield(1000); // 如果有视频，则尝试做一下音视频同步，等待视频就绪

	 }

	 switch_mutex_lock(context->mutex); // 加锁，从音频缓冲区中读数据

	 size = switch_buffer_read(context->audio_buffer, data, need);

	 switch_mutex_unlock(context->mutex);

	 if (size == 0) { // 如果未读到数据则返回静音数据

	 size_t blank = (handle->samplerate / 20) * 2 * handle->real_channels;

	 if (need > blank) {

	 need = blank;

	 }

	 memset(data, 0, need);

	 *len = need / 2 / handle->real_channels;

	 } else { // 返回真实读到的长度，将字节数转换成以采样点为单位

	 *len = size / context->audio_st[0].channels / 2;

	 }

	 handle->pos += *len; // 记住音频的位置

	 handle->sample_count += *len; // 记住读到的采样点数

	 return *len == 0 ? SWITCH_STATUS_FALSE : SWITCH_STATUS_SUCCESS;

	}

	数据是从音频缓冲区（context->audio_buffer）中读的，而这个缓冲区是由单独的线程负责的，我们已经在前面提到了线程启动。下面是线程执行的函数代码：

	static void *SWITCH_THREAD_FUNC file_read_thread_run(switch_thread_t *thread, void *obj)

	{

	 av_file_context_t *context = (av_file_context_t *) obj;

	 AVPacket pkt = { 0 };

	 switch_mutex_lock(context->mutex);

	 context->file_read_thread_started = 1;

	 context->file_read_thread_running = 1;

	 switch_thread_cond_signal(context->cond); // 通知在这个condition上等待的线程“本线程已就绪”

	 switch_mutex_unlock(context->mutex);

	 // 循环读文件

	 while (context->file_read_thread_running && !context->closed) {

	 int vid_frames = 0;

	 if (context->seek_ts >= 0) { // 处理文件跳转

	 avformat_seek_file(context->fc, stream_id, 0, context->seek_ts, INT64_MAX, 0);

	 // 清空已读到的音视频缓冲区数据等，略

	 }

	 if (context->has_video) { // 将视频帧读到一个FreeSWITCH内部队列里，计算队列大小

	 vid_frames = switch_queue_size(context->eh.video_queue);

	 }

	 if (switch_buffer_inuse(context->audio_buffer) > AUDIO_BUF_SEC * context->handle->samplerate * context->handle->channels * 2 &&

	 (!context->has_video || vid_frames > 5)) {

	 // 尝试做一些音视频同步，防止读音频过快

	 switch_yield(context->has_video ? 1000 : 10000);

	 continue;

	 }

	 av_init_packet(&pkt);

	 if ((error = av_read_frame(context->fc, &pkt)) < 0) { // 将数据读到pkt里

	 if (error == AVERROR_EOF) { // 读到文件结尾了

	 if (!context->has_video) break;

	 eof = 1;

	 }

	 }

	 if (context->has_video && pkt.stream_index == context->video_st.st->index) { // 这是一个视频帧

	 AVFrame *vframe;

	 switch_image_t *img;

	 if (context->no_video_decode) { // 非解码模式，直接返回视频原始码流

	 if (eof) {

	 break;

	 } else {

	 switch_status_t status;

	 AVPacket *new_pkt = malloc(sizeof(AVPacket));

	 av_init_packet(new_pkt);

	 av_packet_ref(new_pkt, &pkt); // 将数据复制到new_pkt

	 // 推到视频队列中

	 status = switch_queue_push(context->video_pkt_queue, new_pkt);

	 context->vid_ready = 1; // 视频已就绪

	 av_packet_unref(&pkt); // 可以释放pkt引用计数了

	 continue;

	 }

	 }

	 if (!sync) { // 简单音视频同步机制，略

	 switch_buffer_zero(context->audio_buffer);

	 sync = 1;

	 }

	again: // 下面是解码模式，需要循环解码

	 vframe = av_frame_alloc(); // 初始化一个AVFrame

	GCC_DIAG_OFF(deprecated-declarations) // 调用旧的解码函数进行解码

	 if ((error = avcodec_decode_video2(context->video_st.st->codec, vframe, &got_data, &pkt)) < 0) {

	GCC_DIAG_ON(deprecated-declarations)

	 }

	 av_packet_unref(&pkt); // 解码后pkt就不需要了，释放引用计数

	 if (got_data && error >= 0) { // 如果解码成功

	 switch_img_fmt_t fmt = SWITCH_IMG_FMT_I420;

	 if ((

	 vframe->format == AV_PIX_FMT_YUVA420P ||

	 vframe->format == AV_PIX_FMT_RGBA ||

	 vframe->format == AV_PIX_FMT_ARGB ||

	 vframe->format == AV_PIX_FMT_BGRA)) {

	 fmt = SWITCH_IMG_FMT_ARGB; // 带有Alpha通道的视频

	 } else if (vframe->format != AV_PIX_FMT_YUV420P) {

	 // FreeSWITCH内部使用I420格式的视频，对应AV_PIX_FMT_YUV420P

	 // 如果不匹配，则需要转码

	 AVFrame *frm = vframe;

	 int ret;

	 if (!context->video_st.sws_ctx) { // 初始化视频转码器

	 context->video_st.sws_ctx =

	 sws_getContext(frm->width, frm->height,

	 frm->format,

	 frm->width, frm->height,

	 AV_PIX_FMT_YUV420P,

	 SCALE_FLAGS, NULL, NULL, NULL);

	 }

	 vframe = av_frame_alloc(); // 申请一个AVFrame

	 vframe->format = AV_PIX_FMT_YUV420P; // 设置目标视频格式

	 vframe->width = frm->width;

	 vframe->height = frm->height;

	 vframe->pts = frm->pts;

	GCC_DIAG_OFF(deprecated-declarations)

	 vframe->pkt_pts = frm->pkt_pts;

	GCC_DIAG_ON(deprecated-declarations)

	 vframe->pkt_dts = frm->pkt_dts;

	 ret = av_frame_get_buffer(vframe, 32);

	 // 进行视频转码

	 ret = sws_scale(context->video_st.sws_ctx, (const uint8_t *const *)frm->data, frm->linesize,

	 0, frm->height, vframe->data, vframe->linesize);

	 av_frame_free(&frm);

	 }

	 context->handle->mm.fmt = fmt;

	 // 至此，vframe中的视频应该是AV_PIX_FMT_YUV420P格式

	 // 初始化一个FreeSWITCH内部的图像格式

	 img = switch_img_alloc(NULL, fmt, vframe->width, vframe->height, 1);

	 if (img) {

	 int64_t *pts = malloc(sizeof(int64_t));

	 if (pts) {

	GCC_DIAG_OFF(deprecated-declarations)

	 *pts = vframe->pkt_pts;

	GCC_DIAG_ON(deprecated-declarations)

	 avframe2img(vframe, img); // 将vframe转换成FreeSWITCH中的图像格式

	 img->user_priv = pts;

	 context->vid_ready = 1; // 视频准备就绪

	 // 将视频推入队列

	 switch_queue_push(context->eh.video_queue, img);

	 context->last_vid_push = switch_time_now();

	 }

	 }

	 }

	 av_frame_free(&vframe); // 释放vframe

	 if (eof) {

	 if (got_data) {

	 goto again; // 读到结尾，继续循环直到读完解码器中的所有数据

	 } else {

	 break;

	 }

	 }

	 continue;

	 } else if (context->has_audio && pkt.stream_index == context->audio_st[0].st->index) { // 音频

	 AVFrame in_frame = { { 0 } };

	GCC_DIAG_OFF(deprecated-declarations) // 调用旧的API对音频进行解码

	 if ((error = avcodec_decode_audio4(context->audio_st[0].st->codec, &in_frame, &got_data, &pkt)) < 0) {

	GCC_DIAG_ON(deprecated-declarations)

	 av_packet_unref(&pkt);

	 continue;

	 }

	 av_packet_unref(&pkt); // 解除pkt引用

	 if (got_data) { // 如果解码得到数据

	 if (context->audio_st[0].resample_ctx) { // 如果需要转码或重采样

	 int out_samples = swr_get_out_samples(context->audio_st[0].resample_ctx, in_frame.nb_samples);

	 int ret;

	 uint8_t *data[2] = { 0 };

	 data[0] = malloc(out_samples * context->audio_st[0].channels * 2);

	 switch_assert(data[0]);

	 // 转码，重采样

	 ret = swr_convert(context->audio_st[0].resample_ctx, data, out_samples,

	 (const uint8_t **)in_frame.data, in_frame.nb_samples);

	 if (ret) {

	 // 加锁，将解码后的数据写入音频缓冲区，以便另一个线程可以读取它

	 switch_mutex_lock(context->mutex);

	 switch_buffer_write(context->audio_buffer, data[0], ret * 2 * context->audio_st[0].channels);

	 switch_mutex_unlock(context->mutex);

	 }

	 free(data[0]);

	 } else { // 无须转码，直接将音频数据写入缓冲区

	 switch_mutex_lock(context->mutex);

	 switch_buffer_write(context->audio_buffer, in_frame.data[0], in_frame.nb_samples * 2 * context->audio_st[0].channels);

	 switch_mutex_unlock(context->mutex);

	 }

	 }

	 } else {

	 av_packet_unref(&pkt);

	 }

	 }

	 // 结束后往队列中推一个空指针，队列的另一端（消费者）就知道视频结束了

	 if (context->has_video) switch_queue_push(context->eh.video_queue, NULL);

	 context->file_read_thread_running = 0;

	 return NULL;

	}

	从上述代码可以看出，一个专门的线程负责从文件（或网络URL）中读取数据，音频放入音频缓冲区（连续的字节流），视频转换成一帧一帧的图像推入一个队列。其他线程就可以从这些缓冲区或队列中读取数据。

	3. av_file_read_video

	读取视频数据。在FreeSWITCH中，音频和视频是分开读取的，甚至是在不同的线程里读取的，因此需要处理一些音视频同步操作。输入参数如下。

	・handle：文件句柄。

	・frame：FreeSWITCH音视频帧结构。

	・flags：一些标志。

	static switch_status_t av_file_read_video(switch_file_handle_t *handle, switch_frame_t *frame, switch_video_read_flag_t flags)

	{

	 av_file_context_t *context = (av_file_context_t *)handle->private_info;

	 void *pop;

	 MediaStream *mst = &context->video_st;

	 AVStream *st = mst->st;

	 int ticks = 0;

	 int64_t max_delta = 1 * AV_TIME_BASE; // 允许不同步的最大偏差

	 switch_status_t status = SWITCH_STATUS_SUCCESS;

	 double fl_to = 0.02;

	 int do_fl = 0;

	 int smaller_ts = context->read_fps;

	 if (context->no_video_decode) { // 非解码模式，在单独的函数中处理

	 switch_set_flag(frame, SFF_ENCODED);

	 status = no_video_decode_packets(handle, frame, flags);

	 return status;

	 }

	 if (!context->file_read_thread_running && switch_queue_size(context->eh.video_queue) == 0) {

	 // 如果读线程停止并且视频队列中没有内容了，就可以返回了

	 return SWITCH_STATUS_FALSE;

	 }

	 if (context->read_paused || context->seek_ts == -2) { // 暂停，或发生了跳转，略

	 }

	GCC_DIAG_OFF(deprecated-declarations)

	 if (st->codec->time_base.num) { // 尝试读取ticks的值

	 ticks = st->parser ? st->parser->repeat_pict + 1 : st->codec->ticks_per_frame;

	 }

	GCC_DIAG_ON(deprecated-declarations)

	again:

	 if (context->last_img) { // 如果记住了上一帧图像，则使用上一帧图像

	 pop = (void *) context->last_img;

	 context->last_img = NULL;

	 status = SWITCH_STATUS_SUCCESS;

	 } else {

	 if ((flags & SVR_BLOCK)) { // 阻塞读，直到队列中有内容

	 status = switch_queue_pop(context->eh.video_queue, &pop);

	 } else { // 非阻塞读，不管队列中是否有内容都立即返回

	 status = switch_queue_trypop(context->eh.video_queue, &pop);

	 }

	 }

	 if (pop && status == SWITCH_STATUS_SUCCESS) { // 如果读到图像

	 switch_image_t *img = (switch_image_t *)pop; // 从队列中读到的图像指针

	 int64_t pts;

	 int64_t now = switch_time_now(); // 当前时间

	 pts = av_rescale_q(*((uint64_t *)img->user_priv), st->time_base, AV_TIME_BASE_Q); // 根据time_base计算pts

	 handle->vpos = pts;

	 if (!context->video_start_time) { // 第1帧，或者当发生暂停、恢复时这个值都会清零

	 context->video_start_time = now - pts; // 把这个时间当作视频开始时间，简单同步

	 }

	 if (st->time_base.num == 0) { // 有的视频无法获取时间基准

	 mst->next_pts = 0;

	 } else {

	 mst->next_pts = context->video_start_time + pts; // 计算下一帧的时间

	 }

	 if (pts == 0 || context->video_start_time == 0) mst->next_pts = 0;

	 if ((mst->next_pts && (now - mst->next_pts) > max_delta)) {

	 // 如果下一帧的时间超过了max_delta（1秒），则说明视频滞后

	 if (switch_queue_size(context->eh.video_queue) > 0) {

	 goto again; // 如果队列中还有其他帧，则丢掉当前帧，重读

	 } else if (!(flags & SVR_BLOCK) && !do_fl) { // 非阻塞环境直接返回，让调用者决定是否立即重读

	 mst->next_pts = 0;

	 context->video_start_time = 0;

	 return SWITCH_STATUS_BREAK;

	 }

	 }

	 if ((flags & SVR_BLOCK)) { // 阻塞读

	 while (switch_micro_time_now() - mst->next_pts < -10000) {

	 switch_yield(1000); // 如果视频比较快，则等一会儿再返回

	 }

	 frame->img = img; // 返回这帧图像

	 } else { // 非阻塞读

	 if (switch_micro_time_now() - mst->next_pts > -10000) {

	 frame->img = img; // 如果当前帧的时间比预计时间早10毫秒以下，就直接返回

	 } else {// 视频来得比较快，还不到播放的时间

	 switch_img_free(&context->last_img);

	 context->last_img = img; // 存在context里，等下一次再读

	 return SWITCH_STATUS_BREAK; // 告诉调用者慢一点读

	 }

	 }

	 } else {

	 return SWITCH_STATUS_BREAK; // 没有图像，告诉调用者下次再读

	 }

	 resize_check:

	 if (frame->img) {

	 if (context->handle->mm.scale_w && context->handle->mm.scale_h) {

	 if (frame->img->d_w != context->handle->mm.scale_w || frame->img->d_h != context->handle->mm.scale_h) {

	 // 如果需要的话进行缩放

	 switch_img_fit(&frame->img, context->handle->mm.scale_w, context->handle->mm.scale_h, SWITCH_FIT_SCALE);

	 }

	 }

	 context->vid_ready = 1;

	 }

	 if ((flags & SVR_BLOCK)) { // 阻塞读，如果有图像就返回成功，否则返回失败

	 if (!frame->img) context->closed = 1;

	 return frame->img ? SWITCH_STATUS_SUCCESS : SWITCH_STATUS_FALSE;

	 } else { // 非阻塞读，有图像返回成功，否则返回BREAK，告诉调用者自己阻塞一下再回来读

	 return frame->img ? SWITCH_STATUS_SUCCESS : SWITCH_STATUS_BREAK;

	 }

	}

	该函数支持阻塞和非阻塞方式读取文件。一般来说，调用者应该以帧率的频率调用该接口，这时阻塞和非阻塞基本是一样的。但有时调用者的线程只是单纯负责读视频，如果读不到也没有别的任务，这时候就可以使用阻塞读，把阻塞的时间和算法留给本模块处理。阻塞调用比较简单。但有时一个线程可能有其他任务，在读不到视频时可能进行一些其他处理，这时就可以用非阻塞调用，如果读不到数据，则等待一个1/fps周期再读。

	代码中也实现了简单的视频时钟，根据视频中的pts可以算出一个基本的图像呈现时间，最多提前10毫秒返回，并根据视频到来的快慢进行一些丢帧，或重放上一帧等操作。

	上述函数在读取成功时会返回一帧图像，因而需要对视频进行解码。但解码比较耗费CPU，如果没有必要解码，比如在目标码流与视频中的码流一致的情况下可以使用非解码方式读，以提高效率。当然，非解码方式是有限制的，比如要求源视频的视频格式本身是H264的，且不能有B帧（实时流媒体通常不使用B帧），关键帧间隔（GoP）也不能太长，通常为2～3秒，因为在不解码的情况下也无法重新编码以产生关键帧，在发生丢包且无法补偿的情况下只能寄希望于下一个关键帧快点到来。排除这些限制后，在很多场景下该方法还是有用的，因而代码也有必要解释一下。比起解码方式，此代码要简单一些。详解如下：

	static switch_status_t no_video_decode_packets(switch_file_handle_t *handle, switch_frame_t *frame, switch_video_read_flag_t flags)

	{

	 av_file_context_t *context = (av_file_context_t *)handle->private_info;

	 MediaStream *mst = &context->video_st;

	 AVStream *st = mst->st;

	 switch_status_t status = SWITCH_STATUS_SUCCESS;

	 AVPacket *pkt;

	 int64_t pts;

	 if (!context->packetizer) { // 读到的H264字节流是整个NALU，如果太长需要分包

	 // 这个分包器是在FreeSWITCH核心中实现的

	 context->packetizer = switch_packetizer_create(SPT_H264_SIZED_BITSTREAM, SLICE_SIZE);

	 if (!context->packetizer) return SWITCH_STATUS_FALSE;

	 switch_packetizer_feed_extradata(context->packetizer, st->codecpar->extradata, st->codecpar->extradata_size);

	 }

	 if (context->last_read_pkt) { // 如果缓存的内容没有读完，则继续从分包器读

	 status = switch_packetizer_read(context->packetizer, frame);

	 if (status == SWITCH_STATUS_SUCCESS) {

	 av_packet_unref(context->last_read_pkt);

	 free(context->last_read_pkt);

	 context->last_read_pkt = NULL;

	 }

	 return status;

	 }

	 // 从视频队列中读取一个NALU，这是未解码的字节流

	 status = switch_queue_trypop(context->video_pkt_queue, (void **)&pkt);

	 if (status != SWITCH_STATUS_SUCCESS || !pkt) {

	 switch_cond_next();

	 return SWITCH_STATUS_BREAK; // 如果没有读到内容，就告诉调用者慢点读

	 }

	 context->last_read_pkt = pkt; // 记住这个字节流，以便分包读取

	 // 将字节流数据喂进分包器

	 switch_packetizer_feed(context->packetizer, pkt->data, pkt->size);

	 // 从分包器中读取一个分包

	 status = switch_packetizer_read(context->packetizer, frame);

	 // 重新计算pts

	 pts = av_rescale_q(pkt->pts, st->time_base, AV_TIME_BASE_Q);

	 frame->timestamp = pts * 9 / 100; // scale to sample 900000

	 if (status == SWITCH_STATUS_SUCCESS) { // 这说明未分包或已读到最后一个分包

	 av_packet_unref(context->last_read_pkt); // 释放记住的pkt

	 free(context->last_read_pkt);

	 context->last_read_pkt = NULL;

	 }

	 if (status == SWITCH_STATUS_SUCCESS || status == SWITCH_STATUS_MORE_DATA) {

	 if (!context->video_start_time) { // 计算视频开始时间

	 context->video_start_time = switch_time_now() - pts;

	 } else if (flags & SVR_BLOCK) { // 阻塞读

	 int64_t sleep = pts - (switch_time_now() - context->video_start_time);

	 if (sleep > 0) { // 如果视频来得太快则等一会儿

	 if (sleep > 1000000) {

	 sleep = 1000000;

	 }

	 switch_yield(sleep);

	 } else { // 若视频来得太慢，则打印警告

	 switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_WARNING, "video is late %" SWITCH_INT64_T_FMT "\n", sleep);

	 }

	 }

	 }

	 return status;

	}

	从上述代码可以看出，非解码数据读取的主要工作是分包。好在FreeSWITCH核心中已实现了H264分包器，代码就简单多了。

	4. av_file_write

	写音频数据。输入参数如下。

	・handle：文件句柄。

	・data：音频数据，16位PCM格式。

	・len：长度，以采样点为单位。

	static switch_status_t av_file_write(switch_file_handle_t *handle, void *data, size_t *len)

	{

	 uint32_t datalen = 0;

	 switch_status_t status = SWITCH_STATUS_SUCCESS;

	 av_file_context_t *context = (av_file_context_t *)handle->private_info;

	 uint32_t bytes;

	 int inuse;

	 int sample_start = 0;

	 if (!context->vid_ready) {

	 if (switch_test_flag(handle, SWITCH_FILE_FLAG_VIDEO)) {

	 // 如果有视频的话，等视频来了再写音频，否则可能播放不正常

	 switch_buffer_zero(context->audio_buffer);

	 return status;

	 } else if (!context->aud_ready) { // 纯音频录音

	 // 初始化写文件

	 int ret = avformat_write_header(context->fc, NULL);

	 context->aud_ready = 1;

	 }

	 }

	 if (data && len) {

	 datalen = *len * 2 * handle->channels; // 根据采样点数计算实际的字节数

	 // 写入音频缓冲区

	 switch_buffer_write(context->audio_buffer, data, datalen);

	 }

	GCC_DIAG_OFF(deprecated-declarations)

	 // 计算编码后的字节数

	 bytes = context->audio_st[0].frame->nb_samples * 2 * context->handle->channels;

	GCC_DIAG_ON(deprecated-declarations)

	 if (context->closed) { // 快结束了

	 inuse = switch_buffer_inuse(context->audio_buffer);

	 if (inuse < bytes) { // 填充，某些音频编码器如MP4用的AAC编码需要填充满缓冲区

	 char buf[SWITCH_RECOMMENDED_BUFFER_SIZE] = {0};

	 switch_buffer_write(context->audio_buffer, buf, bytes - inuse);

	 }

	 }

	 while ((inuse = switch_buffer_inuse(context->audio_buffer)) >= bytes) {

	 AVPacket pkt[2] = { {0} };

	 int got_packet[2] = {0};

	 int j = 0, ret = -1, audio_stream_count = 1;

	 AVFrame *use_frame = NULL;

	 av_init_packet(&pkt[0]);

	 av_init_packet(&pkt[1]);

	 if (context->audio_st[1].active) {

	 // 多声道处理，略

	 } else {

	 // 从FreeSWITCH音频缓冲区读到FFmpeg的frame中

	 switch_buffer_read(context->audio_buffer, context->audio_st[0].frame->data[0], bytes);

	 }

	 for (j = 0; j < audio_stream_count; j++) { // 循环处理多个音频流

	 av_frame_make_writable(context->audio_st[j].frame);

	 use_frame = context->audio_st[j].frame;

	 if (context->audio_st[j].resample_ctx) { // 如有必要则重采样

	 int out_samples = swr_get_out_samples(context->audio_st[j].resample_ctx, context->audio_st[j].frame->nb_samples);

	 av_frame_make_writable(context->audio_st[j].tmp_frame);

	 // 重采样

	 ret = swr_convert(context->audio_st[j].resample_ctx,

	 context->audio_st[j].tmp_frame->data, out_samples,

	 (const uint8_t **)context->audio_st[j].frame->data, context->audio_st[j].frame->nb_samples);

	 use_frame = context->audio_st[j].tmp_frame;

	 }

	 use_frame->pts = context->audio_st[j].next_pts;

	GCC_DIAG_OFF(deprecated-declarations) // 调用旧的接口进行视频编码

	 ret = avcodec_encode_audio2(context->audio_st[j].st->codec, &pkt[j], use_frame, &got_packet[j]);

	GCC_DIAG_ON(deprecated-declarations)

	 context->audio_st[j].next_pts += use_frame->nb_samples;

	 }

	 for (j = 0; j < audio_stream_count; j++) { // 循环处理多个音频流

	 if (got_packet[j]) { // 如果编码成功

	 if (context->mutex) switch_mutex_lock(context->mutex);

	GCC_DIAG_OFF(deprecated-declarations)

	 // 将音频写入文件

	 ret = write_frame(context->fc, &context->audio_st[j].st->codec->time_base, context->audio_st[j].st, &pkt[j]);

	GCC_DIAG_ON(deprecated-declarations)

	 if (context->mutex) switch_mutex_unlock(context->mutex);

	 }

	 }

	 }

	 end:

	 return status;

	}

	其中，如果单纯是写文件，add_stream函数在av_file_open中就已经执行了。add_ stream既可以向文件中写音频流，也可以写视频流。代码如下：

	static switch_status_t add_stream(av_file_context_t *context, MediaStream *mst, AVFormatContext *fc, AVCodec **codec, enum AVCodecID codec_id, switch_mm_t *mm)

	{

	 AVCodecContext *c;

	 switch_status_t status = SWITCH_STATUS_FALSE;

	 //int threads = switch_core_cpu_count();

	 int buffer_bytes = 2097152; /* 2 mb */

	 int fps = 15;

	 if (!*codec) {

	 *codec = avcodec_find_encoder(codec_id); // 查找对应的codec

	 }

	 mst->st = avformat_new_stream(fc, *codec); // 根据codec产生一个新流，音频或视频流

	 mst->st->id = fc->nb_streams - 1;

	GCC_DIAG_OFF(deprecated-declarations)

	 c = mst->st->codec; // 获取对应的AVCodecContext，这是旧的用法，但在这里我们仍然用它

	GCC_DIAG_ON(deprecated-declarations)

	 switch ((*codec)->type) {

	 case AVMEDIA_TYPE_AUDIO: // 如果是音频流，则设置一些音频参数

	 c->sample_fmt = (*codec)->sample_fmts ? (*codec)->sample_fmts[0] : AV_SAMPLE_FMT_FLTP;

	 c->bit_rate = 128000; // 比特率

	 c->sample_rate = mst->sample_rate = context->handle->samplerate; // 采样率

	 c->channels = mst->channels; // 声道数

	 c->channel_layout = av_get_default_channel_layout(c->channels); // 声道排列

	 if (mm) {

	 if (mm->ab) {

	 c->bit_rate = mm->ab * 1024; // 根据FreeSWITCH传过来的参数设置码率

	 }

	 if (mm->samplerate) {

	 c->sample_rate = mst->sample_rate = mm->samplerate; // 根据FreeSWITCH传入的参数设置采样率

	 }

	 }

	 if (context && context->has_video && !context->handle->stream_name) {

	 // 对于非网络类型的文件，设置时间基准

	 mst->st->time_base.den = c->sample_rate;

	 mst->st->time_base.num = 1;

	 c->time_base.den = c->sample_rate;

	 c->time_base.num = 1;

	 }

	 break;

	 case AVMEDIA_TYPE_VIDEO: // 视频流

	 if (mm->vbuf) {

	 buffer_bytes = mm->vbuf;

	 }

	 if (mm->fps) { // 计算fps

	 fps = mm->fps;

	 } else {

	 mm->fps = fps;

	 }

	 if (mm->vw && mm->vh) { 设置分辨率

	 mst->width = mm->vw;

	 mst->height = mm->vh;

	 }

	 c->codec_id = codec_id;

	 c->width = mst->width;

	 c->height = mst->height;

	 c->bit_rate = mm->vb * 1024;

	 mst->st->time_base.den = 90000; // 将视频采样率设为90000，与RTP时间戳对应

	 mst->st->time_base.num = 1;

	 c->time_base.den = 90000;

	 c->time_base.num = 1;

	 c->gop_size = fps * 10; //10秒一个关键帧

	 c->pix_fmt = AV_PIX_FMT_YUV420P; // 视频图像类型

	 c->rc_initial_buffer_occupancy = buffer_bytes * 8;

	 if (codec_id == AV_CODEC_ID_H264) { //H264相关的参数

	 c->ticks_per_frame = 2;

	 c->flags|=AV_CODEC_FLAG_LOOP_FILTER; // flags=+loop

	 c->me_cmp|= 1; // cmp=+chroma, where CHROMA = 1

	 c->me_range = 16; // me_range=16

	 c->max_b_frames = 3; // bf=3

	 av_opt_set_int(c->priv_data, "b_strategy", 1, 0);

	 //av_opt_set_int(c->priv_data, "motion_est", ME_HEX, 0);

	 av_opt_set(c->priv_data, "motion_est", "hex", 0);

	 av_opt_set_int(c->priv_data, "coder", 1, 0);

	 switch (mm->vprofile) { // 根据FreeSWITCH传入的参数设置H264 Profile

	 case SWITCH_VIDEO_PROFILE_BASELINE:

	 av_opt_set(c->priv_data, "profile", "baseline", 0);

	 c->level = 41; // 不同Profile对应不同的Level

	 break;

	 case SWITCH_VIDEO_PROFILE_MAIN:

	 av_opt_set(c->priv_data, "profile", "main", 0);

	 av_opt_set(c->priv_data, "level", "5", 0);

	 c->level = 5;

	 break;

	 case SWITCH_VIDEO_PROFILE_HIGH:

	 av_opt_set(c->priv_data, "profile", "high", 0);

	 av_opt_set(c->priv_data, "level", "52", 0);

	 c->level = 52;

	 break;

	 }

	 switch (mm->vencspd) { // 根据FreeSWITCH传入的编码速度设置相关参数

	 case SWITCH_VIDEO_ENCODE_SPEED_SLOW:

	 av_opt_set(c->priv_data, "preset", "veryslow", 0);

	 break;

	 case SWITCH_VIDEO_ENCODE_SPEED_MEDIUM:

	 av_opt_set(c->priv_data, "preset", "medium", 0);

	 break;

	 case SWITCH_VIDEO_ENCODE_SPEED_FAST:

	 av_opt_set(c->priv_data, "preset", "veryfast", 0);

	 av_opt_set(c->priv_data, "tune", "fastdecode", 0);

	 break;

	 default:

	 break;

	 }

	 }

	 if (mm->cbr) { // 恒定码率

	 c->rc_min_rate = c->bit_rate;

	 c->rc_max_rate = c->bit_rate;

	 c->rc_buffer_size = c->bit_rate;

	 c->qcompress = 0;

	 c->gop_size = fps * 2;

	 c->keyint_min = fps * 2;

	 } else { // 动态码率

	 c->gop_size = fps * 10;

	 c->keyint_min = fps;

	 c->i_quant_factor = 0.71; // i_qfactor=0.71

	 c->qcompress = 0.6; // qcomp=0.6

	 c->qmin = 10; // qmin=10

	 c->qmax = 31; // qmax=31

	 c->max_qdiff = 4; // qdiff=4

	 av_opt_set_int(c->priv_data, "crf", 18, 0);

	 }

	 if (mm->vb) { // 可以用FreeSWITCH传入的带宽值覆盖默认带宽

	 c->bit_rate = mm->vb * 1024;

	 }

	 if (mm->keyint) { // 可以用FreeSWITCH传入的关键帧间隔覆盖GoP

	 c->gop_size = mm->keyint;

	 }

	 if (codec_id == AV_CODEC_ID_VP8) { // VP8编码相关的参数，在遇到webm、mkv等格式时使用

	 av_set_options_string(c, "quality=realtime", "=", ":");

	 }

	 c->colorspace = context->colorspace;

	 c->color_range = AVCOL_RANGE_JPEG;

	 break;

	 default:

	 break;

	 }

	 // 有些流媒体格式要求使用全局的媒体头

	 if (fc->oformat->flags & AVFMT_GLOBALHEADER) {

	 c->flags |= AV_CODEC_FLAG_GLOBAL_HEADER;

	 }

	 mst->active = 1;

	 return SWITCH_STATUS_SUCCESS;

	}

	5. av_file_write_video

	写视频数据。输入参数frame是一个FreeSWITCH switch_frame_t结构体指针，frame->img是待写入的图像。

	static switch_status_t av_file_write_video(switch_file_handle_t *handle, switch_frame_t *frame)

	{

	 switch_status_t status = SWITCH_STATUS_SUCCESS;

	 av_file_context_t *context = (av_file_context_t *)handle->private_info;

	 switch_image_t *img = NULL;

	 if (!context->has_video) { // 首次写入视频

	 context->video_st.width = frame->img->d_w;

	 context->video_st.height = frame->img->d_h;

	 context->video_st.next_pts = switch_time_now() / 1000;

	 // 向文件中添加一个视频流

	 if (add_stream(context, &context->video_st, context->fc, &context->video_codec, context->fc->oformat->video_codec, &handle->mm) == SWITCH_STATUS_SUCCESS &&

	 // 打开视频流

	 open_video(context->fc, context->video_codec, &context->video_st) == SWITCH_STATUS_SUCCESS) {

	 char codec_str[256];

	 int ret;

	 context->has_video = 1;

	 ret = avformat_write_header(context->fc, NULL); // 写入视频初始化数据

	 if (ret < 0) { // 错误处理

	 switch_goto_status(SWITCH_STATUS_FALSE, end);

	 }

	 } else { // 错误处理

	 switch_goto_status(SWITCH_STATUS_FALSE, end);

	 }

	 }

	 if (!context->eh.video_thread) { // 启动一个独立的线程写数据

	 // ... 省略

	 switch_thread_create(&context->eh.video_thread, thd_attr, video_thread_run, context, handle->memory_pool);

	 }

	 switch_img_copy(frame->img, &img); // 将传入的图像数据复制一份，并推入队列

	 switch_queue_push(context->eh.video_queue, img);

	end:

	 return status;

	}

	其中，open_video函数用于打开视频流以备写入，这是在独立的函数中实现的。代码如下：

	static switch_status_t open_video(AVFormatContext *fc, AVCodec *codec, MediaStream *mst)

	{

	 int ret;

	GCC_DIAG_OFF(deprecated-declarations)

	 AVCodecContext *c = mst->st->codec;

	GCC_DIAG_ON(deprecated-declarations)

	 switch_status_t status = SWITCH_STATUS_FALSE;

	 // 打开Codec

	 ret = avcodec_open2(c, codec, NULL);

	 // 申请一个AVFrame，存放编码前的图像，该frame在后面可以重用

	 mst->frame = alloc_picture(c->pix_fmt, c->width, c->height);

	 mst->frame->pts = 0;

	 return SWITCH_STATUS_SUCCESS;

	}

	static AVFrame *alloc_picture(enum AVPixelFormat pix_fmt, int width, int height)

	{

	 AVFrame *picture;

	 int ret;

	 picture = av_frame_alloc(); // 申请一个AVFrame结构

	 picture->format = pix_fmt;

	 picture->width = width;

	 picture->height = height;

	 // 申请内存，用于存放编码前的图像

	 ret = av_frame_get_buffer(picture, 32);

	 return picture;

	}

	由于写数据需要进行视频编码，比较耗时，为避免阻塞调用线程，写操作是异步的，主线程直接将视频图像推入一个队列，具体的编码和写入操作都在独立的线程中执行。独立线程代码如下：

	static void *SWITCH_THREAD_FUNC video_thread_run(switch_thread_t *thread, void *obj)

	{

	 av_file_context_t *context = (av_file_context_t *) obj;

	 void *pop = NULL;

	 switch_image_t *img = NULL;

	 for(;;) { // 无限循环

	 AVPacket pkt = { 0 };

	 int got_packet;

	 int ret = -1;

	 top:

	 while(switch_queue_size(context->eh.video_queue) > 1) { // 清空图像队列

	 switch_image_t *tmp_img;

	 switch_queue_pop(context->eh.video_queue, &pop);

	 tmp_img = (switch_image_t *) pop;

	 switch_img_free(&tmp_img);

	 }

	 // 从队列中阻塞读取一帧图像

	 if (switch_queue_pop(context->eh.video_queue, &pop) == SWITCH_STATUS_SUCCESS) {

	 switch_img_free(&img);

	 if (!pop) { // 读到NULL则视频结束，跳出

	 goto endfor;

	 }

	 img = (switch_image_t *) pop;

	 if (!d_w) d_w = img->d_w; // 宽度

	 if (!d_h) d_h = img->d_h; // 高度

	 if (d_w && d_h && (d_w != img->d_w || d_h != img->d_h)) {

	 // MP4文件不支持改变分辨率，如果分辨率发生变化，后续都按第1帧的分辨率缩放

	 switch_img_fit(&img, d_w, d_h, SWITCH_FIT_SIZE);

	 }

	 } else {

	 continue;

	 }

	 if (skip) { // 丢帧处理，如果队列太长就丢帧。具体代码略

	 // ... goto top;

	 }

	 context->eh.in_callback = 1;

	 av_init_packet(&pkt); // 初始化一个pkt，存放编码后的字节流数据

	 if (context->eh.video_st->frame) {

	 // 准备好写入这个AVFrame，这是FFmpeg中编码前的图像数据

	 ret = av_frame_make_writable(context->eh.video_st->frame);

	 }

	 if (ret < 0) continue;

	 fill_avframe(context->eh.video_st->frame, img); // 将FreeSWITCH图像转换为FFmpeg格式

	 if (first) {

	 first = 0; // pts = 0;

	 } else if (context->eh.finalize) {

	 // 当编码到最后一帧视频时，由于编码器的滞后性，编码器中仍然有未输出的数据，这时候，

	 // 应该继续调用编码器，传入NULL指针进行编码，直至编码器输出所有数据。代码逻辑略

	 } else {

	 uint64_t delta_tmp;

	 // FreeSWITCH内部时钟，获取当前的时钟值作为pts，该时钟是自然时间

	 switch_core_timer_next(context->eh.video_timer);

	 // 计算pts与上一个pts的差值

	 delta_tmp = (context->eh.video_timer->samplecount * 90) - context->eh.last_ts;

	 if (delta_tmp != 0) { // 以这个差值作为pts

	 context->eh.video_st->frame->pts = context->eh.video_timer->samplecount * 90;

	 } else { // 防止写入两个相同的pts。实际算法比这个复杂，在此省略了很多代码

	 context->eh.video_st->frame->pts = ((context->eh.video_timer->samplecount) * 90) + 1;

	 }

	 }

	 context->eh.last_ts = context->eh.video_st->frame->pts; // 记住最后一个pts

	GCC_DIAG_OFF(deprecated-declarations) // 调用旧的编码函数进行编码

	 ret = avcodec_encode_video2(context->eh.video_st->st->codec, &pkt, context->eh.video_st->frame, &got_packet);

	GCC_DIAG_ON(deprecated-declarations)

	 if (got_packet) { // 编码成功，加锁，写入文件

	 switch_mutex_lock(context->eh.mutex);

	GCC_DIAG_OFF(deprecated-declarations)

	 write_frame(context->eh.fc, &context->eh.video_st->st->codec->time_base, context->eh.video_st->st, &pkt);

	GCC_DIAG_ON(deprecated-declarations)

	 switch_mutex_unlock(context->eh.mutex);

	 av_packet_unref(&pkt);

	 }

	 context->eh.in_callback = 0;

	 }

	 endfor:

	 for(;;) { // 编码器有滞后性，有遗留数据，需要循环取出来

	 AVPacket pkt = { 0 };

	 av_init_packet(&pkt);

	GCC_DIAG_OFF(deprecated-declarations) // 传入NULL指针继续调用编码器编码，以获取最后的数据

	 ret = avcodec_encode_video2(context->eh.video_st->st->codec, &pkt, NULL, &got_packet);

	GCC_DIAG_ON(deprecated-declarations)

	 if (ret < 0) {

	 break;

	 } else if (got_packet) {

	 // 加锁写入文件...略

	 }

	 }

	 while(switch_queue_trypop(context->eh.video_queue, &pop) == SWITCH_STATUS_SUCCESS) {

	 if (!pop) break;

	 img = (switch_image_t *) pop;

	 switch_img_free(&img); // 清空视频队列中的数据，万一有数据的话，会发生内存泄漏

	 }

	 return NULL;

	}

	从代码中可以看出，写视频的操作如下：

	・写入正确的pts，以便播放器能正常播放，并且防止写入重复的pts。

	・结束时，清空编码器中的滞后数据，保持视频完成。

	・如果处理不过来（待写入的视频队列过长），则适当丢帧。

	・当视频分辨率变化时（这在实时音视频中很常见），适当缩放（也可以当检测到分辨率变化时开始录制新的视频文件，然后后期再处理，但那样就需要与业务系统交互了）。

15.3.6 其他

	在FreeSWITCH中，除了使用libavcodec和libavformat外，还使用了libswscale做视频格式转换和缩放，用libswresample做音频格式转换和重采样等，在上面的代码中也有所体现。值得一提的是，由于历史原因，还有一个libavresample用于重采样，FreeSWITCH的代码最初就是基于它写的，但是，在最新的FFmpeg中，它已经被标记为“Deprecated”了。因此，后来FreeSWITCH中的代码转向了libswresample，并做了一些兼容处理，默认使用libswresample，在configure脚本中如果检查到libavresample，就定义USE_AVRESAMPLE宏，并通过宏定义强制为函数改名。代码如下：

	#ifdef USE_AVRESAMPLE // 检测到libavresample，加载相应头文件

	#include <libavresample/avresample.h>

	#define SwrContext AVAudioResampleContext // 使用宏替换相应函数，下同

	#define swr_alloc avresample_alloc_context

	#define swr_init avresample_open

	#define swr_free avresample_free

	#define swr_get_out_samples avresample_get_out_samples

	#define swr_get_out_samples avresample_get_out_samples

	// 下面这个函数参数的个数和顺序都有变化，定义一个比较复杂的宏

	#define swr_convert(ctx, odata, osamples, idata, isamples) \

	 avresample_convert(ctx, odata, 0, osamples, (uint8_t **)idata, 0, isamples)

	#else // 默认使用libswresample

	#include <libswresample/swresample.h>

	#endif

	通过上述宏定义，屏蔽了两个库的代码区别，使用一套代码就可以兼容两个库。当然，由于libavresample已经不推荐使用了，未来可以去掉这些宏定义使代码更清晰，但在过渡期间，还是要借助于类似的方法和技巧。
一个YUV图像格式处理库，由Google提供，libvpx也直接依赖libyuv。
	此外，FreeSWITCH中的VP8、VP9编码并没有使用FFmpeg，而是直接使用libvpx。这是因为libvpx更纯粹一些，而不像FFmpeg有那么多依赖。实际上，FreeSWITCH内部的switch_ img_t就是直接翻版的libvpx中的vpx_img_t定义，而且FreeSWITCH也直接使用libyuv
	 [image: 一个YUV图像格式处理库，由Google提供，libvpx也直接依赖libyuv。]进行图像处理。

15.4 FFmpeg在BareSIP中的应用

	BareSIP是一个SIP客户端库，同时也是一个命令行版的SIP客户端软件。它支持SIP/RTP，支持音视频通话和会议。虽然它不如FreeSWITCH流行，但其代码写得非常好，代码更新也比较活跃，且有几乎全平台（macOS、Linux、Windows、iOS、Android等）的支持，在FFmpeg的使用上也很有代表性，因此，在这里我们也简单分析一下，以便读者可以有更多的参考和对照。

	BareSIP也是一个模块化架构，模块可以在启动时或运行时动态加载。在UNIX类平台上，主要使用dlopen和dlsym函数来打开和查找符号表，在Windows上则使用LoadLibraryA和GetProcAddress。

	BareSIP依赖几个跨平台的库：libre（跨平台函数实现）和librem（libre + media，媒体相关函数），当然还有加密离不开的openssl，以及各种编解码和多媒体库，包括FFmpeg。

15.4.1 AVCodec

	先从AVCodec的使用开始，BareSIP中也用它来支持H263、H264、H265的编解码。本章使用的BareSIP代码是main分支的Commit: 0391e36c，为了方便阅读对照，带了行号。以下代码来自avcodec.c（篇幅所限，删掉了一些非必要的错误处理代码、空行、H263相关的代码等，有些多行代码在不影响阅读的情况下也合并为一行了）。

	 1 /**

	 2 * @file avcodec.c Video codecs using libavcodec

	 4 * Copyright (C) 2010 - 2016 Alfred E. Heggestad

	 5 */

	 6 #include <re.h>

	 7 #include <rem.h>

	 8 #include <baresip.h>

	 9 #include <libavutil/pixdesc.h>

	 10 #include <libavcodec/avcodec.h>

	 24 // 配置参数

	 27 // avcodec_h264enc <NAME> ; e.g. h264_nvenc, h264_videotoolbox

	 28 // avcodec_h264dec <NAME> ; e.g. h264_cuvid, h264_vda, h264_qsv

	 42 const AVCodec *avcodec_h264enc; // 可选，指定的H264编码器

	 43 const AVCodec *avcodec_h264dec; // 可选，指定的H264解码器

	 44 const AVCodec *avcodec_h265enc;

	 45 const AVCodec *avcodec_h265dec;

	 48 #if LIBAVUTIL_VERSION_MAJOR >= 56 // 版本号探测，只有新版本的FFmpeg才有硬件编解码支持

	 49 AVBufferRef *avcodec_hw_device_ctx = NULL;

	 50 enum AVPixelFormat avcodec_hw_pix_fmt;

	 51 enum AVHWDeviceType avcodec_hw_type = AV_HWDEVICE_TYPE_NONE;

	 52 #endif

	 55 int avcodec_resolve_codecid(const char *s) // 字符串转换成FFmpeg Codec ID

	 56 {

	 57 if (0 == str_casecmp(s, "H263"))

	 58 return AV_CODEC_ID_H263;

	 59 else if (0 == str_casecmp(s, "H264"))

	 60 return AV_CODEC_ID_H264;

	 61 #ifdef AV_CODEC_ID_H265 // H265比较新，条件编译

	 62 else if (0 == str_casecmp(s, "H265"))

	 63 return AV_CODEC_ID_H265;

	 64 #endif

	 65 else

	 66 return AV_CODEC_ID_NONE;

	 67 }

	 83 static struct vidcodec h264 = { // 向BareSIP核心注入H264编解码结构体

	 84 .name = "H264",

	 85 .variant = "packetization-mode=0",

	 86 .encupdh = avcodec_encode_update,

	 87 .ench = avcodec_encode, // 编码

	 88 .decupdh = avcodec_decode_update, // 更新编码器

	 89 .dech = avcodec_decode_h264, // 解码

	 90 .fmtp_ench = avcodec_h264_fmtp_enc, // 处理fmtp

	 91 .fmtp_cmph = avcodec_h264_fmtp_cmp, // 比较fmtp

	 92 .packetizeh= avcodec_packetize, // 分包

	 93 };

	 95 static struct vidcodec h264_1 = { // 不同的打包格式使用不同的结构体

	 96 .name = "H264",

	 97 .variant = "packetization-mode=1",

	 98 .encupdh = avcodec_encode_update,

	 99 .ench = avcodec_encode,

	100 .decupdh = avcodec_decode_update,

	101 .dech = avcodec_decode_h264,

	102 .fmtp_ench = avcodec_h264_fmtp_enc,

	103 .fmtp_cmph = avcodec_h264_fmtp_cmp,

	104 .packetizeh= avcodec_packetize,

	105 };

	118 static struct vidcodec h265 = { // H265结构体

	119 .name = "H265",

	120 .fmtp = "profile-id=1",

	121 .encupdh = avcodec_encode_update,

	122 .ench = avcodec_encode,

	123 .decupdh = avcodec_decode_update,

	124 .dech = avcodec_decode_h265,

	125 .packetizeh= avcodec_packetize,

	126 };

	129 static int module_init(void)

	130 {

	131 struct list *vidcodecl = baresip_vidcodecl(); // 初始化一个编解码器列表

	132 char h264enc[64] = "libx264";

	133 char h264dec[64] = "h264";

	134 char h265enc[64] = "libx265";

	135 char h265dec[64] = "hevc";

	136 #if LIBAVUTIL_VERSION_MAJOR >= 56

	137 char hwaccel[64];

	138 #endif

	140 #if LIBAVCODEC_VERSION_INT < AV_VERSION_INT(53, 10, 0)

	141 avcodec_init(); // 旧版FFmpeg需要这个初始化

	142 #endif

	144 #if LIBAVCODEC_VERSION_INT < AV_VERSION_INT(58, 9, 100)

	145 avcodec_register_all(); // 旧版FFmpeg需要注册相关编解码器和封装格式

	146 #endif

	147 // 获取配置参数

	148 conf_get_str(conf_cur(), "avcodec_h264enc", h264enc, sizeof(h264enc));

	149 conf_get_str(conf_cur(), "avcodec_h264dec", h264dec, sizeof(h264dec));

	150 conf_get_str(conf_cur(), "avcodec_h265enc", h265enc, sizeof(h265enc));

	151 conf_get_str(conf_cur(), "avcodec_h265dec", h265dec, sizeof(h265dec));

	153 avcodec_h264enc = avcodec_find_encoder_by_name(h264enc); // 查找FFmpeg编码器

	158 avcodec_h264dec = avcodec_find_decoder_by_name(h264dec); // 查找FFmpeg解码器

	163 avcodec_h265enc = avcodec_find_encoder_by_name(h265enc);

	164 avcodec_h265dec = avcodec_find_decoder_by_name(h265dec);

	166 if (avcodec_h264enc || avcodec_h264dec) {

	167 vidcodec_register(vidcodecl, &h264); // 向BareSIP注册H264编解码器

	168 vidcodec_register(vidcodecl, &h264_1);

	169 }

	174 if (avcodec_h265enc || avcodec_h265dec)

	175 vidcodec_register(vidcodecl, &h265);

	195 #if LIBAVUTIL_VERSION_MAJOR >= 56

	196 // 查找硬件编解码器

	197 if (0 == conf_get_str(conf_cur(), "avcodec_hwaccel",

	198 hwaccel, sizeof(hwaccel))) {

	200 enum AVHWDeviceType type;

	201 int ret;

	202 int i;

	204 info("avcodec: enable hwaccel using '%s'\n", hwaccel);

	206 type = av_hwdevice_find_type_by_name(hwaccel);

	207 if (type == AV_HWDEVICE_TYPE_NONE) { return ENOSYS; }// 没有找到

	215 for (i = 0;; i++) { // 循环查找一个可用的设备

	216 const AVCodecHWConfig *config;

	218 config = avcodec_get_hw_config(avcodec_h264dec, i);

	226 if (config->methods & AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX

	228 && config->device_type == type) {

	231 avcodec_hw_pix_fmt = config->pix_fmt;

	236 break; // 找到第1个可用的就返回

	237 }

	238 }

	240 ret = av_hwdevice_ctx_create(&avcodec_hw_device_ctx, type,

	241 NULL, NULL, 0); // 创建一个硬件设备

	248 avcodec_hw_type = type;

	249 }

	250 #endif

	252 return 0;

	253 }

	256 static int module_close(void) // 模块卸载，从BareSIP中注销相关引用

	257 {

	258 vidcodec_unregister(&h265);

	259 vidcodec_unregister(&h263);

	260 vidcodec_unregister(&h264);

	261 vidcodec_unregister(&h264_1);

	263 #if LIBAVUTIL_VERSION_MAJOR >= 56

	264 if (avcodec_hw_device_ctx)

	265 av_buffer_unref(&avcodec_hw_device_ctx);

	266 #endif

	268 return 0;

	269 }

	272 EXPORT_SYM const struct mod_export DECL_EXPORTS(avcodec) = { // 向BareSIP注册模块

	273 "avcodec", "codec",

	275 module_init, // 模块加载回调函数

	276 module_close // 模块卸载回调函数

	277 };

	可以看出，作为模块化架构，BareSIP的模块注册机制与FFmpeg及FreeSWITCH大同小异，而具体的编解码函数是在单独的文件中实现的。先来看encoder.c。

	 12 #include <libavcodec/avcodec.h> // 依赖的FFmpeg头文件

	 13 #include <libavutil/mem.h>

	 14 #include <libavutil/opt.h>

	 15 #include <libavutil/pixdesc.h>

	 20 enum {

	 21 KEYFRAME_INTERVAL = 10 // 10秒一个关键帧

	 22 };

	 31 struct videnc_state { // 定义一个编码结构体，用于记录编码状态

	 32 const AVCodec *codec;

	 33 AVCodecContext *ctx;

	 37 enum vidfmt fmt;

	 38 enum AVCodecID codec_id;

	 42 union { // 共用体，H263和H264有不同的参数

	 43 struct { // H263

	 44 struct picsz picszv[8];

	 45 uint32_t picszn;

	 46 } h263;

	 48 struct { // H264

	 49 uint32_t packetization_mode; // 打包模式0或1

	 50 uint32_t profile_idc; // Profile

	 51 uint32_t profile_iop; // Profile IOP

	 52 uint32_t level_idc; // Profile Level

	 53 uint32_t max_fs; // 最大帧长（宏块数）

	 54 uint32_t max_smbps; // 每秒处理最大宏块数

	 55 } h264;

	 56 } u;

	 57 };

	 60 static void destructor(void *arg) // 释放内存

	 61 {

	 62 struct videnc_state *st = arg;

	 64 mem_deref(st->mb_frag);

	 66 if (st->ctx) avcodec_free_context(&st->ctx);

	 68 }

	 71 #if LIBAVUTIL_VERSION_MAJOR >= 56

	 72 static int set_hwframe_ctx(AVCodecContext *ctx, AVBufferRef *device_ctx,

	 73 int width, int height)

	 74 {

	 75 AVBufferRef *hw_frames_ref;

	 76 AVHWFramesContext *frames_ctx = NULL;

	 77 int err = 0;

	 82 if (!(hw_frames_ref = av_hwframe_ctx_alloc(device_ctx))) { // 创建硬件编码器

	 85 return ENOMEM; // 失败处理

	 86 }

	 88 frames_ctx = (AVHWFramesContext *)(void *)hw_frames_ref->data;

	 89 frames_ctx->format = avcodec_hw_pix_fmt; // 像素格式

	 90 frames_ctx->sw_format = AV_PIX_FMT_NV12; // 固定为NV12

	 91 frames_ctx->width = width; // 宽度

	 92 frames_ctx->height = height; // 高度

	 93 frames_ctx->initial_pool_size = 20;

	 95 if ((err = av_hwframe_ctx_init(hw_frames_ref)) < 0) { // 初始化硬件编码器

	 99 av_buffer_unref(&hw_frames_ref); return err;

	101 }

	103 ctx->hw_frames_ctx = av_buffer_ref(hw_frames_ref); // 创建内存引用，记在ctx里

	107 av_buffer_unref(&hw_frames_ref); // 解除局部变量的内存引用

	109 return err;

	110 }

	111 #endif

	114 static enum AVPixelFormat vidfmt_to_avpixfmt(enum vidfmt fmt)

	115 { // BareSIP图像格式转为FFmpeg图像格式

	116 switch (fmt) {

	118 case VID_FMT_YUV420P: return AV_PIX_FMT_YUV420P;

	119 case VID_FMT_YUV444P: return AV_PIX_FMT_YUV444P;

	120 case VID_FMT_NV12: return AV_PIX_FMT_NV12;

	121 case VID_FMT_NV21: return AV_PIX_FMT_NV21;

	122 default: return AV_PIX_FMT_NONE;

	123 }

	124 }

	167 static int init_encoder(struct videnc_state *st, const char *name)

	168 { // 初始化编码器

	172 if (st->codec_id == AV_CODEC_ID_H264 && avcodec_h264enc) {

	174 st->codec = avcodec_h264enc; // 绑定H264初始化函数

	178 return 0;

	179 }

	181 if (0 == str_casecmp(name, "h265")) {

	183 st->codec = avcodec_h265enc; // 绑定H265初始化函数

	187 return 0;

	188 }

	190 st->codec = avcodec_find_encoder(st->codec_id); // 查找编码器、H263等

	191 if (!st->codec) return ENOENT;

	194 return 0;

	195 }

	198 static int open_encoder(struct videnc_state *st,

	199 const struct videnc_param *prm,

	200 const struct vidsz *size, int pix_fmt)

	202 {

	203 int err = 0;

	205 if (st->ctx) avcodec_free_context(&st->ctx); // 确保在重新初始化时释放以前申请的内存

	208 st->ctx = avcodec_alloc_context3(st->codec); // 申请一个AVContext

	209 if (!st->ctx) { err = ENOMEM; goto out; } // 出错处理

	214 av_opt_set_defaults(st->ctx); // 初始化AVContext默认值

	216 st->ctx->bit_rate = prm->bitrate; // 设置码率

	217 st->ctx->width = size->w; // 设置宽度

	218 st->ctx->height = size->h; // 设置高度

	220 #if LIBAVUTIL_VERSION_MAJOR >= 56

	221 if (avcodec_hw_type == AV_HWDEVICE_TYPE_VAAPI)

	222 st->ctx->pix_fmt = avcodec_hw_pix_fmt; // 硬件编码像素格式

	223 else

	224 #endif

	225 st->ctx->pix_fmt = pix_fmt; // 软件编码像素格式

	227 st->ctx->time_base.num = 1;

	228 st->ctx->time_base.den = prm->fps; // 根据帧率设置时间基准

	229 st->ctx->gop_size = KEYFRAME_INTERVAL * prm->fps; // 关键帧间隔

	231 if (0 == str_cmp(st->codec->name, "libx264")) { // libx264特定的参数

	233 av_opt_set(st->ctx->priv_data, "profile", "baseline", 0);

	234 av_opt_set(st->ctx->priv_data, "preset", "ultrafast", 0);

	235 av_opt_set(st->ctx->priv_data, "tune", "zerolatency", 0);

	237 if (st->u.h264.packetization_mode == 0) { // mode=0，让编码器根据宏块分包

	238 av_opt_set_int(st->ctx->priv_data, "slice-max-size", prm->pktsize, 0);

	240 }

	241 }

	243 // 防止使用libavcodec/x264默认的参数报错，特别设置一下

	244 if (st->codec_id == AV_CODEC_ID_H264) {

	246 if (0 == str_cmp(st->codec->name, "h264_vaapi")) {

	247 av_opt_set(st->ctx->priv_data, "profile", "constrained_baseline", 0);

	249 } else {

	251 av_opt_set(st->ctx->priv_data, "profile", "baseline", 0);

	253 }

	255 st->ctx->me_range = 16;

	256 st->ctx->qmin = 10;

	257 st->ctx->qmax = 51;

	258 st->ctx->max_qdiff = 4;

	260 if (st->codec == avcodec_find_encoder_by_name("nvenc_h264") ||

	261 st->codec == avcodec_find_encoder_by_name("h264_nvenc")) {

	262 // NVDIA硬件编码器相关参数

	263 err = av_opt_set(st->ctx->priv_data, "preset", "llhp", 0);

	273 err = av_opt_set_int(st->ctx->priv_data, "2pass", 1, 0);

	283 }

	284 }

	286 if (0 == str_cmp(st->codec->name, "libx265")) { // libx265特定参数

	288 av_opt_set(st->ctx->priv_data, "profile", "main444-8", 0);

	289 av_opt_set(st->ctx->priv_data, "preset", "ultrafast", 0);

	290 av_opt_set(st->ctx->priv_data, "tune", "zerolatency", 0);

	291 }

	293 #if LIBAVUTIL_VERSION_MAJOR >= 56

	294 if (avcodec_hw_type == AV_HWDEVICE_TYPE_VAAPI) {

	296 // VAAPI硬件编码器相关参数

	298 err = set_hwframe_ctx(st->ctx, avcodec_hw_device_ctx, size->w, size->h);

	306 }

	307 #endif

	309 if (avcodec_open2(st->ctx, st->codec, NULL) < 0) { // 打开编码器

	310 err = ENOENT; goto out;

	312 }

	314 st->encsize = *size;

	316 out:

	317 if (err) { // 错误处理

	318 if (st->ctx) avcodec_free_context(&st->ctx);

	320 }

	322 return err;

	323 }

	326 static int decode_sdpparam_h264(struct videnc_state *st, const struct pl *name,

	327 const struct pl *val)

	328 {// 从H264 SDP中解析相关参数，SDP来自对端，表示对端的视频处理能力，编码器应该对外发出对端能力范围内的包

	329 if (0 == pl_strcasecmp(name, "packetization-mode")) { // 打包模式

	330 st->u.h264.packetization_mode = pl_u32(val);

	332 if (st->u.h264.packetization_mode != 0 &&

	333 st->u.h264.packetization_mode != 1) { // 仅支持0或1模式

	336 return EPROTO;

	337 }

	338 } else if (0 == pl_strcasecmp(name, "profile-level-id")) {

	340 struct pl prof = *val;

	347 prof.l = 2;

	348 st->u.h264.profile_idc = pl_x32(&prof); prof.p += 2;

	349 st->u.h264.profile_iop = pl_x32(&prof); prof.p += 2;

	350 st->u.h264.level_idc = pl_x32(&prof);

	351 } else if (0 == pl_strcasecmp(name, "max-fs")) {

	353 st->u.h264.max_fs = pl_u32(val); // 最大帧长

	354 } else if (0 == pl_strcasecmp(name, "max-smbps")) {

	356 st->u.h264.max_smbps = pl_u32(val); // 每秒最大处理宏块数

	357 }

	359 return 0;

	360 }

	363 static void param_handler(const struct pl *name, const struct pl *val,

	364 void *arg)

	365 { // 根据编码调用不同的SDP解析回调函数

	366 struct videnc_state *st = arg;

	368 if (st->codec_id == AV_CODEC_ID_H263) (void)decode_sdpparam_h263(st, name, val);

	370 else if (st->codec_id == AV_CODEC_ID_H264) (void)decode_sdpparam_h264(st, name, val);

	372 }

	421 int avcodec_encode_update(struct videnc_state **vesp,

	422 const struct vidcodec *vc,

	423 struct videnc_param *prm, const char *fmtp,

	424 videnc_packet_h *pkth, void *arg)

	425 { // 编码器运行时动态改变编码器参数

	426 struct videnc_state *st;

	427 int err = 0;

	435 st = mem_zalloc(sizeof(*st), destructor);

	436 if (!st) return ENOMEM;

	439 st->encprm = *prm; // 输入参数

	440 st->pkth = pkth; // pkt指针

	441 st->arg = arg; // 参数

	443 st->codec_id = avcodec_resolve_codecid(vc->name); // 根据名称查编码器ID

	444 if (st->codec_id == AV_CODEC_ID_NONE) { err = EINVAL; goto out; } // 错误处理

	450 st->mb_frag = mbuf_alloc(1024);

	456 st->fmt = -1;

	458 err = init_encoder(st, vc->name); // 根据新参数重新初始化编码器

	459 if (err) { goto out; // 初始化失败 }

	464 if (str_isset(fmtp)) { // 如果SDP中有fmtp属性

	465 struct pl sdp_fmtp;

	467 pl_set_str(&sdp_fmtp, fmtp);

	469 fmt_param_apply(&sdp_fmtp, param_handler, st);

	470 }

	475 out:

	476 if (err) mem_deref(st);

	478 else *vesp = st;

	481 return err;

	482 }

	485 int avcodec_encode(struct videnc_state *st, bool update,

	486 const struct vidframe *frame, uint64_t timestamp)

	487 { // 视频编码

	488 AVFrame *pict = NULL;

	489 AVFrame *hw_frame = NULL;

	490 AVPacket *pkt = NULL;

	491 int i, err = 0, ret;

	492 #if LIBAVCODEC_VERSION_INT < AV_VERSION_INT(57, 37, 100)

	493 int got_packet = 0;

	494 #endif

	495 uint64_t ts;

	496 struct mbuf mb;

	501 if (!st->ctx || !vidsz_cmp(&st->encsize, &frame->size) ||

	502 st->fmt != frame->fmt) { // 首次使用时打开，或图像格式变化时重新打开编码器

	504 enum AVPixelFormat pix_fmt;

	506 pix_fmt = vidfmt_to_avpixfmt(frame->fmt); // BareSIP格式转FFmpeg像素格式

	507 if (pix_fmt == AV_PIX_FMT_NONE) { return ENOTSUP; }

	513 err = open_encoder(st, &st->encprm, &frame->size, pix_fmt); // 打开编码器

	514 if (err) { return err; }

	519 st->fmt = frame->fmt; // 记住最后的像素格式，以便后续检查是否有变化

	520 }

	522 pict = av_frame_alloc(); // 初始化一个AVFrame指针

	523 if (!pict) { err = ENOMEM; goto out; } // 出错处理

	528 #if LIBAVUTIL_VERSION_MAJOR >= 56

	529 if (avcodec_hw_type == AV_HWDEVICE_TYPE_VAAPI) {

	530 hw_frame = av_frame_alloc(); // 硬件编码时需要单独申请一个AVFrame

	531 if (!hw_frame) { err = ENOMEM; goto out; }

	535 }

	536 #endif

	538 pict->format = vidfmt_to_avpixfmt(frame->fmt); // BareSIP格式转换为FFmpeg像素格式

	539 pict->width = frame->size.w; // 宽度

	540 pict->height = frame->size.h; // 高度

	541 pict->pts = timestamp; // 时间戳

	543 for (i=0; i<4; i++) { // BareSIP与FFmpeg视频帧结构是兼容的，直接设置指针指向相应YUV数据平面

	544 pict->data[i] = frame->data[i];

	545 pict->linesize[i] = frame->linesize[i];

	546 }

	548 if (update) { // 请求生成一个新的关键帧

	550 pict->key_frame = 1;

	551 pict->pict_type = AV_PICTURE_TYPE_I;

	552 }

	554 #if LIBAVUTIL_VERSION_MAJOR >= 55

	555 pict->color_range = AVCOL_RANGE_MPEG;

	556 #endif

	558 #if LIBAVUTIL_VERSION_MAJOR >= 56

	559 if (avcodec_hw_type == AV_HWDEVICE_TYPE_VAAPI) { // 硬件编码

	561 if ((err = av_hwframe_get_buffer(st->ctx->hw_frames_ctx, hw_frame, 0)) <0) {

	563 warning("avcodec: encode: Error code: %s.\n", av_err2str(err));

	565 goto out;

	566 }

	568 if (!hw_frame->hw_frames_ctx) { err = AVERROR(ENOMEM); goto out; }

	573 if ((err = av_hwframe_transfer_data(hw_frame, pict, 0)) < 0) { goto out; }

	580 av_frame_copy_props(hw_frame, pict); // 将pict编码参数复制到hw_frame中

	581 }

	582 #endif

	584 #if LIBAVCODEC_VERSION_INT >= AV_VERSION_INT(57, 37, 100) // 使用新API编码

	586 pkt = av_packet_alloc(); // 申请一个AVPacket存放编码后的数据

	587 if (!pkt) { err = ENOMEM; goto out; }

	592 ret = avcodec_send_frame(st->ctx, hw_frame ? hw_frame : pict); // 发送给编码器进行编码

	593 if (ret < 0) { err = EBADMSG; goto out; } // 错误处理

	598 ret = avcodec_receive_packet(st->ctx, pkt); // 从编码器中接收数据，看是否有已编码数据

	599 if (ret < 0) { err = 0; goto out; } // 出错

	603 #else // 使用旧的API进行编码

	605 pkt = av_malloc(sizeof(*pkt));

	606 if (!pkt) { err = ENOMEM; goto out; }

	611 av_init_packet(pkt); // 这个AVPacket需要初始化

	612 av_new_packet(pkt, 65536); // 申请数据内存

	614 ret = avcodec_encode_video2(st->ctx, pkt, pict, &got_packet); // 编码

	615 if (ret < 0) { err = EBADMSG; goto out; }

	620 if (!got_packet) return 0; // 没有返回数据（编码器可能会有延迟），直接返回

	622 #endif

	624 mb.buf = pkt->data; // 让BareSIP中的图像数据结构指针指向FFmpeg的数据缓冲区

	625 mb.pos = 0;

	626 mb.end = pkt->size;

	627 mb.size = pkt->size;

	629 ts = video_calc_rtp_timestamp_fix(pkt->pts); // 将FFmpeg时间戳转换为RTP时间戳

	631 switch (st->codec_id) {

	637 case AV_CODEC_ID_H264: // H264分包

	638 err = h264_packetize(ts, pkt->data, pkt->size,

	639 st->encprm.pktsize, st->pkth, st->arg);

	641 break;

	643 #ifdef AV_CODEC_ID_H265

	644 case AV_CODEC_ID_H265: // H265分包

	645 err = h265_packetize(ts, pkt->data, pkt->size,

	646 st->encprm.pktsize, st->pkth, st->arg);

	648 break;

	649 #endif

	651 default: err = EPROTO; break;

	654 }

	656 out:

	657 if (pict) av_free(pict);

	659 if (pkt) av_packet_free(&pkt);

	661 av_frame_free(&hw_frame);

	663 return err;

	664 }

	667 int avcodec_packetize(struct videnc_state *st, const struct vidpacket *packet)

	668 { // 组包函数，略

	709 }

	从上述代码可以看出，BareSIP作为客户端软件，比服务器端软件FreeSWITCH要简单一些。BareSIP支持多种硬件编码，并适配了新旧两种编码API。BareSIP是一个实时通信软件，如果对端的通信能力有限（体现在SDP的fmtp属性中，如max-fs），还可以根据对端的能力调整本端的编码参数。BareSIP也可以在运行中根据要求重新初始化编码器，按需产生关键帧等，这都是RTC中必备的能力。

	此外，上述代码中还有一个video_calc_rtp_timestamp_fix函数，它用于将FFmpeg中的时间戳转换为RTP时间戳。对于已知的视频格式，RTP时间戳固定使用90000Hz的采样时钟（如帧率为每秒30帧时，每一帧的时间戳间隔是90000/30 = 3000）。函数内容如下：

	uint64_t video_calc_rtp_timestamp_fix(uint64_t timestamp)

	{

	 uint64_t rtp_ts; // VIDEO_SRATE=90000 VIDEO_TIMEBASE=1000000

	 rtp_ts = timestamp * VIDEO_SRATE / VIDEO_TIMEBASE;

	 return rtp_ts;

	}

	接下来看解码，它是在decode.c中实现的。

	 9 #include <libavcodec/avcodec.h>

	 10 #include <libavutil/avutil.h>

	 11 #include <libavutil/mem.h>

	 12 #include <libavutil/pixdesc.h>

	 17 #ifndef AV_INPUT_BUFFER_PADDING_SIZE

	 18 #define AV_INPUT_BUFFER_PADDING_SIZE 64 // 解码缓冲区需要padding填充

	 19 #endif

	 22 enum {

	 23 DECODE_MAXSZ = 524288, // 最大解码缓冲区大小

	 24 };

	 27 struct viddec_state { // 解码器状态机，记住解码器的状态

	 28 const AVCodec *codec;

	 29 AVCodecContext *ctx;

	 30 AVFrame *pict;

	 31 struct mbuf *mb;

	 32 bool got_keyframe;

	 33 size_t frag_start;

	 34 bool frag;

	 35 uint16_t frag_seq;

	 37 struct {

	 38 unsigned n_key; // 关键帧数

	 39 unsigned n_lost; // 丢失的帧数

	 40 } stats;

	 41 };

	 44 static void destructor(void *arg) // 释放内存

	 45 {

	 46 struct viddec_state *st = arg;

	 52 mem_deref(st->mb);

	 54 if (st->ctx) avcodec_free_context(&st->ctx);

	 57 if (st->pict) av_free(st->pict);

	 59 }

	 62 static enum vidfmt avpixfmt_to_vidfmt(enum AVPixelFormat pix_fmt)

	 63 { // 将FFmepg像素格式转换为BareSIP格式

	 64 switch (pix_fmt) {

	 66 case AV_PIX_FMT_YUV420P: return VID_FMT_YUV420P;

	 67 case AV_PIX_FMT_YUVJ420P: return VID_FMT_YUV420P;

	 68 case AV_PIX_FMT_YUV444P: return VID_FMT_YUV444P;

	 69 case AV_PIX_FMT_NV12: return VID_FMT_NV12;

	 70 case AV_PIX_FMT_NV21: return VID_FMT_NV21;

	 71 default: return (enum vidfmt)-1;

	 72 }

	 73 }

	 76 static inline int16_t seq_diff(uint16_t x, uint16_t y)

	 77 { // RTP时间戳为16位无符号整数，比较两个时间戳，当发生归零时（如0 - 65535）也会返回1

	 78 return (int16_t)(y - x);

	 79 }

	 82 static inline void fragment_rewind(struct viddec_state *vds)

	 83 {

	 84 vds->mb->pos = vds->frag_start;

	 85 vds->mb->end = vds->frag_start;

	 86 }

	 89 #if LIBAVUTIL_VERSION_MAJOR >= 56 // 获取硬件解码器像素格式

	 90 static enum AVPixelFormat get_hw_format(AVCodecContext *ctx,

	 91 const enum AVPixelFormat *pix_fmts)

	 92 {

	 93 const enum AVPixelFormat *p;

	 96 for (p = pix_fmts; *p != -1; p++) {

	 97 if (*p == avcodec_hw_pix_fmt) return *p;

	 99 }

	103 return AV_PIX_FMT_NONE;

	104 }

	105 #endif

	108 static int init_decoder(struct viddec_state *st, const char *name)

	109 { // 初始化解码器

	110 enum AVCodecID codec_id;

	112 codec_id = avcodec_resolve_codecid(name);

	113 if (codec_id == AV_CODEC_ID_NONE) return EINVAL;

	119 if (codec_id == AV_CODEC_ID_H264 && avcodec_h264dec) {

	120 st->codec = avcodec_h264dec;

	122 } else if (0 == str_casecmp(name, "h265")) {

	124 st->codec = avcodec_h265dec;

	126 } else {

	128 st->codec = avcodec_find_decoder(codec_id);

	129 if (!st->codec) return ENOENT;

	131 }

	133 st->ctx = avcodec_alloc_context3(st->codec); // 申请解码器Context

	135 //TODO: 如果avcodec_h264dec为h264_mediacodec时，需要把在调用avcodec_open2()

	136 // 之前的extradata加入context，它包含SPS和PPS

	140 st->pict = av_frame_alloc(); // 申请AVFrame用于存放解码后的数据

	142 if (!st->ctx || !st->pict) return ENOMEM;

	145 #if LIBAVUTIL_VERSION_MAJOR >= 56

	147 if (avcodec_hw_device_ctx) { // 硬件解码

	148 st->ctx->hw_device_ctx = av_buffer_ref(avcodec_hw_device_ctx);

	149 st->ctx->get_format = get_hw_format;

	156 }

	157 #endif

	159 if (avcodec_open2(st->ctx, st->codec, NULL) < 0) {return ENOENT; } // 打开解码器

	162 return 0;

	163 }

	166 int avcodec_decode_update(struct viddec_state **vdsp,

	167 const struct vidcodec *vc, const char *fmtp)

	168 { // 运行中更新解码器

	169 struct viddec_state *st;

	170 int err = 0;

	180 st = mem_zalloc(sizeof(*st), destructor); // 申请解码状态机数据结构

	181 if (!st) return ENOMEM;

	184 st->mb = mbuf_alloc(1024);

	185 if (!st->mb) { err = ENOMEM; goto out; }

	190 err = init_decoder(st, vc->name); // 初始化解码器

	191 if (err) { goto out; } // 失败处理

	198 out:

	199 if (err) mem_deref(st);

	201 else *vdsp = st;

	204 return err;

	205 }

	208 static int ffdecode(struct viddec_state *st, struct vidframe *frame,

	209 bool *intra)

	210 { // 解码函数

	211 AVFrame *hw_frame = NULL;

	212 AVPacket *avpkt;

	213 int i, got_picture, ret;

	214 int err = 0;

	216 #if LIBAVUTIL_VERSION_MAJOR >= 56

	217 if (st->ctx->hw_device_ctx) {

	218 hw_frame = av_frame_alloc(); // 为硬件解码器准备一个AVFrame

	219 if (!hw_frame) return ENOMEM;

	221 }

	222 #endif

	224 err = mbuf_fill(st->mb, 0x00, AV_INPUT_BUFFER_PADDING_SIZE); // 清空内存

	225 if (err) return err;

	227 st->mb->end -= AV_INPUT_BUFFER_PADDING_SIZE; // 预留出填充区域，FFmpeg不被计算在内

	229 avpkt = av_packet_alloc(); // 申请一个AVPacket

	230 if (!avpkt) { err = ENOMEM; goto out; }

	235 avpkt->data = st->mb->buf; // 指向BareSIP申请的内存，里面有待解码的数据

	236 avpkt->size = (int)st->mb->end;

	238 #if LIBAVCODEC_VERSION_INT >= AV_VERSION_INT(57, 37, 100)

	240 ret = avcodec_send_packet(st->ctx, avpkt); // 调用新接口进行解码

	241 if (ret < 0) { err = EBADMSG; goto out; }

	249 ret = avcodec_receive_frame(st->ctx, hw_frame ? hw_frame : st->pict);

	250 if (ret == AVERROR(EAGAIN)) { // 需要重试

	251 goto out; // 直接返回，让调用者重新调用

	252 } else if (ret < 0) { err = EBADMSG; goto out; }

	259 got_picture = true; // 兼容旧接口的变量，到此应该取到解码后的图像了

	260 #else

	261 ret = avcodec_decode_video2(st->ctx, st->pict, &got_picture, avpkt); // 旧解码接口

	262 if (ret < 0) { err = EBADMSG; goto out; }

	266 #endif

	268 if (got_picture) { // 解码器返回图像

	270 #if LIBAVUTIL_VERSION_MAJOR >= 56

	271 if (hw_frame) {

	272 // 从GPU复制到CPU

	273 ret = av_hwframe_transfer_data(st->pict, hw_frame, 0);

	274 if (ret < 0) { goto out; }

	280 st->pict->key_frame = hw_frame->key_frame;

	281 }

	282 #endif

	284 frame->fmt = avpixfmt_to_vidfmt(st->pict->format); // 从FFmpeg格式转换为BareSIP格式

	285 if (frame->fmt == (enum vidfmt)-1) { goto out; }

	293 for (i=0; i<4; i++) { // BareSIP与FFmpeg缓冲区兼容，直接改变数据指针指向FFmpeg中的YUV数据

	294 frame->data[i] = st->pict->data[i];

	295 frame->linesize[i] = st->pict->linesize[i];

	296 }

	297 frame->size.w = st->ctx->width; // 图像宽度

	298 frame->size.h = st->ctx->height; // 图像高度

	300 if (st->pict->key_frame) { // 得到一个关键帧图像

	302 *intra = true;

	303 st->got_keyframe = true;

	304 ++st->stats.n_key; // 记住收到多少关键帧

	305 }

	306 }

	308 out:

	309 av_frame_free(&hw_frame);

	310 av_packet_free(&avpkt);

	311 return err;

	312 }

	315 int avcodec_decode_h264(struct viddec_state *st, struct vidframe *frame,

	316 bool *intra, bool marker, uint16_t seq,

	317 struct mbuf *src)

	318 { // 解析H264包，组包，丢包检查等，与FFmpeg无关，略 }

	605 int avcodec_decode_h265(struct viddec_state *vds, struct vidframe *frame,

	606 bool *intra, bool marker, uint16_t seq, struct mbuf *mb)

	318 { // 解析H265包，组包，丢包检查等，与FFmpeg无关，略 }

	从代码中可以看出，BareSIP解码不像Chromium那样自己申请内存以用于存放解码后的数据，而是让FFmpeg自动申请。解码器支持硬件解码，但没有直接送至显卡上显示，而是复制到内存中，这可能是因为模块中没有与显示直接关联的关系。从理论上讲它作为客户端软件运行，解码后可以将图像从GPU直接送到显卡上显示。

	BareSIP兼容了新、旧两种解码接口，用起来也不复杂。在送往解码器失败时也没有直接重试，而是将AGAIN返回码返回，让调用者重试，这样模块中的代码就更简单了。解码时有等待关键帧、丢包检查等处理，但这些代码与FFmpeg本身无关，就略过了，感兴趣的读者可以自行查看BareSIP源代码。

15.4.2 AVFormat

	在BareSIP中，使用AVFormat提供media-source（即媒体源），可以用它来向对方播放媒体文件。比如，可以在BareSIP的配置文件中使用以下代码配置播放MP4音视频。

	audio_source avformat,/tmp/testfile.mp4 # 从MP4文件中读取音频

	video_source avformat,/tmp/testfile.mp4 # 从MP4文件中读取视频

	avformat_hwaccel vaapi # 使用vaapi硬件加速

	avformat_inputformat mjpeg # 使用mjpeg图像格式

	它也是在BareSIP模块中实现的，实现文件为avformat/avformat.c。内容如下：

	 9 #define _DEFAULT_SOURCE 1 // 默认源号码

	 10 #define _BSD_SOURCE 1

	 17 #include <libavformat/avformat.h> // 装入FFmpeg相关头文件

	 18 #include <libavcodec/avcodec.h>

	 19 #include <libavdevice/avdevice.h>

	 20 #if LIBAVUTIL_VERSION_MAJOR >= 56

	 21 #include <libavutil/hwcontext.h> // 启用硬件加速支持

	 22 #endif

	 43 static struct ausrc *ausrc;

	 44 static struct vidsrc *mod_avf;

	 46 #if LIBAVUTIL_VERSION_MAJOR >= 56

	 47 static enum AVHWDeviceType avformat_hwdevice = AV_HWDEVICE_TYPE_NONE;

	 48 #endif

	 49 static char avformat_inputformat[64];

	 50 static const AVCodec *avformat_decoder;

	 51 static char pass_through[256] = ""; // 透传

	 52 static char rtsp_transport[256] = ""; // RTSP传输协议，如udp、tcp等

	 55 static struct list sharedl; // 共享设备列表

	 58 static void shared_destructor(void *arg)// 释放内存

	 59 {

	 60 struct shared *st = arg; // 共享设备指针

	 62 if (st->run) {

	 63 st->run = false;

	 64 pthread_join(st->thread, NULL); // 等待进程结束

	 65 }

	 67 if (st->au.ctx) { // 音频context

	 68 avcodec_close(st->au.ctx);

	 69 avcodec_free_context(&st->au.ctx);

	 70 }

	 72 if (st->vid.ctx) { // 视频context

	 73 avcodec_close(st->vid.ctx);

	 74 avcodec_free_context(&st->vid.ctx);

	 75 }

	 77 if (st->ic) avformat_close_input(&st->ic); // 关闭输入context

	 80 list_unlink(&st->le); // 清除设备列表

	 81 mem_deref(st->lock); // 释放内存引用计数

	 82 mem_deref(st->dev); // 释放内存引用计数

	 83 }

	 86 static void *read_thread(void *data) // 专门用于读音视频数据的线程

	 87 {

	 88 struct shared *st = data;

	 89 uint64_t now, offset = tmr_jiffies();

	 90 double auts = 0, vidts = 0;

	 91 AVPacket *pkt; // 读取FFmpeg数据的内存缓冲区

	 93 pkt = av_packet_alloc(); // 申请一个AVPacket结构指针

	 94 if (!pkt) return NULL;

	 97 while (st->run) { // 在线程生存期间循环读取

	 99 int ret;

	101 sys_msleep(4);

	103 now = tmr_jiffies(); // 当前时钟

	105 for (;;) { //无限循环

	106 double xts; // 时间戳

	108 if (!st->run) break; // 退出条件

	111 if (st->au.idx >=0 && st->vid.idx >=0)

	112 xts = min(auts, vidts); // 取音视频时间戳最小值

	113 else if (st->au.idx >=0)

	114 xts = auts; // 只有音频，取音频时间戳

	115 else if (st->vid.idx >=0)

	116 xts = vidts; // 只有视频，取视频时间戳

	117 else break;

	119 // 摄像头是实时的，视频文件如MP4等则是非实时的，如果时间不到则跳出for循环，外层有sleep等待

	120 if (!(st->is_realtime)) if (now < (offset + xts)) break;

	124 ret = av_read_frame(st->ic, pkt); // 从文件中读取一帧到pkt中

	125 if (ret == (int)AVERROR_EOF) { // 读取文件结尾

	129 sys_msleep(1000); // 暂停1秒

	130 // 跳到文件起始位置最近的关键帧

	131 ret = av_seek_frame(st->ic, -1, 0, AVSEEK_FLAG_BACKWARD);

	133 if (ret < 0) { goto out; }

	139 offset = tmr_jiffies(); // 当前时间戳

	140 break; // 跳出for循环，继续外层while循环

	141 } else if (ret < 0) { goto out; } // 失败则退出

	147 if (pkt->stream_index == st->au.idx) { // 音频

	149 if (pkt->pts == AV_NOPTS_VALUE) { // 若取不到pts则警告

	150 warning("no audio pts\n");

	151 }

	153 auts = 1000 * pkt->pts * av_q2d(st->au.time_base); // 计算音频时间戳

	156 avformat_audio_decode(st, pkt); // 音频解码，旧接口

	157 } else if (pkt->stream_index == st->vid.idx) { // 视频

	160 if (pkt->pts == AV_NOPTS_VALUE) { // 取不到pts则警告

	161 warning("no video pts\n");

	162 }

	164 vidts = 1000 * pkt->pts * av_q2d(st->vid.time_base); // 计算视频时间戳

	167 if (st->is_pass_through) { // 不解码模式，将读到的pkt复制到st中

	168 avformat_video_copy(st, pkt);

	169 } else { // 解码模式

	171 avformat_video_decode(st, pkt); // 调用旧解码接口

	172 }

	173 }

	175 av_packet_unref(pkt); // 释放pkt引用计数，进入下一次循环

	176 }

	177 }

	179 out:

	180 av_packet_free(&pkt); // 释放pkt

	182 return NULL;

	183 }

	186 static int open_codec(struct stream *s, const struct AVStream *strm, int i,

	187 AVCodecContext *ctx)

	188 { // 打开FFmpeg解码器

	189 const AVCodec *codec = avformat_decoder; // 在模块加载时计算出相应的decoder

	190 int ret;

	195 if (!codec) { // 如果codec为空，则根据当前ctx的codec_id找一个

	196 codec = avcodec_find_decoder(ctx->codec_id);

	197 if (!codec) {return ENOENT; } // 找不到则出错

	201 }

	203 ret = avcodec_open2(ctx, codec, NULL); // 打开解码器

	204 if (ret < 0) { return ENOMEM; } // 失败则返回错误

	209 #if LIBAVUTIL_VERSION_MAJOR >= 56

	210 if (avformat_hwdevice != AV_HWDEVICE_TYPE_NONE) { // 硬件解码

	211 AVBufferRef *hwctx;

	212 ret = av_hwdevice_ctx_create(&hwctx, avformat_hwdevice, NULL, NULL, 0); // 创建硬件设备

	214 if (ret < 0) { return ENOMEM; }

	220 ctx->hw_device_ctx = av_buffer_ref(hwctx); // 关联硬件设备内存引用

	222 av_buffer_unref(&hwctx); // 关闭局部变量的内存引用

	223 }

	224 #endif

	226 s->time_base = strm->time_base; // 设置时间基准

	227 s->ctx = ctx;

	228 s->idx = i;

	234 return 0;

	235 }

	238 int avformat_shared_alloc(struct shared **shp, const char *dev,

	239 double fps, const struct vidsz *size,

	240 bool video)

	241 { // 获取共享设备

	242 struct shared *st;

	243 struct pl pl_fmt, pl_dev;

	244 char *device = NULL;

	245 AVInputFormat *input_format = NULL;

	246 AVDictionary *format_opts = NULL;

	247 char buf[16];

	248 unsigned i;

	249 int err;

	250 int ret;

	251 // 申请内存，初始化为0，传入自动销毁函数，在内存释放时自动执行该回调，该函数在第58行实现

	255 st = mem_zalloc(sizeof(*st), shared_destructor);

	256 if (!st) return ENOMEM;

	259 st->au.idx = -1;

	260 st->vid.idx = -1;

	262 err = str_dup(&st->dev, dev); // 复制设备字符串到st-dev中

	263 if (err) goto out;

	266 conf_get_str(conf_cur(), "avformat_pass_through",

	267 pass_through, sizeof(pass_through)); // 从配置文件中读，是否是透传模式

	269 if (*pass_through != '\0' && 0==strcmp(pass_through, "yes")) {

	270 st->is_pass_through = 1; // 数据透传，不解码

	271 }

	272 // 使用正则表达式将字符串以逗号分隔开

	273 if (0 == re_regex(dev, str_len(dev), "[^,]+,[^]+", &pl_fmt, &pl_dev)) {

	275 char format[32];

	277 pl_strcpy(&pl_fmt, format, sizeof(format));

	279 pl_strdup(&device, &pl_dev);

	280 dev = device; // 计算设备名称

	282 st->is_realtime = // 以下这些摄像头或麦克风设备提供的流是实时的

	283 0==strcmp(format, "avfoundation") ||

	284 0==strcmp(format, "android_camera") ||

	285 0==strcmp(format, "v4l2");

	287 input_format = av_find_input_format(format); // 获取输入格式

	288 if (input_format) { // 成功，打印日志

	289 debug("avformat: using format '%s' (%s)\n",

	290 input_format->name, input_format->long_name);

	291 } else { // 警告

	293 warning("avformat: input format not found (%s)\n", format);

	295 }

	296 }

	298 err = lock_alloc(&st->lock); // 在BareSIP中申请一个锁

	299 if (err) goto out;

	302 if (video && size->w) {

	303 re_snprintf(buf, sizeof(buf), "%ux%u", size->w, size->h);

	304 ret = av_dict_set(&format_opts, "video_size", buf, 0); // 设置摄像头或视频文件分辨率

	305 if (ret != 0) { err = ENOENT; goto out; }

	311 }

	313 if (video && fps && !st->is_pass_through) { // 非透传，需要转码

	314 re_snprintf(buf, sizeof(buf), "%2.f", fps);

	315 ret = av_dict_set(&format_opts, "framerate", buf, 0); // 帧率

	316 if (ret != 0) { err = ENOENT; goto out; }

	322 }

	324 if (video && device) { // 视频设备

	325 ret = av_dict_set(&format_opts, "camera_index", device, 0); // 选择对应的摄像头

	326 if (ret != 0) { err = ENOENT; goto out; }

	332 }

	334 if (str_isset(avformat_inputformat)) { // 如果配置文件中有期望的视频格式参数，则设置

	335 ret = av_dict_set(&format_opts, "input_format", avformat_inputformat, 0);

	337 if (ret != 0) { err = ENOENT; goto out; }

	343 }

	345 if (str_isset(rtsp_transport)) { // 如果输入源为RTSP流，则选择相应的传输协议

	346 ret = -1;

	348 if ((0==strcmp(rtsp_transport, "tcp")) ||

	349 (0==strcmp(rtsp_transport, "udp")) ||

	350 (0==strcmp(rtsp_transport, "udp_multicast")) ||

	351 (0==strcmp(rtsp_transport, "http")) ||

	352 (0==strcmp(rtsp_transport, "https"))) {

	354 ret = av_dict_set(&format_opts, "rtsp_transport", rtsp_transport, 0);

	356 }

	358 if (ret != 0) { err = ENOENT; goto out; }

	364 }

	366 ret = avformat_open_input(&st->ic, dev, input_format, &format_opts); // 打开输入源

	367 if (ret < 0) { err = ENOENT; goto out; }

	374 for (i=0; i<st->ic->nb_streams; i++) { // 遍历文件中所有流（stream）

	376 const struct AVStream *strm = st->ic->streams[i]; // 当前stream

	377 AVCodecContext *ctx;

	379 ctx = avcodec_alloc_context3(NULL); // 初始化一个AVCodecContext

	380 if (!ctx) { err = ENOMEM; goto out; }

	384 // 从strm->codecpar中获取参数到ctx中

	385 ret = avcodec_parameters_to_context(ctx, strm->codecpar);

	386 if (ret < 0) { err = EPROTO; goto out; }

	392 switch (ctx->codec_type) {

	394 case AVMEDIA_TYPE_AUDIO: // 音频流

	395 err = open_codec(&st->au, strm, i, ctx); // 打开音频codec

	396 if (err) goto out;

	398 break;

	400 case AVMEDIA_TYPE_VIDEO: // 视频流

	401 err = open_codec(&st->vid, strm, i, ctx); // 打开视频codec

	402 if (err) goto out;

	404 break;

	406 default: break;

	408 }

	409 }

	411 st->run = true; // 准备好，启动一个新线程，专门用于读文件

	412 err = pthread_create(&st->thread, NULL, read_thread, st);

	413 if (err) { st->run = false; goto out; }

	418 list_append(&sharedl, &st->le, st); // 将当前设备加入共享列表中

	420 out:

	422 if (err) mem_deref(st);

	424 else *shp = st;

	427 mem_deref(device); // 释放内存引用计数

	429 av_dict_free(&format_opts); // 释放FFmpeg数据字典内存

	431 return err;

	432 }

	435 struct shared *avformat_shared_lookup(const char *dev) // 查找共享设备

	436 {

	437 struct le *le;

	439 for (le = sharedl.head; le; le = le->next) { // 遍历链表

	441 struct shared *sh = le->data;

	443 if (0 == str_casecmp(sh->dev, dev)) return sh; // 找到则返回

	445 }

	447 return NULL; // 找不到则返回空指针

	448 }

	451 void avformat_shared_set_audio(struct shared *sh, struct ausrc_st *st)

	452 { // 设置音频输入源

	453 if (!sh) return;

	456 lock_write_get(sh->lock);

	457 sh->ausrc_st = st;

	458 lock_rel(sh->lock);

	459 }

	462 void avformat_shared_set_video(struct shared *sh, struct vidsrc_st *st)

	463 { // 设置视频输入源

	464 if (!sh) return;

	467 lock_write_get(sh->lock);

	468 sh->vidsrc_st = st;

	469 lock_rel(sh->lock);

	470 }

	473 static int module_init(void) // 模块初始化

	474 {

	475 int err;

	476 #if LIBAVUTIL_VERSION_MAJOR >= 56

	477 char hwaccel[64] = ""; // 启用硬件加速

	478 #endif

	479 char decoder[64] = "";

	481 #if LIBAVCODEC_VERSION_INT < AV_VERSION_INT(58, 9, 100)

	482 avcodec_register_all(); // 旧版本的FFmpeg需要调用这个注册函数初始化

	483 #endif

	485 #if LIBAVUTIL_VERSION_MAJOR >= 56

	486 conf_get_str(conf_cur(), "avformat_hwaccel", hwaccel, sizeof(hwaccel));

	487 if (str_isset(hwaccel)) { // 查找硬件加速设备，找不到则返回AV_HWDEVICE_TYPE_NONE

	488 avformat_hwdevice = av_hwdevice_find_type_by_name(hwaccel);

	493 }

	494 #endif

	495 // 读配置文件中相关参数

	496 conf_get_str(conf_cur(), "avformat_inputformat", avformat_inputformat,

	497 sizeof(avformat_inputformat));

	499 conf_get_str(conf_cur(), "avformat_decoder", decoder,

	500 sizeof(decoder));

	502 conf_get_str(conf_cur(), "avformat_rtsp_transport",

	503 rtsp_transport, sizeof(rtsp_transport));

	505 if (str_isset(decoder)) { // 根据配置名称查找对应的解码器

	506 avformat_decoder = avcodec_find_decoder_by_name(decoder);

	507 if (!avformat_decoder) { return ENOENT; }

	511 }

	513 avformat_network_init(); // 初始化FFmpeg AVFormat网络

	515 avdevice_register_all(); // 注册FFmpeg所有设备

	517 err = ausrc_register(&ausrc, baresip_ausrcl(),

	518 "avformat", avformat_audio_alloc); // 向BareSIP注册媒体输入源

	520 err |= vidsrc_register(&mod_avf, baresip_vidsrcl(),

	521 "avformat", avformat_video_alloc, NULL); // 向BareSIP注册视频输入源

	523 return err;

	524 }

	527 static int module_close(void) // 关闭模块

	528 {

	529 mod_avf = mem_deref(mod_avf);

	530 ausrc = mem_deref(ausrc);

	532 avformat_network_deinit();

	534 return 0;

	535 }

	538 EXPORT_SYM const struct mod_export DECL_EXPORTS(avformat) = {

	539 "avformat", "avsrc", // 向BareSIP注册模块

	541 module_init, // 模块初始化回调函数

	542 module_close // 模块卸载回调函数

	543 };

	从代码中可以看出，音视频输入媒体流可以从音视频文件中获取，也可以从摄像头或麦克风设备获取，后者是实时的（is_realtime），可以阻塞读取，前者则是循环读取，使用简单的忙等待（sys_msleep(4)）直到读取下一帧。具体的音视频解码函数在后面的文件中定义。

	上述代码中用到的时钟函数是一个简单的跨平台函数，是在libre中实现的，它返回当前时间的64位毫秒数。代码如下：

	uint64_t tmr_jiffies(void)

	{

	 uint64_t jfs;

	#if defined(WIN32) // Windows平台

	 FILETIME ft;

	 ULARGE_INTEGER li;

	 GetSystemTimeAsFileTime(&ft);

	 li.LowPart = ft.dwLowDateTime;

	 li.HighPart = ft.dwHighDateTime;

	 jfs = li.QuadPart/10/1000;

	#else

	 struct timeval now;

	 if (0 != gettimeofday(&now, NULL)) { return 0; } // 获取当前时间

	 jfs = (long)now.tv_sec * (uint64_t)1000;

	 jfs += now.tv_usec / 1000;

	#endif

	 return jfs;

	}

	音频相关的函数在单独的文件中实现。下面代码来自avformat/audio.c。

	 11 #include <libavutil/opt.h> // FFmpeg相关的头文件

	 12 #include <libavformat/avformat.h>

	 13 #include <libavcodec/avcodec.h>

	 14 #include <libswresample/swresample.h>

	 18 struct ausrc_st { // 音频流结构体

	 19 struct shared *shared;

	 20 struct ausrc_prm prm;

	 21 SwrContext *swr;

	 22 ausrc_read_h *readh;

	 23 ausrc_error_h *errh;

	 24 void *arg;

	 25 };

	 28 static void audio_destructor(void *arg) // 释放内存函数

	 29 {

	 30 struct ausrc_st *st = arg;

	 32 avformat_shared_set_audio(st->shared, NULL);

	 33 mem_deref(st->shared);

	 35 if (st->swr) swr_free(&st->swr);

	 37 }

	 40 static enum AVSampleFormat aufmt_to_avsampleformat(enum aufmt fmt)

	 41 { // 将BareSIP中的音频格式转换为FFmpeg音频格式

	 42 switch (fmt) {

	 44 case AUFMT_S16LE: return AV_SAMPLE_FMT_S16;

	 45 case AUFMT_FLOAT: return AV_SAMPLE_FMT_FLT;

	 46 default: return AV_SAMPLE_FMT_NONE;

	 47 }

	 48 }

	 51 int avformat_audio_alloc(struct ausrc_st **stp, const struct ausrc *as,

	 52 struct ausrc_prm *prm, const char *dev,

	 53 ausrc_read_h *readh, ausrc_error_h *errh, void *arg)

	 54 { // 打开音频源

	 55 struct ausrc_st *st;

	 56 struct shared *sh;

	 57 int err = 0;

	 59 if (!stp || !as || !prm || !readh) return EINVAL;

	 64 st = mem_zalloc(sizeof(*st), audio_destructor); // 初始化音频源内存，释放时会自动调用第28行的回调函数

	 65 if (!st) return ENOMEM;

	 68 st->readh = readh; // 读数据回调函数

	 69 st->errh = errh; // 出错回调函数

	 70 st->arg = arg; // 回调参数，原样回传

	 71 st->prm = *prm; // 参数

	 73 sh = avformat_shared_lookup(dev); // 查找设备

	 74 if (sh) { st->shared = mem_ref(sh); } // 创建内存引用计数

	 77 else { // 申请共享设备

	 78 err = avformat_shared_alloc(&st->shared, dev, 0.0, NULL, false);

	 80 if (err) goto out;

	 82 }

	 84 sh = st->shared;

	 86 if (st->shared->au.idx < 0 || !st->shared->au.ctx) { // 媒体文件没有音频流

	 87 info("avformat: audio: media file has no audio stream\n");

	 88 err = ENOENT; goto out;

	 90 }

	 92 st->swr = swr_alloc(); // 初始化并使用libswresample进行重采样

	 93 if (!st->swr) { err = ENOMEM; goto out; }

	 98 avformat_shared_set_audio(st->shared, st); // 使用这个音频设备

	100 info("avformat: audio: converting %u/%u %s -> %u/%u %s\n", // 打印相关信息

	101 sh->au.ctx->sample_rate, sh->au.ctx->channels,

	102 av_get_sample_fmt_name(sh->au.ctx->sample_fmt),

	103 prm->srate, prm->ch, aufmt_name(prm->fmt));

	105 out:

	106 if (err) mem_deref(st);

	108 else *stp = st; // 返回打开的音频流

	111 return err;

	112 }

	115 void avformat_audio_decode(struct shared *st, AVPacket *pkt) // 音频解码

	116 {

	117 AVFrame frame;

	118 AVFrame frame2;

	119 int ret;

	120 #if LIBAVCODEC_VERSION_INT < AV_VERSION_INT(57, 37, 100)

	121 int got_frame; // 旧解码接口使用

	122 #endif

	124 if (!st || !st->au.ctx) return;

	127 memset(&frame, 0, sizeof(frame));

	128 memset(&frame2, 0, sizeof(frame2));

	130 #if LIBAVCODEC_VERSION_INT >= AV_VERSION_INT(57, 37, 100)

	132 ret = avcodec_send_packet(st->au.ctx, pkt); // 调用新解码接口解码

	133 if (ret < 0) return;

	136 ret = avcodec_receive_frame(st->au.ctx, &frame); // 检查是否有已解码的音频

	137 if (ret < 0) return;

	140 #else

	141 ret = avcodec_decode_audio4(st->au.ctx, &frame, &got_frame, pkt); // 旧解码接口

	142 if (ret < 0 || !got_frame) return; // 失败处理

	144 #endif

	148 lock_read_get(st->lock); // 加锁

	150 if (st->ausrc_st && st->ausrc_st->readh) { // 需要重采样

	152 const AVRational tb = st->au.time_base;

	153 struct auframe af;

	155 frame.channel_layout = av_get_default_channel_layout(frame.channels);

	158 frame2.channels = st->ausrc_st->prm.ch;

	159 frame2.channel_layout = av_get_default_channel_layout(st->ausrc_st->prm.ch);

	161 frame2.sample_rate = st->ausrc_st->prm.srate;

	162 frame2.format = aufmt_to_avsampleformat(st->ausrc_st->prm.fmt);

	165 ret = swr_convert_frame(st->ausrc_st->swr, &frame2, &frame);

	166 if (ret) { goto unlock; }

	171 // 从FFmpeg解码出的音频数据（且已重采样的frame2）填充BareSIP音频内存缓冲区

	172 auframe_init(&af, st->ausrc_st->prm.fmt, frame2.data[0],

	173 frame2.nb_samples * frame2.channels,

	174 st->ausrc_st->prm.srate, st->ausrc_st->prm.ch);

	175 af.timestamp = frame.pts * AUDIO_TIMEBASE * tb.num / tb.den;

	176 // 调用BareSIP的回调函数，返回音频数据

	177 st->ausrc_st->readh(&af, st->ausrc_st->arg);

	178 }

	180 unlock:

	181 lock_rel(st->lock); // 释放锁

	183 av_frame_unref(&frame2); // 解除内存引用

	184 av_frame_unref(&frame); // 解除内存引用

	185 }

	从上述代码可以看出，音频解码也兼容了新、旧两种接口。至于重采样等内容在以前的代码中也都介绍过，这里也没有什么特别的。

	视频相关的函数也在单独的文件中实现。下面代码来自avformat/video.c。

	 14 #include <libavformat/avformat.h> // FFmpeg相关的头文件

	 15 #include <libavcodec/avcodec.h>

	 16 #include <libavutil/pixdesc.h>

	 20 struct vidsrc_st { // 定义一个视频流结构

	 21 struct shared *shared;

	 22 vidsrc_frame_h *frameh;

	 23 vidsrc_packet_h *packeth;

	 24 void *arg;

	 25 };

	 28 static void video_destructor(void *arg) // 释放内存函数

	 29 {

	 30 struct vidsrc_st *st = arg;

	 32 avformat_shared_set_video(st->shared, NULL);

	 33 mem_deref(st->shared);

	 34 }

	 37 static enum vidfmt avpixfmt_to_vidfmt(enum AVPixelFormat pix_fmt)

	 38 { 将FFmpeg格式转换为BareSIP视频像素格式

	 39 switch (pix_fmt) {

	 41 case AV_PIX_FMT_YUV420P: return VID_FMT_YUV420P;

	 42 case AV_PIX_FMT_YUVJ420P: return VID_FMT_YUV420P;

	 43 case AV_PIX_FMT_YUV444P: return VID_FMT_YUV444P;

	 44 case AV_PIX_FMT_NV12: return VID_FMT_NV12;

	 45 case AV_PIX_FMT_NV21: return VID_FMT_NV21;

	 46 case AV_PIX_FMT_UYVY422: return VID_FMT_UYVY422;

	 47 case AV_PIX_FMT_YUYV422: return VID_FMT_YUYV422;

	 48 default: return (enum vidfmt)-1;

	 49 }

	 50 }

	 53 int avformat_video_alloc(struct vidsrc_st **stp, const struct vidsrc *vs,

	 54 struct vidsrc_prm *prm,

	 55 const struct vidsz *size, const char *fmt,

	 56 const char *dev, vidsrc_frame_h *frameh,

	 57 vidsrc_packet_h *packeth,

	 58 vidsrc_error_h *errorh, void *arg)

	 59 { // 申请视频流

	 60 struct vidsrc_st *st;

	 61 struct shared *sh;

	 62 int err = 0;

	 68 if (!stp || !vs || !prm || !size || !frameh) return EINVAL;

	 73 st = mem_zalloc(sizeof(*st), video_destructor); // 申请视频源结构体内存，释放时会回调第28行的函数

	 74 if (!st) return ENOMEM;

	 77 st->frameh = frameh; // 从BareSIP传过来的图像帧回调函数

	 78 st->packeth = packeth; // 从BareSIP传过来的原始流回调函数

	 79 st->arg = arg; // 回调参数，原样回传

	 81 sh = avformat_shared_lookup(dev); // 查找视频设备

	 82 if (sh) { st->shared = mem_ref(sh); }

	 85 else {

	 86 err = avformat_shared_alloc(&st->shared, dev, prm->fps, size, true); // 申请视频设备

	 88 if (err) goto out;

	 90 }

	 92 if (st->shared->vid.idx < 0 || !st->shared->vid.ctx) { err = ENOENT; goto out; }

	 98 avformat_shared_set_video(st->shared, st); // 使用该视频设备作为输入源

	100 out:

	101 if (err) mem_deref(st);

	103 else *stp = st; // 返回该视频流

	106 return err;

	107 }

	110 void avformat_video_copy(struct shared *st, AVPacket *pkt) // 不解码，直接复制视频数据

	111 { // 将视频数据从FFmpeg内存pkt复制到BareSIP内存

	112 struct vidpacket vp; // BareSIP中的视频数据

	113 AVRational tb;

	115 if (!st || !pkt) return;

	118 tb = st->vid.time_base; // 时间基准

	120 vp.buf = pkt->data; // 从BareSIP直接指向FFmpeg中的数据内存地址

	121 vp.size = pkt->size; // 数据长度

	122 vp.timestamp = pkt->pts * VIDEO_TIMEBASE * tb.num / tb.den; // 计算时间戳

	124 lock_read_get(st->lock); // 加锁

	126 if (st->vidsrc_st && st->vidsrc_st->packeth) {

	127 st->vidsrc_st->packeth(&vp, st->vidsrc_st->arg); // 回调，将数据返回BareSIP调用者

	128 }

	130 lock_rel(st->lock); // 解锁

	131 }

	134 void avformat_video_decode(struct shared *st, AVPacket *pkt)

	135 {

	136 AVRational tb;

	137 struct vidframe vf;

	138 AVFrame *frame = 0;

	139 uint64_t timestamp;

	140 unsigned i;

	141 int ret;

	142 #if LIBAVCODEC_VERSION_INT < AV_VERSION_INT(57, 37, 100)

	143 int got_pict; // 旧版解码接口使用

	144 #endif

	146 if (!st || !st->vid.ctx) return;

	149 tb = st->vid.time_base; // 时间基准

	151 frame = av_frame_alloc(); // 申请一个AVFrame用于存放解码后的图像数据

	152 if (!frame) return;

	155 #if LIBAVCODEC_VERSION_INT >= AV_VERSION_INT(57, 37, 100)

	157 ret = avcodec_send_packet(st->vid.ctx, pkt); // 调用新的解码接口解码，pkt中有待解码的数据

	158 if (ret < 0) goto out;

	161 ret = avcodec_receive_frame(st->vid.ctx, frame); // 检查是否有解码后的图像数据

	162 if (ret < 0) goto out;

	165 #else

	166 ret = avcodec_decode_video2(st->vid.ctx, frame, &got_pict, pkt); // 旧版解码接口

	167 if (ret < 0 || !got_pict) goto out;

	169 #endif

	171 #if LIBAVUTIL_VERSION_MAJOR >= 56

	172 if (st->vid.ctx->hw_device_ctx) { // 硬件解码

	173 AVFrame *frame2;

	174 frame2 = av_frame_alloc(); // 申请一个AVFrame用于存储硬件解码器中的图像

	175 if (!frame2) goto out;

	179 frame2->format = AV_PIX_FMT_YUV420P; // 很多硬件解码器都支持这个像素格式

	180 ret = av_hwframe_transfer_data(frame2, frame, 0); // 从硬件解码器读数据

	181 if (ret < 0) { av_frame_free(&frame2); goto out; }

	186 ret = av_frame_copy_props(frame2, frame); // 将相关参数从frame复制到frame2

	187 if (ret < 0) { av_frame_free(&frame2); goto out; }

	192 av_frame_unref(frame); // 释放内存引用计数

	193 av_frame_move_ref(frame, frame2); // 将内存引用计数从frame2转移到frame

	194 av_frame_free(&frame2); // 释放内存引用计数

	195 }

	196 #endif

	198 vf.fmt = avpixfmt_to_vidfmt(frame->format); // 将FFmpeg像素格式转换为BareSIP中的格式

	199 if (vf.fmt == (enum vidfmt)-1) { goto out; }

	207 vf.size.w = st->vid.ctx->width; // 将FFmpeg中解码后的图像宽度赋值给BareSIP

	208 vf.size.h = st->vid.ctx->height; // 图像高度

	210 for (i=0; i<4; i++) { // BareSIP与FFmpeg像素格式是兼容的，直接移动内存指针指向FFmpeg YUV数据平面

	211 vf.data[i] = frame->data[i];

	212 vf.linesize[i] = frame->linesize[i];

	213 }

	216 timestamp = frame->pts * VIDEO_TIMEBASE * tb.num / tb.den; // 计算时间戳

	218 lock_read_get(st->lock); // 加锁

	220 if (st->vidsrc_st && st->vidsrc_st->frameh) // 调用回调函数将数据返回BareSIP调用者

	221 st->vidsrc_st->frameh(&vf, timestamp, st->vidsrc_st->arg);

	223 lock_rel(st->lock); // 解锁

	225 out:

	226 if (frame) av_frame_free(&frame); // 解除引用计数

	228 }

	在上述代码中，对设备（摄像头）直接使用了固定的AV_PIX_FMT_YUV420P像素格式，大部分摄像头应该都支持这种格式。如果某些摄像头需要特定的格式，则可以从配置参数中传入，不过，那就需要多写一些代码了。代码无止境，总要在实用性和复杂性之间做一些权衡。

15.4.3 AVFilter

	AVFilter是FFmpeg中的滤镜，可以对视频图像进行各种处理。AVFilter是一个链，也就是说图像可以通过多个滤镜进行处理，如美颜（这需要额外的算法）、添加水印等。

	BareSIP也实现了滤镜模块，如下列配置可以在现有的视频上添加一个水印图片。

	avfilter movie=watermark.png[pic];[in][pic]overlay=10:10[out]

	滤镜模块在avfilter/avfilter.c中实现。代码如下：

	 8 #include <libavformat/avformat.h> // FFmpeg相关头文件

	 9 #include <libavfilter/buffersink.h>

	 10 #include <libavfilter/buffersrc.h>

	 11 #include <libavutil/opt.h>

	 44 static struct lock *lock; // 锁

	 45 static char filter_descr[MAX_DESCR] = ""; // 滤镜字符串

	 46 static bool filter_updated = false;

	 49 static void st_destructor(void *arg) // 释放内存回调函数

	 50 {

	 51 struct avfilter_st *st = arg;

	 53 list_unlink(&st->vf.le);

	 54 filter_reset(st);

	 55 }

	 58 static int update(struct vidfilt_enc_st **stp, void **ctx,

	 59 const struct vidfilt *vf, struct vidfilt_prm *prm,

	 60 const struct video *vid)

	 61 { // 更新滤镜

	 62 struct avfilter_st *st; // 初始化一个avfilter_st结构体指针

	 65 if (!stp || !ctx || !vf || !prm) return EINVAL;

	 68 if (*stp) return 0;

	 71 st = mem_zalloc(sizeof(*st), st_destructor); // 申请内存，释放时自动回调第49行的函数

	 72 if (!st) return ENOMEM;

	 75 st->enabled = false;

	 77 *stp = (struct vidfilt_enc_st *)st; // 返回这个指针给BareSIP

	 78 return 0;

	 79 }

	 82 static int encode(struct vidfilt_enc_st *enc_st, struct vidframe *frame,

	 83 uint64_t *timestamp)

	 84 { // 编码

	 85 struct avfilter_st *st = (struct avfilter_st *)enc_st;

	 86 int err;

	 88 if (!frame) return 0;

	 91 lock_write_get(lock); // 加锁

	 92 if (filter_updated || !filter_valid(st, frame)) {

	 93 filter_reset(st); // 首次使用或更新时重置一下内存状态

	 94 filter_init(st, filter_descr, frame); // 初始化

	 95 }

	 96 filter_updated = false;

	 97 lock_rel(lock); // 解锁

	 99 err = filter_encode(st, frame, timestamp); // 调用编码函数，该函数在另外的文件中实现

	101 return err;

	102 }

	105 static int avfilter_command(struct re_printf *pf, void *arg) // 执行滤镜指令

	106 {

	107 const struct cmd_arg *carg = arg;

	110 lock_write_get(lock); // 加锁

	112 if (str_isset(carg->prm)) { // 启用

	113 str_ncpy(filter_descr, carg->prm, sizeof(filter_descr));

	114 info("avfilter: enabled for %s\n", filter_descr);

	115 } else { // 禁用

	117 str_ncpy(filter_descr, "", sizeof(filter_descr));

	118 info("avfilter: disabled\n");

	119 }

	121 filter_updated = true;

	123 lock_rel(lock); // 解锁

	124 return 0;

	125 }

	128 static struct vidfilt avfilter = { // BareSIP中视频滤镜结构体，回调函数

	129 .name = "avfilter",

	130 .ench = encode,

	131 .encupdh = update

	132 };

	135 static const struct cmd cmdv[] = { // 支持的命令数据

	136 {"avfilter", 0, CMD_PRM, "Start avfilter", avfilter_command}

	137 };

	140 static int module_init(void) // 模块实始化

	141 {

	142 int err;

	143 err = lock_alloc(&lock); // 申请锁

	144 if (err) return err;

	147 vidfilt_register(baresip_vidfiltl(), &avfilter); // 向BareSIP注册滤镜模块

	148 return cmd_register(baresip_commands(), cmdv, ARRAY_SIZE(cmdv)); // 注册命令

	149 }

	152 static int module_close(void) // 模块卸载

	153 {

	154 lock = mem_deref(lock); // 解除内存引用

	155 vidfilt_unregister(&avfilter); // 取消滤镜注册

	156 cmd_unregister(baresip_commands(), cmdv); // 取消命令注册

	157 return 0;

	158 }

	161 EXPORT_SYM const struct mod_export DECL_EXPORTS(avfilter) = {

	162 "avfilter", "vidfilt", // 向BareSIP注册滤镜名称

	164 module_init, // 模块初始化回调函数

	165 module_close // 模块卸载回调函数

	166 };

	上述代码中引用的具体的滤镜函数是在avfilter/filter.c中实现的。代码如下：

	 8 #include <libavformat/avformat.h> // FFmpeg相关头文件

	 9 #include <libavfilter/buffersink.h>

	 10 #include <libavfilter/buffersrc.h>

	 11 #include <libavutil/opt.h>

	 19 int filter_init(struct avfilter_st *st, const char *filter_descr,

	 20 struct vidframe *frame)

	 21 { // 滤镜初始化

	 22 const AVFilter *buffersrc, *buffersink;

	 23 AVFilterInOut *outputs, *inputs;

	 24 enum AVPixelFormat src_format = vidfmt_to_avpixfmt(frame->fmt); // 将BareSIP像素格式转换为FFmpeg格式

	 25 enum AVPixelFormat pix_fmts[] = { src_format, AV_PIX_FMT_NONE };

	 26 char args[512];

	 27 int err = 0;

	 29 if (!str_isset(filter_descr)) { st->enabled = false; return 0; }

	 34 buffersrc = avfilter_get_by_name("buffer"); // 获取滤镜源

	 35 buffersink = avfilter_get_by_name("buffersink"); // 获取滤镜尾

	 36 outputs = avfilter_inout_alloc(); // 用于滤镜输出

	 37 inputs = avfilter_inout_alloc(); // 用于滤镜输入

	 39 st->filter_graph = avfilter_graph_alloc(); // 滤镜是一个图（graph）

	 40 st->vframe_in = av_frame_alloc(); // 申请一个图像AVFrame，用于输入

	 41 st->vframe_out = av_frame_alloc(); // 申请一个图像AVFrame，用于输出

	 42 if (!outputs || !inputs || !st->filter_graph || !st->vframe_in || !st->vframe_out) {

	 44 err = AVERROR(ENOMEM); goto end;

	 46 }

	 54 err = avfilter_graph_create_filter(// 创建滤镜源

	 55 &st->buffersrc_ctx, buffersrc, "in", args, NULL, st->filter_graph);

	 57 if (err < 0) { goto end; }

	 63 err = avfilter_graph_create_filter(// 创建滤镜尾，结束滤镜

	 64 &st->buffersink_ctx, buffersink, "out", NULL, NULL, st->filter_graph);

	 66 if (err < 0) { goto end; }

	 71 err = av_opt_set_int_list(// 设置滤镜链上的像素格式，是一个数组

	 72 st->buffersink_ctx, "pix_fmts", pix_fmts, AV_PIX_FMT_NONE, AV_OPT_SEARCH_CHILDREN);

	 74 if (err < 0) { goto end; }

	 79 outputs->name = av_strdup("in");

	 80 outputs->filter_ctx = st->buffersrc_ctx; // 图像视频源，接到滤镜输出

	 81 outputs->pad_idx = 0;

	 82 outputs->next = NULL;

	 84 inputs->name = av_strdup("out");

	 85 inputs->filter_ctx = st->buffersink_ctx; // 滤镜图像尾，接到图像输入

	 86 inputs->pad_idx = 0;

	 87 inputs->next = NULL;

	 88 // 解析滤镜字符串

	 89 err = avfilter_graph_parse_ptr(st->filter_graph, filter_descr,

	 90 &inputs, &outputs, NULL);

	 91 if (err < 0) { goto end; }

	 97 err = avfilter_graph_config(st->filter_graph, NULL); // 根据解析结果配置滤镜资源

	 98 if (err < 0) { goto end; }

	103 st->size = frame->size; // 记住视频帧大小

	104 st->format = frame->fmt; // 记住视频帧格式

	105 st->enabled = true;

	106 // 滤镜初始化完毕

	107 info("avfilter: filter graph initialized for %s\n", filter_descr);

	109 end:

	110 avfilter_inout_free(&inputs); // 不再需要这个输入，释放

	111 avfilter_inout_free(&outputs); // 不再需要这个输出，释放

	113 return err;

	114 }

	117 void filter_reset(struct avfilter_st *st) // 滤镜重置函数

	118 {

	119 if (!st) return;

	122 if (!st->enabled) return;

	124 if (st->filter_graph) avfilter_graph_free(&st->filter_graph); // 释放graph

	126 if (st->vframe_in) av_frame_free(&st->vframe_in); // 释放AVFrame

	128 if (st->vframe_out) av_frame_free(&st->vframe_out); // 释放AVFrame

	130 st->enabled = false;

	132 }

	135 bool filter_valid(const struct avfilter_st *st, const struct vidframe *frame)

	136 { // 检查滤镜是否合法

	137 bool res = !st->enabled ||

	138 ((st->size.h == frame->size.h) &&

	139 (st->size.w == frame->size.w) &&

	140 (st->format == frame->fmt));

	141 return res;

	142 }

	145 int filter_encode(struct avfilter_st *st, struct vidframe *frame, uint64_t *timestamp)

	147 { // 滤镜编码，应用该滤镜

	148 unsigned i;

	149 int err;

	151 if (!frame) return 0;

	154 if (!st->enabled) { return 0; }

	158 // 填充视频图像源AVFrame内存，数据从BareSIP传入

	159 st->vframe_in->format = vidfmt_to_avpixfmt(frame->fmt);

	160 st->vframe_in->width = frame->size.w;

	161 st->vframe_in->height = frame->size.h;

	162 st->vframe_in->pts = *timestamp;

	164 for (i=0; i<4; i++) { // 格式兼容，直接将指针指向BareSIP中的内存YUV平面

	165 st->vframe_in->data[i] = frame->data[i];

	166 st->vframe_in->linesize[i] = frame->linesize[i];

	167 }

	170 err = av_buffersrc_add_frame_flags(// 将源AVFrame推入滤镜链

	171 st->buffersrc_ctx, st->vframe_in, AV_BUFFERSRC_FLAG_KEEP_REF);

	172 if (err < 0) { goto out; }

	178 av_frame_unref(st->vframe_out); // 释放旧的内存引用计数，如果有的话

	179 err = av_buffersink_get_frame(st->buffersink_ctx, st->vframe_out); // 从滤镜链中读取处理后的帧

	180 if (err == AVERROR(EAGAIN) || err == AVERROR_EOF) goto out;

	182 if (err < 0) { goto out; }

	188 avframe_ensure_topdown(st->vframe_out); // 确保内存像素格式是正向的，见下文util.c

	191 for (i=0; i<4; i++) { // 修改原来的BareSIP图像，将数据指针指向滤镜处理后的图像内存

	192 frame->data[i] = st->vframe_out->data[i];

	193 frame->linesize[i] = st->vframe_out->linesize[i];

	194 }

	195 frame->size.h = st->vframe_out->height; // 设置新的图像高度

	196 frame->size.w = st->vframe_out->width; // 设置新的图像宽度

	197 frame->fmt = avpixfmt_to_vidfmt(st->vframe_out->format); // 新的图像像素格式

	199 out:

	200 return err;

	201 }

	从上述代码可以看出，FFmpeg提供的滤镜功能强大，用起来也不复杂。滤镜是一个链，源头接上视频，在链上添加一个或多个滤镜（字符串形式描述），就可以在链的另一头得到处理后的视频。多滤镜的语法格式已经在前面的章节中介绍过了，在此不赘述。

	上述代码中用到的一些工具函数是在avfilter/util.c中实现的，该文件也不长，具有参考意义。简析如下：

	 12 #include <libavutil/frame.h> // FFmpeg相关头文件，使用了libavutil

	 16 static int swap_lines(uint8_t *a, uint8_t *b, uint8_t *tmp, size_t size)

	 17 { // 通过一个临时缓冲区tmp交换两行数据

	 18 memcpy(tmp, a, size);

	 19 memcpy(a, b, size);

	 20 memcpy(b, tmp, size);

	 21 return 0;

	 22 }

	 25 static int reverse_lines(uint8_t *data, int linesize, int count)

	 26 { // 将图像数据反转

	 27 size_t size = abs(linesize) * sizeof(uint8_t);

	 28 uint8_t *tmp = malloc(size); // 需要一个临时缓冲区

	 29 if (!tmp) return ENOMEM;

	 32 for (int i = 0; i < count/2; i++) // 循环交换每一行

	 33 swap_lines(data + linesize * i, data + linesize * (count - i - 1), tmp, size);

	 38 free(tmp);

	 39 return 0;

	 40 }

	 46 // 有的AVFrame中的平面数据顺序是从下往上的，其linesize为负数，起始指针指向缓冲区中最后一行数据

	 47 // BareSIP仅使用正数的linesize，因此需要将整个平面翻转一下

	 48 int avframe_ensure_topdown(AVFrame *frame) // 确保图像平面数据是从上到下存储的

	 49 {

	 50 int i;

	 52 if (!frame) return EINVAL;

	 55 switch (frame->format) {

	 57 case AV_PIX_FMT_YUV420P: // 目前仅支持这种格式

	 58 for (i=0; i<4; i++) { // 遍历所有平面

	 59 int ls = frame->linesize[i]; // 获取linesize

	 60 int h;

	 61 if (ls >= 0) continue; // 仅负数的linesize需要翻转

	 63 h = i == 0 ? frame->height : frame->height/2; // U/V平面为Y平面的1/2

	 64 reverse_lines(frame->data[i], ls, h); // 翻转平面中所有行

	 65 frame->data[i] = frame->data[i] + ls * (h - 1); // 指向正确的平面起始位置

	 66 frame->linesize[i] = abs(ls); // 翻转linesize，取绝对值

	 67 }

	 68 break;

	 70 default:

	 72 for (i=0; i<4; i++) { // TODO：支持更多格式

	 74 if (frame->linesize[i] <0) {

	 76 warning("avfilter: unsupported frame format with negative linesize: %d", frame->format);

	 80 return EPROTO;

	 81 }

	 82 }

	 83 }

	 85 return 0;

	 86 }

	 89 enum AVPixelFormat vidfmt_to_avpixfmt(enum vidfmt fmt)

	 90 { // 将BareSIP格式转换为FFmpeg像素格式

	 91 switch (fmt) {

	 93 case VID_FMT_YUV420P: return AV_PIX_FMT_YUV420P;

	 94 case VID_FMT_YUV444P: return AV_PIX_FMT_YUV444P;

	 95 case VID_FMT_NV12: return AV_PIX_FMT_NV12;

	 96 case VID_FMT_NV21: return AV_PIX_FMT_NV21;

	 97 default: return AV_PIX_FMT_NONE;

	 98 }

	 99 }

	102 enum vidfmt avpixfmt_to_vidfmt(enum AVPixelFormat pix_fmt)

	103 { // 将FFmpeg像素格式转换为BareSIP格式

	104 switch (pix_fmt) {

	106 case AV_PIX_FMT_YUV420P: return VID_FMT_YUV420P;

	107 case AV_PIX_FMT_YUVJ420P: return VID_FMT_YUV420P;

	108 case AV_PIX_FMT_YUV444P: return VID_FMT_YUV444P;

	109 case AV_PIX_FMT_NV12: return VID_FMT_NV12;

	110 case AV_PIX_FMT_NV21: return VID_FMT_NV21;

	111 default: return (enum vidfmt)-1;

	112 }

	113 }

	BareSIP中使用与FFmpeg兼容的YUV420P像素格式，可以直接使用修改数据指针的方式避免内存复制，提高效率。当然，BareSIP并不支持负数的linesize，因而有时也需要做一下图像翻转。至此，BareSIP中FFmpeg相关的代码就介绍完了，感兴趣的读者可以进一步阅读其源代码。

15.5 小结

	通过本章的代码实例我们也可以看到，其实用到的FFmpeg函数也就是那么几个，但在实际应用中，更多的代码是要对输入输出参数做各种逻辑判断、检测各种边界条件、有针对性地进行出错处理等。而且，为了支持不同的操作系统、不同版本的库文件也需要做很多兼容性处理。这也是实际系统与Demo代码最主要的区别。

	本书前面章节主要使用Demo代码来讲解相关函数的使用，力求用最简练的语言把使用方法和注意事项描述清楚。而本章则是分析实际场景中的代码实例，希望带给大家一个全面的认识。由于历史包袱的存在，代码总会越来越复杂，不管是FreeSWITCH、Chromium，还是FFmpeg，都是如此。这就如同物理学中的“熵”总是会增加一样。
FreeSWITCH支持FFmpeg 5.1的补丁，参见https://github.com/signalwire/freeswitch/pull/2166。
	值得一提的是，在上面的FreeSWITCH代码中，最高仅支持到FFmpeg 4.4版本，且还是使用了旧的编码和解码接口，而BareSIP及Chromium代码中则使用了新的编解码接口，方便读者对比学习。在本书定稿后即将付印时，FreeSWITCH合并了支持FFmpeg 5.1的补丁
	 [image: FreeSWITCH支持FFmpeg 5.1的补丁，参见https://github.com/signalwire/freeswitch/pull/2166。]，感兴趣的读者可以参考学习。

	理论上，在C语言中，所有有返回值的函数都需要检查返回值，并进行错误处理。在本章前面的代码（如FreeSWITCH代码）中，为了节省篇幅，我们删除了大量错误处理代码，但在BareSIP代码中我们尽量保留了一些错误处理代码，主要是考虑到读到后面大家对FFmpeg函数本身已经比较熟悉了，反而是错误处理代码更有参考价值，比如在什么情况下应该返回错误并中断执行，什么情况下只需打印出警告，但代码可以继续执行。

	同样是使用FFmpeg，不同的软件有不同的考虑和侧重点，希望通过本章对这些真实代码的解读，能帮助读者比较全面地理解FFmpeg中相关函数的使用。本章的代码毕竟有所删减，如果读者感到困惑，也可以根据本章中给出的链接下载完整的源代码进行阅读，以便得到更加全面的认识。

第16章

定制FFmpeg模块

	虽然FFmpeg提供了大量封装与解封装、编码与解码、输入输出设备、网络传输协议等能力支持，但是有时我们可能依然需要增加功能，这时就需要对FFmpeg的模块部分进行修改，增加定制化的模块。通过前面章节的学习，读者应该对FFmpeg的整体使用和架构都有了很好的了解。而向FFmpeg中添加模块需要对源代码架构比较了解。但FFmpeg源代码太多，需要找一个突破口，然后再逐步添加代码。
本书GitHub代码链接：https://github.com/T-bagwell/FFmpeg_Book_Version2/tree/book/base_ffmpeg_6.0。
	首先，下载官方的源代码仓库，基于6.0分支，建立一个新分支book，作为我们源代码的基础。关于本章讲解的代码，作者已经从FFmpeg官方代码库下载并按照本章讲解的内容一步一步操作实现，然后将修改后的代码上传至本书GitHub目录
	 [image: 本书GitHub代码链接：https://github.com/T-bagwell/FFmpeg_Book_Version2/tree/book/base_ffmpeg_6.0。]。

	$ git clone git://source.ffmpeg.org/ffmpeg.git # 下载源代码

	$ cd ffmpeg # 进入源代码主目录

	$ git checkout release/6.0 -b book # 基于6.0分支建立一个新分支，命名为book

	Switched to a new branch 'book'

	在源代码根目录中执行如下命令可以列出相应模块的源代码目录。

	$ ls | grep lib

	libavcodec/

	libavdevice/

	libavfilter/

	libavformat/

	libavutil/

	libpostproc/

	libswresample/

	libswscale/

	读者可以用自己喜欢的编辑器，打开整个源代码目录，大致浏览源代码的目录结构，随便看一看代码。可以找自己熟悉的内容看，比如H264编码用得比较多，在libavcodec目录下就有很多以h264开头的文件。如果要写一个新的编解码模块，最简单的方法就是先找一个类似的模块参考。不过，由于FFmpeg是一个庞大的项目，里面会有很多代码判断（如if-else之类）以应对实际使用环境中的各种问题，这使得源代码看起来很复杂，进而会干扰到我们的阅读。因此，在本章我们尝试构建一些简单、理想的环境，以便从最基本的代码入手，通过最简单的例子把问题讲清楚。

	先编译一个可用的FFmpeg版本作为基础。由于我们需要自己实现模块，只需要最基本的编译即可，而不需要编译大量的第三方模块，因此在下面的例子中，我们只使用最简单的./configure，并没有使用任何其他参数。另外，make -j4指明使用4个并发编译，可以根据自己的CPU核数进行调整，并发数越大则编译越快，但会使用更多的CPU，一般不要超过系统CPU核数。

	./configure

	make -j4

	编译完成后，执行“./ffmpeg -h”，如果运行正常，说明编译成功了。笔者是在Mac M1上编译的，使用下面命令统计输出结果（读者可以去掉下列命令行中的“| wc -l”，以便查看完整的输出），这些结果大致可以看出相应模块的数量（行数）。下面是在笔者计算机上运行的结果：

	./ffmpeg -formats | wc -l # 输出404

	./ffmpeg -codecs | wc -l # 输出522

	./ffmpeg -filters | wc -l # 输出448

	./ffmpeg -protocols | wc -l # 输出62

	./ffmpeg -devices | wc -l # 输出9

	有了这个基础环境，下面就可以添加自己的模块了。如果读者参照本章的代码同步做试验，可以在做完本章的示例后，再次运行上述命令，观察前后的异同。

16.1 添加AVFormat模块

	AVFormat 包含各种音视频文件格式的封装（包括网络文件格式），要添加该模块，首先要想好我们要做什么。下面，我们先“发明”一种自己的文件格式，然后用代码来实现。简单起见，我们使用固定的编解码格式。

16.1.1 book文件格式

	我们将新发明的文件格式命名为book，格式定义如下：

	・支持音视频，文件固定包含一个音频轨和一个视频轨。

	・音频固定为AAC，视频固定为H264。

	・音视频交错存储。

	・音视频数据块的长度：32位无符号整数，大端序，后面跟音视频数据。

	・长度字段最高位：音频为0，视频为1。

	文件头定义如下：

	・4字节的文件魔数（M），固定为BOOK。

	・4字节的版本号（V），32位无符号整数，大端序。

	・4字节的采样率（R），32位无符号整数，大端序。

	・1字节的填充字符（F），无任何意义，固定为0。

	・1字节的音频声道数（C）。

	・2字节的视频宽度（W），16位整数，大端序。

	・2字节的视频高度（H），16位整数，大端序。

	・2字节的帧率分子（N），16位整数，大端序。

	・2字节的帧率分母（D），16位整数，大端序。

	・26字节的其他文本信息（I），最后一字节为0，即NULL字符，主要是为了方便字符串处理。

	这样规定主要是为了演示不同长度整数的处理，再加一个额外的填充字符也主要是为了让数据对齐，看起来比较直观，文件头数据的排列如图16-1所示（每行显示16字节）。

	[image:]

	图16-1 book文件头数据排列示意图

16.1.2 添加文件

	1）我们先在libavformat目录下创建两个文件：bookenc.c和bookdec.c，它们分别对应文件编码和文件解码。我们后面再讲具体内容。

	2）在libavformat/Makefile中增加如下内容：

	OBJS-$(CONFIG_BOOK_DEMUXER) += bookdec.o

	OBJS-$(CONFIG_BOOK_MUXER) += bookenc.o

	3）在libavformat/allformats.c中增加如下内容：

	extern const AVOutputFormat ff_book_muxer;

	extern const AVInputFormat ff_book_demuxer;

	4）执行如下命令可以列出所有的格式，如果能从输出结果中找到book，就说明添加成功了。

	./configure --list-muxers

	./configure --list-demuxers

	5）重新执行configure，命令如下：

	./configure --enable-muxer=book --enable-demuxer=book

	至此，我们的源文件和编译环境都准备好了。

16.1.3 添加文件封装格式

	文件封装（即AVOutputFormat）是一个输出格式，它的输入端也是一个AVFormat（AVInputFormat）。下面首先注册book封装文件格式，内容在bookenc.c中。

	1. 定义文件格式结构体

	首先，我们定义一个结构体，用于描述和存储文件的各种参数。该结构体的第1个成员必须是一个AVClass类型的指针，不需要特别处理，FFmpeg内部会使用到。其他参数见代码内注释。

	typedef struct BookMuxContext {

	 AVClass *class; // AVClass指针

	 uint32_t magic; // 文件魔数，用于标志文件的类型

	 uint32_t version; // 版本号，目前固定为1

	 uint32_t sample_rate; // 音频采样率，常用的AAC格式采样率为44100

	 uint8_t channels; // 声道数，一般为1或2

	 uint32_t width; // 视频宽度

	 uint32_t height; // 视频高度

	 AVRational fps; // 帧率，这里用分数表示

	 char *info; // 文件的其他描述信息，字符串

	} BookMuxContext;

	2. 准备参数

	准备一个AVOption结构体数组，用于存放该文件格式的相关参数。比如，我们定义了一个字符串格式的info参数和一个整数格式的version参数，最后用了一个空（NULL）结构体元素结尾。这两个参数都可以在命令行上使用，后面会看到具体的用法。FFmpeg会自动为这些参数申请存储空间。从下面的代码中可以看到，这些参数其实指向了我们上面定义的结构体（通过offsetof宏实现，从一个结构体中找到相关成员的偏移量），当在命令行上指定参数时，会修改相应的结构体指针。

	static const AVOption options[] = {

	 { "info", "Book info", offsetof(BookMuxContext, info), AV_OPT_TYPE_STRING,

	 {.str = NULL}, INT_MIN, INT_MAX, AV_OPT_FLAG_ENCODING_PARAM, "bookflags" },

	 { "version", "Book version", offsetof(BookMuxContext, version), AV_OPT_TYPE_INT,

	 {.i64 = 1}, 0, 9, AV_OPT_FLAG_ENCODING_PARAM, "bookflags" },

	 { NULL },

	};

	3. 定义一个类

	定义一个AVClass结构体，指定book文件格式的名称，关联上面定义的参数等。

	static const AVClass book_muxer_class = {

	 .class_name = "book muxer",

	 .item_name = av_default_item_name,

	 .option = options,

	 .version = LIBAVUTIL_VERSION_INT,

	};

	4. 向FFmpeg注册文件格式

	有了上述内容，就可以向FFmpeg注册book文件格式了。其中ff_book_muxer这个名字对应前面在allformats.c文件中添加的名字，这样FFmpeg在编译时就可以找到我们定义的文件格式。

	const AVOutputFormat ff_book_muxer = {

	 .name = "book", // 格式名称

	 .long_name = NULL_IF_CONFIG_SMALL("BOOK / BOOK"), // 长名称

	 .extensions = "book", // 文件扩展名

	 .priv_data_size = sizeof(BookMuxContext), // 私有数据内存大小

	 .audio_codec = AV_CODEC_ID_AAC, // 音频编码

	 .video_codec = AV_CODEC_ID_H264, // 视频编码

	 .init = book_init, // 初始化回调函数

	 .write_header = book_write_header, // 写文件头

	 .write_packet = book_write_packet, // 写文件内容

	 .write_trailer = book_write_trailer, // 写文件尾

	 .deinit = book_free, // 写文件结束后，释放内存

	 .flags = 0, // 其他标志（略）

	 .priv_class = &book_muxer_class, // 私有的文件结构体，指向我们前面定义的类

	};

	5. 实现回调函数

	一切准备就绪，下面实现具体的回调函数。

	（1）初始化函数

	初始化函数在最初打开文件时调用，该函数的输入参数是一个AVFormatContext结构体指针，由FFmpeg在打开文件时传入。该结构体指针包含了文件的类型、流的数量（nb_streams）和各种参数。根据这些参数，就可以完成我们的book封装器的初始化工作。

	static int book_init(AVFormatContext *s)

	{

	 AVStream *st; // 音视频流，每一个stream代表一种类型，如音频流、视频流等

	 BookMuxContext *book = s->priv_data; // 指向私有的结构体，已初始化为默认值

	 printf("init nb_streams: %d\n", s->nb_streams);

	 if (s->nb_streams < 2) { // 音视频流数量，我们只接收一个音频流和一个视频流的输入

	 return AVERROR_INVALIDDATA; // 简单出错处理

	 }

	 st = find_stream(s, AVMEDIA_TYPE_AUDIO); // 查找音频流，该函数在后面解释

	 if (!st) return AVERROR_INVALIDDATA; // 简单出错处理，如果找不到音频流则返回错误

	 book->sample_rate = st->codecpar->sample_rate; // 记住输入音频流的采样率

	 book->channels = st->codecpar->channels; // 记住声道数

	 st = find_stream(s, AVMEDIA_TYPE_VIDEO); // 查找视频流

	 if (!st) return AVERROR_INVALIDDATA; // 简单出错处理

	 book->width = st->codecpar->width; // 记住视频宽度

	 book->height = st->codecpar->height; // 记住视频高度

	 // book->fps = st->codecpar->fps;

	 book->fps = (AVRational){15, 1}; // 记住帧率

	 return 0; // 初始化正常返回0

	}

	在上面的代码中我们用到了一个find_stream函数，用于从book格式的输入参数中查找音视频流，内容如下：

	static AVStream *find_stream(AVFormatContext *s, enum AVMediaType type)

	{

	 int i = 0;

	 for (i = 0; i < s->nb_streams; i++) { // 遍历所有输入流

	 AVStream *stream = s->streams[i];

	 if (stream->codecpar->codec_type == type) { // 找到第一个对应的类型（音频或视频），即返回对应的流

	 return stream;

	 }

	 }

	 return NULL;

	}

	（2）写文件头

	初始化完成后，下一步就是写文件头，该函数也是一个回调函数，都是由FFmpeg的核心逻辑回调的，因而，只需要按照输入输出格式定义好即可。

	static int book_write_header(AVFormatContext *s)

	{

	 BookMuxContext *book = s->priv_data; // 获取我们的私有结构体

	 book->magic = MKTAG('B', 'O', 'O', 'K'); // 初始化魔数

	 // avio_wb32(s->pb, book->magic);

	 avio_write(s->pb, (uint8_t *)&book->magic, 4); // 将该魔数写入文件，此时文件有4字节， 内容为“BOOK”

	 avio_wb32(s->pb, book->version); // 以大端序写入版本号，占4字节

	 avio_wb32(s->pb, book->sample_rate); // 以大端序写入采样率

	 avio_w8(s->pb, 0); // 写入1字节占位符，无任何意义

	 avio_w8(s->pb, book->channels); // 写入1字节声道数

	 avio_wb16(s->pb, book->width); // 写入宽度，2字节

	 avio_wb16(s->pb, book->height); // 写入高度，2字节

	 avio_wb16(s->pb, book->fps.num); // 写入帧率分子部分，2字节

	 avio_wb16(s->pb, book->fps.den); // 写入帧率分母部分，2字节

	 char info[26] = {0};

	 if (book->info) { // 如果命令行上有info参数，则将其内容读到临时内存

	 strncpy(info, book->info, sizeof(info) - 1);

	 }

	 avio_write(s->pb, info, sizeof(info)); // 写入info字符串内容

	 return 0;

	}

	在上述代码中，info字符串占26字节（包含结尾的NULL字符），这主要是为了使文件头部分正好是48字节，对人眼比较友好（在后面我们会看到具体为什么对人眼友好）。

	（3）写音视频数据

	如果初始化和写文件头正常，FFmpeg就开始写音视频数据了。其中，输入参数除了AVFormatContext结构体指针外，还有一个AVPacket结构体指针，里面存放了具体要求的音视频数据。音视频会交错存储，首先写入当前数据的时间戳（64位的pts值），然后是以32位无符号整数表示的长度（其中视频的长度最高位置1），接着写入实际的音视频数据。下面是写音视频数据的具体实现。

	static int book_write_packet(AVFormatContext *s, AVPacket *pkt)

	{

	 uint32_t size = 0;

	 AVStream *st = NULL;

	 if (!pkt) {

	 return AVERROR(EINVAL);

	 }

	 size = pkt->size; // 获取数据大小

	 st = s->streams[pkt->stream_index]; // 通过stream_index可以找到对应的流，确定是音频还 是视频

	 if (st->codecpar->codec_type == AVMEDIA_TYPE_AUDIO) {

	 printf("Audio: %04d pts: %lld\n", size, pkt->pts); // 打印音频字节数和pts

	 } else if (st->codecpar->codec_type == AVMEDIA_TYPE_VIDEO) {

	 printf("Video: %04d pts: %lld\n", size, pkt->pts); // 打印视频字节数和pts

	 size |= (1 << 31); // 如果是视频，将长度的最高位置1

	 } else {

	 return 0; // ignore any other types

	 }

	 avio_wb64(s->pb, pkt->pts); // 写入8字节pts，大端序

	 avio_wb32(s->pb, size); // 写入4字节视频长度，大端序

	 avio_write(s->pb, pkt->data, pkt->size); // 写入实际的音视频数据

	 return 0;

	}

	（4）文件结束处理

	文件结束时调用write_trailer写尾部数据，并调用deinit释放相应的内存。我们的封装器比较简单，因此，放两个空函数即可。

	static int book_write_trailer(AVFormatContext *s)

	{

	 return 0;

	}

	static void book_free(AVFormatContext *s)

	{

	}

	至此，我们的文件格式封装器就做好了。

	（5）编译运行

	直接执行make就可以编译了。不过，此时由于没有实现解封装器，会提示ff_book_demuxer不存在。为了能“骗过”编译器，先在bookdec.c里定义一下就好了。临时代码如下所示（我们将在下一小节具体实现真正的解封装代码）：

	#include "avformat.h"

	const AVInputFormat ff_book_demuxer;

	编译通过后，就可以使用我们熟悉的命令行来生成一个book类型的文件了。先找一个标准的MP4文件（如input.mp4）作为输入。命令行如下：

	./ffmpeg -i input.mp4 -bsf:v h264_mp4toannexb -info 'a simple test' out.book

	在上述命令中，使用了h264_mp4toannexb这个filter，它的作用主要是将MP4中的H264视频容器数据转封装为传统的、使用startcode分隔的Annex B码流格式，因为大多数解码器仅支持这种格式。此外，使用-info参数增加了一些文本信息，输出文件名为out.book。

	现在，地球上还没有任何一个播放器能播放我们生成的文件，下面先分析一下文件格式是否符合我们的预期。在Windows平台上可以使用十六进制编辑器打开文件查看，在Linux或macOS上可以使用xxd命令来查看（该命令一般会随vim编辑器一起安装）。具体命令如下（head -n 4表示只查看输出的前4行）：

	$ xxd out.book | head -n 4

	输出结果如下。其中，输出结果在横向上分为3部分，左侧是文件字节偏移量，以十六进制表示；中间是实际的数据，每行有16字节，两个十六进制数字表示一字节（取值为00～ff），2字节为一组（即一个字）；最后是文件内容可读的形式，如果是可读的字符，就会显示出来，否则以“.”表示。

	00000000: 424f 4f4b 0000 0001 0000 ac44 0002 0280 BOOK.......D....

	00000010: 01e0 000f 0001 6120 7369 6d70 6c65 2074 a simple t

	00000020: 6573 7400 0000 0000 0000 0000 0000 0000 est.............

	00000030: 0000 0000 0000 0000 0000 0017 de02 004c L

	对照我们前面对book类型文件的定义（参见图16-1）及代码实现，可以看到上面的输出是符合预期的。从第1行看，最开始的4字节“424f 4f4b”对应的ASCII码是BOOK，这是我们规定的文件头，也就是魔数；接下来的4字节是版本号（此处为1）；“0000 ac44”转换成十进制是44100，即采样率；接下来的1字节00是占位符，没有任何作用；02表示声道数；0280表示视频宽度，转换成十进制是640。

	第2行的01e0是视频高度，即480；后面是帧率：000f和0001，即15/1。接下来就是在命令行上用-info参数设置的字符串，此处是“a simple test”，后面全部以0填充，直到第3行行尾。我们精心设计了48字节的文件头，就是为了让它在输出时正好占满3行。

	从第4行开始，8字节的0是时间戳，它是一个64位整数，此处时间戳是从0开始的。接下来的“0000 0017”表示后面音视频的长度，由于该数最高位为0（二进制最高位也是0），因此它的后面应该是音频数据，占23（0x17转换成十进制是23）字节。往后面跳过23字节就是下一组数据了，以此类推。

	读者可以在前面的命令行上加上-version 2，并修改相应的info，对比相应的变化。完整的命令行参考如下：

	./ffmpeg -i input.mp4 -bsf:v h264_mp4toannexb -info 'another simple test' -version 2 out.book

	在下一小节，我们将实现一个解封装格式来读取book类型的文件。

16.1.4 添加文件解封装格式

	为了能正确地播放生成的文件，我们需要一个解封装器来读取我们的文件。解封装器的代码逻辑与封装器类似，因此，我们仅对代码做简单注释。

	typedef struct BookContext { // 为解封装器定义一个结构体

	 AVFormatContext *fc; // 解封装器非常简单，这个指针其实没有用到

	} BookContext;

	typedef struct BookFormat { // 文件头的结构，与封装器里的含义类似

	 char magic[4];

	 uint32_t version;

	 uint32_t sample_rate;

	 uint8_t channels;

	 uint32_t width;

	 uint32_t height;

	 AVRational fps;

	 char info[26];

	} BookFormat;

	static const AVOption book_options[] = { // 在此我们没有定义任何参数

	 { NULL },

	};

	static const AVClass book_class = { // 定义一个解封装器的class

	 .class_name = "book", // 名称

	 .item_name = av_default_item_name,

	 .option = book_options, // 关联参数

	 .version = LIBAVUTIL_VERSION_INT,

	};

	const AVInputFormat ff_book_demuxer = { // 向FFmpeg注册解封装器

	 .name = "book", // 解封装器名称

	 .long_name = NULL_IF_CONFIG_SMALL("BOOK / BOOK"),

	 .priv_class = &book_class, // 关联对应的class

	 .priv_data_size = sizeof(BookContext), // 私有数据

	 .extensions = "book", // 扩展名

	 .flags_internal = FF_FMT_INIT_CLEANUP,

	 .read_probe = book_probe, // 文件类型探测回调函数，后面详细讲

	 .read_header = book_read_header, // 读文件头回调函数

	 .read_packet = book_read_packet, // 读数据回调函数

	 .read_close = book_read_close, // 关闭文件回调函数

	 .flags = AVFMT_NO_BYTE_SEEK, // 简单起见，不支持快进、快退

	};

	1. 文件类型探测

	当读取文件时，FFmpeg需要查找一个合适的解封装器，这一般可以通过文件扩展名查找，但扩展名不是唯一的查找线索，因此，解封装器还需要实现一个回调函数，如果有多个类似的解封装器，哪个回调函数返回的分值（score）高则用哪个，相当于竞争上岗。

	下面是我们实现的文件类型探测回调函数，该函数的输入是一个AVProbeData指针，可以通过它读取文件中的数据。详见代码注释。

	static int book_probe(const AVProbeData *p)

	{

	 int score = AVPROBE_SCORE_MAX; // 默认score设为最大值

	 uint32_t magic = AV_RN32(p->buf); // 读取文件前4字节，解释为32位整数

	 printf("probe ... score=%d\n", score);

	 if (magic != MKTAG('B', 'O', 'O', 'K')) { // 比较前4字节是否为BOOK，如果不是则返回错误代码

	 return AVERROR_INVALIDDATA;

	 }

	 return score; // 返回我们的值，它是系统默认的最大值，可以直接获胜

	}

	如果输入文件的扩展名为.book并且文件的前4字节为BOOK，则系统会自动选择我们实现的解封装器。

	2. 读文件头

	当打开一个文件时，可以先读文件头来获取文件的一些信息。它的输入参数为AVFormatContext结构体指针，我们从文件中读到的信息将填充这个指针，以便告诉FFmpeg文件里有什么。详见下面代码内的注释（注意，简单起见，我们没有在读的过程中进行出错处理，感兴趣的读者可以自行补充）。

	static int book_read_header(AVFormatContext *s)

	{

	 AVStream *st; // 定义一个流

	 FFStream *sti; // 流的扩展定义，里面有FFmpeg私有的参数，这些参数只能在FFmpeg的内部模块中访问

	 BookFormat fmt = { 0 }; // 记录文件的结构

	 uint8_t data[48]; // 48字节文件头

	 uint8_t *pdata = data; // 指针指向文件头的第一个字节

	 printf("reading header ...\n");

	 avio_read(s->pb, data, 48); // 直接读取48字节的文件头到data内存缓冲区

	 pdata += 4; fmt.version = AV_RB32(pdata); // 跳过4字节BOOK头，读取版本号

	 pdata += 4; fmt.sample_rate = AV_RB32(pdata); // 跳过4字节版本号，读采样率

	 pdata += 5; fmt.channels = AV_RB8(pdata); // 跳过4字节采样率及一个填充字节，读声道数

	 pdata += 1; fmt.width = AV_RB16(pdata); // 跳过1字节声道数，读视频宽度

	 pdata += 2; fmt.height = AV_RB16(pdata); // 跳过2字节视频宽度，读视频高度

	 pdata += 2; fmt.fps.num = AV_RB16(pdata); // 跳过2字节视频高度，读帧率分子部分

	 pdata += 2; fmt.fps.den = AV_RB16(pdata); // 跳过2字节帧率分子，读帧率分母部分

	 pdata += 2; strncpy(fmt.info, pdata, sizeof(fmt.info) - 1); // 读info信息

	 st = avformat_new_stream(s, NULL); // 创建一个新流

	 if (!st) return AVERROR(ENOMEM);

	 st->codecpar->codec_type = AVMEDIA_TYPE_AUDIO; // 该流用于音频，索引值为0

	 st->codecpar->codec_id = AV_CODEC_ID_AAC; // 音频编码固定为AAC

	 st->codecpar->sample_rate = fmt.sample_rate; // 设置音频流的采样率为从文件中读到的值

	 st->codecpar->channels = fmt.channels; // 设置音频流的声道数

	 sti = ffstream(st); // 获取流的内部数据指针

	 sti->need_parsing = AVSTREAM_PARSE_NONE; // 设置相关的内部参数，不进行深度解析

	 st->start_time = 0; // 起始时间戳从0开始

	 st = avformat_new_stream(s, NULL); // 创建另一个流

	 if (!st) return AVERROR(ENOMEM);

	 st->codecpar->codec_type = AVMEDIA_TYPE_VIDEO; // 该流为视频流，索引值为1

	 st->codecpar->codec_id = AV_CODEC_ID_H264; // 视频编码固定为H264

	 st->codecpar->width = fmt.width; // 设置视频的宽度

	 st->codecpar->height = fmt.height; // 设置视频的高度

	 st->codecpar->format = AV_PIX_FMT_YUV420P; // 设置视频图像格式

	 st->start_time = 0; // 起始时间戳为0

	 sti = ffstream(st); // 获取流内部指针

	 sti->need_parsing = AVSTREAM_PARSE_NONE; // 不进行深度解析

	 sti->avctx->codec_id = AV_CODEC_ID_H264; // 视频编码的另一种表示，旧接口

	 sti->avctx->framerate = fmt.fps; // 帧率

	 avpriv_set_pts_info(st, 64, fmt.fps.den, fmt.fps.num); // 设置pts信息

	 printf("done read header ... nb_streams=%d\n", s->nb_streams);

	 return 0;

	}

	文件头读取完毕后，FFmpeg就知道该文件的相关参数了，并可以将这些参数传递给输出格式使用。

	3. 读取音视频数据

	在本例中，相对读文件头来说，读取音视频数据的函数反而更短一些。由于我们的book类型文件保留了原始的时间戳，因而只需要在读取相应数据时设置相应参数即可。该函数的输入是一个AVFormatContext结构体指针，表示当前的格式，输出是一个AVPacket结构体指针，里面存放读到的数据。代码如下：

	static int book_read_packet(AVFormatContext *s, AVPacket *pkt)

	{

	 int ret;

	 int stream_index = 0; // 流索引，0为音频，1为视频

	 uint64_t pts = avio_rb64(s->pb); // 读取pts

	 uint32_t size = avio_rb32(s->pb); // 读取音视频长度

	 if (size & (1 << 31)) { // 如果长度的最高位为1，则表示这是一个视频帧

	 size &= ~(1 << 31); // 取消最高位的1，还原为原始数据大小

	 stream_index = 1; // 视频索引号为1

	 }

	 if ((ret = av_new_packet(pkt, size)) < 0) return ret; // 初始化AVPacket结构，申请相关内存

	 pkt->stream_index = stream_index; // 设置pkt的索引，0为音频，1为视频

	 pkt->pos = avio_tell(s->pb); // 记住该pkt引用的文件的位置

	 pkt->pts = pts; // 设置pkt的pts为刚才读到的值

	 ret = avio_read(s->pb, pkt->data, size); // 从文件中读取真正的音视频数据，放到pkt->data缓冲区中

	 if (ret < 0) { // 简单失败处理

	 av_packet_unref(pkt);

	 return ret;

	 }

	 if (ret < size) { // 更多失败处理，正常不会出现，但文件可能被人为破坏或由于网络传输不稳定造成破坏

	 av_packet_unref(pkt);

	 return AVERROR_INVALIDDATA;

	 }

	 printf("read %s size: %04d pts: %llu\n", stream_index == 1 ? "video" : "audio", size, pkt->pts);

	 return ret;

	}

	4. 读文件结束

	由于我们的实现非常简单，读文件结束的回调函数直接返回0即可。

	static int book_read_close(AVFormatContext *s)

	{

	 return 0;

	}

	有了上述代码，book文件格式解封装就完成了。接着可以执行make进行编译，编译完成后，可以使用如下命令将book格式文件转回MP4格式。

	./ffmpeg -i out.book out.mp4

	当然，也可以直接使用ffplay进行播放。

	./ffplay out.book

	至此，我们的book文件格式就完成了。如果读者想增加更多参数，如文件码率、总时长等，可以尝试自行加入。感兴趣的读者可以参考本节的内容来增加自己的文件格式。

16.2 添加AVCodec模块

	FFmpeg通过AVCodec接口几乎支持市面上所有的编解码，每当有一款新的编解码被发明出来，大家也会习惯性地写一个FFmpeg接口，以便与其他编解码和图像格式互转。在本节，我们以自己“发明”的book编解码为例，介绍向FFmpeg中添加编解码支持的过程。

16.2.1 book编解码算法定义

	为了简单起见，我们的book编解码没有使用任何外置的库。编解码基本定义如下：

	・有损压缩，所有彩色图像都会被“压缩”成黑白灰度图像。

	・仅支持YUV420P格式，仅保留Y平面，仅支持8位。

	・数据以平面格式存储，存储格式为紧凑格式，没有Stride（跨度）。

	虽然这种方式的压缩程度有限，但这样足够简单，以便我们更专注于理解添加编解码支持的过程。

16.2.2 实现book编码

	首先，需要为我们的编码选择一个ID，在codec_id.h中，参照AV_CODEC_ID_H264，增加一行AV_CODEC_ID_BOOK即可。将具体的book编码实现放到libavcodec/libbooke.c文件中。先定义一个私有结构体以存放编解码过程中的私有数据。

	typedef struct libbookContext {

	 const AVClass *class; // FFmpeg内部需要的AVClass指针，必须是第1个元素

	 AVFrame *frame; // AVFrame指针，用于保存待编码的视频帧

	} libbookContext;

	定义相关参数及结构，然后向FFmpeg注册我们的编码。为简单起见，我们的编码器未使用任何编码参数，详细说明见代码内注释。

	static const AVCodecDefault libbook_defaults[] = {

	 { NULL } // 默认的编解码控制参数为空

	};

	const enum AVPixelFormat libbook_pix_fmts[] = {

	 AV_PIX_FMT_YUV420P, // 仅支持YUV420P这一种图像格式作为输入

	 AV_PIX_FMT_NONE

	};

	static const AVOption options[] = {

	 { NULL } // 不使用任何编解码选项参数

	};

	static const AVClass class = { // 定义我们的编解码类

	 .class_name = "libbook", // 编码名称

	 .item_name = av_default_item_name, // 默认值

	 .option = options, // 用到的参数结构体指针

	 .version = LIBAVUTIL_VERSION_INT, // 版本号

	};

	const AVCodec ff_libbook_encoder = { // 编码器数据结构体

	 .name = "libbook", // 编码器名称

	 .long_name = NULL_IF_CONFIG_SMALL("libbook Encoder"), // 长名称

	 .type = AVMEDIA_TYPE_VIDEO, // 类型为视频

	 .id = AV_CODEC_ID_BOOK, // 编码类型ID

	 .init = libbook_encode_init, // 初始化回调函数

	 .receive_packet = libbook_receive_packet, // 接收待编码的数据的回调函数

	 .close = libbook_encode_close, // 关闭编码器回调函数

	 .priv_data_size = sizeof(libbookContext), // 私有数据大小

	 .priv_class = &class, // 私有数据结构体指针

	 .defaults = libbook_defaults, // 默认编码器参数

	 .pix_fmts = libbook_pix_fmts, // 支持的图像格式

	 .capabilities = 0, // 编码器能力集，此处不用

	 .caps_internal = 0, // 编码器内部能力集，此处不用

	 .wrapper_name = "libbook", // 编码器组名

	};

	下面继续看编码器的具体实现。当编码器首次被打开时，回调以下函数。其中，av_cold会影响编译器的cold优化选项（使用__attribute__((cold))定义），常用于告诉编译器所修饰的函数很少被执行，编译器会针对函数的大小进行优化以节省代码空间。与此相反的编译器属性是hot，编译器会更加积极地优化被修饰的函数。函数的输入参数avctx是一个AVCodecContext结构体指针，代表当前编码器的上下文环境，由编码器的调用者（如FFmpeg核心）传入。

	static av_cold int libbook_encode_init(AVCodecContext *avctx)

	{

	 libbookContext *ctx = avctx->priv_data; // 指向我们的私有数据结构体

	 // 找到并打印输入的图像格式

	 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);

	 av_log(avctx, AV_LOG_INFO, "libbook pix_fmt: %s\n", desc->name);

	 if (avctx->pix_fmt != AV_PIX_FMT_YUV420P || desc->comp[0].depth != 8) {

	 return AVERROR_INVALIDDATA; // 如果图像格式不符合预期，返回错误

	 }

	 ctx->frame = av_frame_alloc(); // 初始化我们自己的AVFrame结构体指针，备用

	 if (!ctx->frame) return AVERROR(ENOMEM); // 如果初始化失败，则返回错误

	 return 0; // 一切正常，返回0

	}

	当编码器关闭时执行如下回调，只需要释放私有的AVFrame结构即可。

	static av_cold int libbook_encode_close(AVCodecContext *avctx)

	{

	 libbookContext *ctx = avctx->priv_data;

	 av_frame_free(&ctx->frame);

	 return 0;

	}

	具体的编码实现在如下函数中。每当编码器收到一帧图像，就调用下列函数进行编码，待编码的数据可以从avctx中获取，而编码后的数据则放到pkt参数中。我们的编码器实现比较简单，仅从输入图像中复制Y平面的数据到输出，并忽略U和V平面的数据。有时输入数据内存格式中可能会有Stride，因此，我们使用两种算法进行内存复制，具体解释参考代码内注释。

	static int libbook_receive_packet(AVCodecContext *avctx, AVPacket *pkt)

	{

	 libbookContext *ctx = avctx->priv_data; // 获取私有结构体指针

	 AVFrame *frame = ctx->frame; // 找到在初始化函数中申请的AVFrame

	 // 从传入的AVCodecContext中找到待编码的数据，让我们自己的frame指向其内存

	 int ret = ff_encode_get_frame(avctx, frame);

	 if (ret < 0 || ret == AVERROR_EOF) return ret; // 简单错误处理

	 int size = frame->width * frame->height; // 计算Y平面的大小

	 // 为编码器输出申请内存，结果将存到pkt->data中，大小为pkt->size

	 ret = ff_get_encode_buffer(avctx, pkt, size, 0);

	 if (ret < 0) { // 简单出错处理

	 av_log(avctx, AV_LOG_ERROR, "Could not allocate packet.\n");

	 return ret;

	 }

	 if (frame->linesize[0] == frame->width) { // 如果输入数据格式中没有Stride

	 memcpy(pkt->data, frame->data[0], size); // 直接复制整个Y平台的数据到输出pkt中

	 } else { // 否则，需要逐行复制，并忽略行尾的Stride填充字节

	 int i;

	 for (i = 0; i < frame->height; i++) { // 循环遍历每一行

	 // 将该行的前frame->width字节复制到目标区域，目标区域每次递增frame->width字节

	 // 由于输入数据区域有Stride填充字节，因此每次需要递增frame->linesize[0]（该长度包含Stride的长度）

	 memcpy(pkt->data + frame->width * i,

	 frame->data[0] + frame->linesize[0] * i, frame->width);

	 }

	 }

	 return 0; // 编码成功，返回0

	}

	至此，我们的编码器就写好了。

16.2.3 实现book解码

	编码器简单，解码器实现更简单。我们把book解码器放到libavcodec/libbookd.c中实现。先定义一个解码器私有数据结构体。

	typedef struct BookDecodeContext {

	 AVClass *class; // 不需要存放任何私有数据，仅定义一个AVClass指针即可

	} BookDecodeContext;

	解码器初始化回调函数。

	static av_cold int book_init(AVCodecContext *avctx)

	{

	 // BookDecodeContext *ctx = avctx->priv_data;

	 av_log(avctx, AV_LOG_INFO, "picture size = %dx%d\n", avctx->width, avctx->height);

	 avctx->pix_fmt = AV_PIX_FMT_YUV420P; // 设置解码器输入的图像格式，仅支持这一种

	 return 0;

	}

	解码器释放时的回调函数，此处没有什么需要清理的，直接返回0即可。

	static av_cold int book_free(AVCodecContext *avctx)

	{

	 return 0;

	}

	下面是解码器回调函数。输入参数是pkt，里面的数据是book编码器编码后的数据（即只有Y平面的数据），输出到data中。如果解码器成功获取一帧图像，则应把got_frame指针值设为1，否则为0。

	static int book_decode(AVCodecContext *avctx, void *data, int *got_frame,

	 AVPacket *pkt)

	{

	 AVFrame *picture = data; // 输出数据是一个AVFrame结构体指针，代表一帧图像

	 int ret;

	 int size = avctx->width * avctx->height; // Y平面的大小

	 if (pkt->size != size) return AVERROR_INVALIDDATA; // 输入数据必须正好是一个Y平面

	 if ((ret = ff_get_buffer(avctx, picture, 0)) < 0) return ret; // 初始化AVFrame结构

	 memcpy(picture->data[0], pkt->data, size); // 复制Y平面数据到图像输出

	 // 我们的数据中没有U和V平面，直接将其数据初始化为默认值

	 // U和V平面决定图像的色彩，在YUV图像格式中128相当于RGB中的0，即没有彩色

	 memset(picture->data[1], 128, size / 4); // 将U平面设置为色彩默认值，数据块大小是Y平面的1/4

	 memset(picture->data[2], 128, size / 4); // 将V平面设置为色彩默认值，数据块大小是Y平面的1/4

	 picture->key_frame = 1; // 假设所有帧都是关键帧

	 picture->pict_type = AV_PICTURE_TYPE_I; // 假设所有帧都是I帧

	 picture->pts = pkt->pts; // 设置解码后图像的pts

	 *got_frame = 1; // 解码器成功获取一帧数据，返回1

	 return pkt->size; // 返回输入数据中已经被成功送入解码器的数据长度，此处我们每次都成功消费所有数据

	}

	至此，我们的解码器也轻松实现了。实际的编解码器比这个要复杂得多，也会有各种各样的控制参数，在此我们仅就编解码器的延迟做一下说明。

	一般来说，编解码器都会有一定的延迟。比如，对编码器来说，通常收到几帧以后才能有稳定的输出；对于解码器来说，也需要积累一定的数据量才能解出图像（特别是输出中有类似H264编码器中的B帧的情况）。因此，编解码的回调函数并不是每一次都会有数据输出。在上面的编码回调（libbook_receive_packet）中，通常通过返回错误码AVERROR(EAGAIN)来表示还需要更多的数据才能有pkt输出。而对于解码器，如book_decode函数，则通过got_frame是否为1来表示是否成功解码一帧图像。这也是FFmpeg旧版本中编解码相关函数名称分别为encode和decode，而在新版本的FFmpeg中改成send_packet和receive_packet的原因。后者语义更明确一些，新版本中的两个函数分别代表发送和接收数据，但每次并不一定有输出结果。

	为简单起见，在本节的例子中，我们使用的编解码器没有延迟。如果需要测试延迟，感兴趣的读者可以自行实现。以解码器为例，实现一个延迟参数latency=3，即每次都缓存3帧，这样，如果在输入数据pts连续的情况下（如“0 1 2 3 4 5”），只有当输入数据pts为3时，got_ frame才会为1，并且返回的pts值为0，以此类推。

16.2.4 将编解码器注册到FFmpeg并加入编译工程

	我们的book编解码器实现好了，还需要注册到FFmpeg。首先，修改libavcodec/Makefile，参考其他编码器（如libx264）并加入以下内容：

	OBJS-$(CONFIG_LIBBOOK_ENCODER) += libbooke.o # 编码器对应的文件

	OBJS-$(CONFIG_LIBBOOK_DECODER) += libbookd.o # 解码器对应的文件

	在libavcodec/allcodecs.c中加入如下内容：

	extern const AVCodec ff_libbook_encoder; // 该结构体实际在libbooke.c中实现

	extern const AVCodec ff_libbook_decoder; // 该结构体实际在libbookd.c中实现

	在libavcodec/codec_desc.c中加入如下内容：

	{

	 .id = AV_CODEC_ID_BOOK, // 这个值是我们前面讲到的在codec_id.h中定义的

	 .type = AVMEDIA_TYPE_VIDEO,

	 .name = "libbook",

	 .long_name = NULL_IF_CONFIG_SMALL("BOOK Codec"),

	}

16.2.5 运行测试

	经过上述步骤成功编译后，就可以测试了。但是，到目前为止任何文件类型都不支持我们发明的编解码器。不过，在上一节我们实现了book文件格式，里面的视频格式固定为H264。修改源代码，把libavformat/bookenc.c和libavformat/bookdec.c中AV_CODEC_ID_H264替换成AV_CODEC_ID_BOOK，就可以支持我们新发明的book编解码器了。成功编译后，我们就拥有了自己的文件格式，里面放的是我们自己发明的编解码器。

	使用如下命令将MP4格式的文件转换为book格式，并使用libbook编码器做视频编码。

	./ffmpeg -i input.mp4 -vcodec libbook out.book

	播放视频文件。

	./ffplay out.book

	如果上面的输入文件input.mp4是彩色的，那么在播放out.book的时候将是黑白的。这是因为我们的编码器是“有损”压缩，而且损失很大（损失了所有的色彩信息），但我们得到一个新的编码器、一个新的文件格式，以及将这两者组合使用并成功修改FFmpeg源代码的经验。

16.3 添加AVFilter模块

	AVFilter在FFmpeg中已经存在了十余年，从最初支持简单的音视频前处理、后处理，到现在变得极为强大，可以进行图像调色、图像叠加、变声处理等。近几年，随着深度学习等技术的发展，FFmpeg也支持集成libtensorflow的能力，可以支持一些简单的音视频AI能力。尽管FFmpeg的AVFilter非常强大，但也并非尽善尽美，总有一些实际场景需要自定义一些滤镜。本节就介绍如何为FFmpeg添加一个自定义的AVFilter。

16.3.1 添加基础滤镜

	我们将自己发明的滤镜取名为book，是专门用来处理视频的滤镜，可以先规划一下这个book滤镜都支持哪些功能。

	・视频上半部分保持不变。

	・视频的下半部分变成纯绿色。

	添加滤镜之前，我们需要了解添加滤镜需要做的最小化工作。

	・定义一个滤镜名。

	・给滤镜增加一个稍微详细一点的描述。

	・定义一个滤镜的结构体以供book滤镜上下文使用。

	・定义一个book滤镜的私有class。

	・定义输入的AVFilterPad，常见的是一个输入，也可以是多个输入，用来处理多图层。

	・定义输出的AVFilterPad，常见的是一个输出，也可以是多个输出，用来给多个后续操作使用。

	・定义滤镜处理时用到的色彩格式，例如AV_PIX_FMT_ARGB或者AV_PIX_FMT_ YUV420P等。

	・给滤镜定义一个支持能力的标签，包括是否支持timeline处理方式、是否支持slice处理方式等。

	根据以上8步，编写实现代码如下：

	static const enum AVPixelFormat pixel_fmts[] = {

	 AV_PIX_FMT_ARGB,

	 AV_PIX_FMT_NONE

	};

	const AVFilter ff_vf_book = {

	 .name = "book",

	 .description = NULL_IF_CONFIG_SMALL("Book the input video vertically."),

	 .priv_size = sizeof(BookContext),

	 .priv_class = &book_class,

	 FILTER_INPUTS(avfilter_vf_book_inputs),

	 FILTER_OUTPUTS(avfilter_vf_book_outputs),

	 FILTER_PIXFMTS_ARRAY(pixel_fmts),

	 .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,

	};

	从代码中可以看到，我们首先定义了一个枚举类型的pixel_fmts，主要用来表示当前这个滤镜支持的像素色彩格式；然后通过FILTER_PIXFMTS_ARRAY将pixel_fmts注册到名为ff_vf_book的AVFilter结构体中，通过FILTER_INPUTS将avfilter_vf_book_inputs注册到名为ff_vf_book的AVFilter结构体的输入AVFilterPad中，通过FILTER_OUTPUTS将avfilter_vf_book_outputs注册到名为ff_vf_book的AVFilter结构体的输出AVFilterPad中。

	针对输入AVFilterPad做内容填充，需要做的工作如下：

	1）为输入部分命名，默认填写default。

	.name = "default",

	2）添加输入内容的类型，视频是AVMEDIA_TYPE_VIDEO，音频是AVMEDIA_TYPE_AUDIO，字幕是AVMEDIA_TYPE_SUBTITLE。更多可参考AVMediaType的枚举内容。

	.type = AVMEDIA_TYPE_VIDEO,

	而AVMediaType的枚举内容主要包括视频、音频、数据、字幕、附件等类型。具体代码如下：

	enum AVMediaType {

	 AVMEDIA_TYPE_UNKNOWN = -1, ///< 通常被视为AVMEDIA_TYPE_DATA

	 AVMEDIA_TYPE_VIDEO, ///< 视频类型

	 AVMEDIA_TYPE_AUDIO, ///< 音频类型

	 AVMEDIA_TYPE_DATA, ///< 数据信息类型

	 AVMEDIA_TYPE_SUBTITLE, ///< 字幕类型

	 AVMEDIA_TYPE_ATTACHMENT, ///< 附件类型

	 AVMEDIA_TYPE_NB ///< AVMediaType的边界，也就是最大值，用于判断边界

	};

	3）给输入部分定义AVFrame处理的操作接口，通常定义为filter_frame，也可以叫其他名字，可自定义。

	.filter_frame = filter_frame,

	4）给输入部分定义config_props处理的操作接口，通常定义为config_input，主要用来做默认值操作。

	.config_props = config_input,

	输入部分的AVFilterPad的代码定义整体如下：

	static const AVFilterPad avfilter_vf_book_inputs[] = {

	 {

	 .name = "default",

	 .type = AVMEDIA_TYPE_VIDEO,

	 .filter_frame = filter_frame,

	 .config_props = config_input,

	 },

	};

	输出部分的AVFilterPad通常也可以这么定义，但是一般定义输入即可。如果有必要的话也可以输入和输出都自己定义。

	接下来向config_input与filter_frame里面填入自定义内容，因为我们第一步实现的功能比较简单，所以不需要给config_input填入复杂内容，置空直接返回也可以，但是在filter_frame里需要处理每一个AVFrame的内容。代码如下：

	static int config_input(AVFilterLink *inlink)

	{

	 return 0;

	}

	static int filter_frame(AVFilterLink *link, AVFrame *frame)

	{

	 char *p = frame->data[0] + (frame->height >> 1) * frame->linesize[0];

	 int i, j;

	 for (i = frame->height >> 1; i < frame->height; i ++) {

	 for(j = 0; j < frame->linesize[0]; j += 4) {

	 p[j] = 0x00;

	 p[j + 1] = 0x00;

	 p[j + 2] = 0xFF;

	 p[j + 3] = 0x00;

	 }

	 p += frame->linesize[0];

	 }

	 return ff_filter_frame(link->dst->outputs[0], frame);

	}

	这么处理之后，会把每一帧图像的下半部分设置为纯绿色。然后可以将这个滤镜添加到源代码的libavfilter目录下，命名为vf_book.c即可。接下来将vf_book.c添加到FFmpeg的工程代码中。

	1）编辑libavfilter/Makefile，添加OBJS-$(CONFIG_BOOK_FILTER) += vf_ book.o，将vf_book.o添加到工程里。

	2）编辑libavfilter/allfilters.c，添加extern const AVFilter ff_vf_book，将定义的AVFilter结构体注册到静态的AVFilter列表。

	然后重新执行configure，即可看到自己添加的vf_book滤镜。

16.3.2 支持多线程图像处理

	在滤镜的基本功能代码添加完毕之后，此时运行book滤镜只使用一个CPU核。为了使用CPU的多个核，可以将图像切为多个切片（slice），然后将不同的切片放入多个任务线程中处理。执行多线程图像处理任务的代码需要稍微做一些修改，将处理图像的任务改成切片处理的实现方式。以下代码是处理一个切片的代码：

	// jobnr是任务号，nb_jobs是任务总数

	static int book_do_slice(AVFilterContext *flt_ctx, void *arg, int jobnr, int nb_jobs)

	{

	 int j = 0;

	 AVFrame *frame = arg; // AVFrame指针

	 // 根据任务号计算切片的起始位置

	 const int slice_start = (frame->height / 2 * jobnr) / nb_jobs;

	 const int slice_end = (frame->height / 2 * (jobnr + 1)) / nb_jobs;

	 BookContext *ctx = flt_ctx->priv; // 获取原来的BookContext

	 char *p = frame->data[0] + // 获取数据指针

	 slice_start * frame->linesize[0] +

	 frame->linesize[0] * frame->height / 2;

	 for (int y = slice_start; y < slice_end; y++) { // 遍历切片中的每一行

	 for(j = 0; j < frame->linesize[0]; j += 4) { // 遍历行中的每个像素

	 p[j] = 0x00; // Alpha

	 p[j + 1] = 0x00; // R

	 p[j + 2] = 0xFF; // G

	 p[j + 3] = 0x00; // B

	 }

	 p += frame->linesize[0]; // 指向下一行

	 }

	 return 0;

	}

	从代码中可以看到，在进行图像处理时，针对图像做了切片，任务被拆分成slice_start和slice_end，并切割成nb_jobs个任务分开处理。因为是多线程处理，为了方便，可以在config_input函数里面将处理任务的接口book_do_slice挂至BookContext的do_slice抽象接口。代码如下：

	static int config_input(AVFilterLink *inlink)

	{

	 AVFilterContext *avctx = inlink->dst;

	 BookContext *ctx = avctx->priv;

	 ctx->do_slice = book_do_slice; // 指定切片回调函数

	 return 0;

	}

	然后通过ff_filter_execute将BookContext->do_slice注册到多线程执行任务的回调中，也可以直接把book_do_slice注册到回调中。之所以将book_do_slice挂至BookContext的do_slice，是因为这么做可以支持更多的book_do_slice实现。该实现支持的是ARGB图像色彩的处理，如果是YUV420P，处理方式会有所不同，为了代码的清晰、整洁，通常是指向do_slice，由BookContext代管。代码如下：

	static int filter_frame(AVFilterLink *link, AVFrame *frame)

	{

	 AVFilterContext *avctx = link->dst;

	 BookContext *ctx = avctx->priv;

	 int res;

	 if (res = ff_filter_execute(avctx, ctx->do_slice, frame, NULL,

	 FFMIN(frame->height, ff_filter_get_nb_threads(avctx))))

	 return res;

	 return ff_filter_frame(link->dst->outputs[0], frame);

	}

	对于ff_filter_execute的最后一个参数，我们可以自己设定线程数，也可以通过接口ff_filter_get_nb_threads获得用户传进来的指定的线程个数。

	使用ff_vf_book结构体的flags标签添加支持切片多线程任务的标签AVFILTER_FLAG_ SUPPORT_TIMELINE|AVFILTER_FLAG_SLICE_THREADS，以便让FFmpeg知道需要使用多线程处理。整体代码如下：

	const AVFilter ff_vf_book = {

	 .name = "book",

	 .description = NULL_IF_CONFIG_SMALL("Book the input video vertically."),

	 .priv_size = sizeof(BookContext),

	 .priv_class = &book_class,

	 FILTER_INPUTS(avfilter_vf_book_inputs),

	 FILTER_OUTPUTS(avfilter_vf_book_outputs),

	 FILTER_PIXFMTS_ARRAY(pixel_fmts),

	 .flags = AVFILTER_FLAG_SUPPORT_TIMELINE|AVFILTER_FLAG_SLICE_THREADS,

	};

16.3.3 支持图像动态化的表达式

	在前半部分讲解滤镜能力时，本书介绍有些滤镜支持通过表达式动态化处理内容。我们的滤镜同样支持用户使用表达式做图像动态化。这一小节将介绍如何为滤镜添加支持图像动态化的表达式。

	首先需要定义几个自己希望用到的变量名var_names，如图像的高、帧序列数、数据在文件中的位置、以秒为单位的时间，这些都是在处理视频时可能会发生变化的内容；再定义与变量名称一一对应的枚举var_name；然后添加用来解析的表达式字符串变量h_expr与h_pexpr。代码如下：

	static const char *const var_names[] = {

	 "h", // 图像的高

	 "n", // 帧序列数

	 "pos", // 在文件中的位置

	 "t", // 单位为秒的时间

	 NULL

	};

	enum var_name {

	 VAR_H,

	 VAR_N,

	 VAR_POS,

	 VAR_T,

	 VAR_VARS_NB

	};

	typedef struct BookContext {

	 const AVClass *class;

	 int h;

	 double var_values[VAR_VARS_NB];

	 char *h_expr;

	 AVExpr *h_pexpr;

	 int (*do_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);

	} BookContext;

	因为要实现动态化定义图像高度的变量，所以为了能够获得动态化的内容，需要为用户留出来一个操作参数。定义代码如下：

	#define OFFSET(x) offsetof(BookContext, x)

	static const AVOption book_options[] = {

	 { "h", "set the h expression of the picture", OFFSET(h_expr), AV_OPT_TYPE_STRING, { .str = "0" }, 0, 0, AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM },

	 { NULL },

	};

	因为动态化表达式支持h、n、pos与t四个变量，若解析表达式与4个变量建立关联则会出现重复逻辑，所以可以抽象成共用的接口，通过av_expr_parse设置需要解析的表达式，通过av_expr_eval获得表达式解析后的内容，然后应用解析后的内容。代码如下：

	static inline int normalize_xy(double d, int chroma_sub)

	{

	 if (isnan(d))

	 return INT_MAX;

	 return (int)d & ~((1 << chroma_sub) - 1);

	}

	static void eval_expr(AVFilterContext *ctx)

	{

	 BookContext *s = ctx->priv;

	 s->var_values[VAR_H] = av_expr_eval(s->h_pexpr, s->var_values, NULL);

	 s->h = normalize_xy(s->var_values[VAR_H], 1);

	}

	static int set_expr(AVExpr **pexpr, const char *expr, const char *option, void *log_ctx)

	{

	 int ret;

	 AVExpr *old = NULL;

	 if (*pexpr)

	 old = *pexpr;

	 ret = av_expr_parse(pexpr, expr, var_names,

	 NULL, NULL, NULL, NULL, 0, log_ctx);

	 if (ret < 0) {

	 av_log(log_ctx, AV_LOG_ERROR,

	 "Error when evaluating the expression '%s' for %s\n",

	 expr, option);

	 *pexpr = old;

	 return ret;

	 }

	 av_expr_free(old);

	 return 0;

	}

	在config_input中设置表达式解析的初始化操作如下：

	static av_cold int config_input(AVFilterLink *inlink)

	{

	 int ret = 0;

	 AVFilterContext *avctx = inlink->dst;

	 BookContext *ctx = avctx->priv;

	 ctx->do_slice = book_do_slice;

	 ctx->var_values[VAR_H] = NAN;

	 ctx->var_values[VAR_N] = 0;

	 ctx->var_values[VAR_POS] = NAN;

	 ctx->var_values[VAR_T] = NAN;

	 if ((ret = set_expr(&ctx->h_pexpr, ctx->h_expr, "h", avctx)) < 0) return ret;

	 return 0;

	}

	然后在filter_frame里面做表达式使用与赋值等应用。

	static int filter_frame(AVFilterLink *link, AVFrame *frame)

	{

	 AVFilterContext *avctx = link->dst;

	 BookContext *ctx = avctx->priv;

	 int res;

	 ctx->var_values[VAR_H] = frame->height;

	 ctx->var_values[VAR_N] = link->frame_count_out;

	 ctx->var_values[VAR_T] = frame->pts == AV_NOPTS_VALUE ? NAN : frame->pts * av_q2d(link->time_base);

	 ctx->var_values[VAR_POS] = frame->pkt_pos == -1 ? NAN : frame->pkt_pos;

	 eval_expr(avctx);

	 if (res = ff_filter_execute(avctx, ctx->do_slice, frame, NULL,

	 FFMIN(frame->height, ff_filter_get_nb_threads(avctx))))

	 return res;

	 return ff_filter_frame(link->dst->outputs[0], frame);

	}

	先获得图像帧的高度、当前帧的序号、当前帧的时间戳、当前帧对应的文件位置，然后将这些动态输入进来的变量通过表达式解析，再通过变量的内容转换赋值给BookContext的h变量。h变量在每次进入这个滤镜处理时，都会随着frame->height、link->frame_count_out、frame->pts及frame->pkt_pos的变化而变化，然后切片slice_do根据这些变量做处理即可。如上编写完毕之后，使用这个滤镜时即可支持表达式的方式。使用方式如下：

	-filter_complex "book=h='if(lt(n,125), 200, n)'"

	从这样的表达式参数可以判断，当帧序号小于125帧时book滤镜处理的图像的高一直为高度减200，当帧序号大于或等于125时book滤镜处理的图像的高开始为高度减帧序号。

16.3.4 支持process_command

	之前实现的滤镜还不能像导播程序一样受用户动态控制，如果希望可随时被用户干预控制，还需要增加process_command方法。添加process_command方法后用户即可通过FFmpeg内置的zmq接口动态设置book的变量值。代码如下：

	static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,

	 char *res, int res_len, int flags)

	{

	 BookContext *s = ctx->priv;

	 int ret;

	 if (!strcmp(cmd, "h"))

	 ret = set_expr(&s->h_pexpr, args, cmd, ctx);

	 else

	 ret = AVERROR(ENOSYS);

	 if (ret < 0)

	 return ret;

	 eval_expr(ctx);

	 return ret;

	}

	动态设置表达式解析内容的代码完成后，还需要将定义的函数添加到之前定义的名为ff_ vf_book的AVFilter滤镜中，然后才能托管给FFmpeg的avfilter以在内部处理逻辑中调用。

	const AVFilter ff_vf_book = {

	 .name = "book",

	 .description = NULL_IF_CONFIG_SMALL("Book the input video vertically."),

	 .priv_size = sizeof(BookContext),

	 .priv_class = &book_class,

	 .process_command = process_command,

	 FILTER_INPUTS(avfilter_vf_book_inputs),

	 FILTER_OUTPUTS(avfilter_vf_book_outputs),

	 FILTER_PIXFMTS_ARRAY(pixel_fmts),

	 .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,

	};
libavfilter/vf_book.c的代码链接：https://github.com/T-bagwell/FFmpeg_Book_Version2/blob/book/base_ffmpeg_6.0/libavfilter/vf_book.c。
	到这里，支持常见能力的滤镜book即添加完毕。关于本节提到的代码，更详细的代码案例可以参考libavfilter/vf_book.c
	 [image: libavfilter/vf_book.c的代码链接：https://github.com/T-bagwell/FFmpeg_Book_Version2/blob/book/base_ffmpeg_6.0/libavfilter/vf_book.c。]。

16.4 添加Protocol模块

	FFmpeg 的 Protocol 即一些协议，一般来说是一些网络文件协议，如 UDP、HTTP、RTSP、RTMP等，也有一些本地协议，如FILE、FIFO、UNIX Socket等。FFmpeg可以通过这些协议处理多媒体音视频。

	下面以新发明的book协议为例，演示向FFmpeg中添加一个新协议的过程。

16.4.1 添加新协议的消息结构

	book协议非常简单，FFmpeg连接一个TCP服务器，然后向它发送或通过它读取音视频数据。先定义一个结构体，存放book协议的私有数据，如下：

	typedef struct BookContext {

	 const AVClass *class; // 第1个成员必须是一个AVClass类型的指针

	 int fd; // 网络文件描述符

	 int blocksize; // 数据块大小

	} BookContext;

	添加命令行选项，在此只设置了一个选项blocksize，默认值为1024。其中，AV_OPT_ FLAG_DECODING_PARAM表示“解码”（FFmpeg读数据）参数，AV_OPT_FLAG_ENCODING_ PARAM表示“编码”（FFmpeg写数据）参数。其他的与前面讲过的libavformat中的含义相同。

	#define OFFSET(x) offsetof(BookContext, x)

	#define D AV_OPT_FLAG_DECODING_PARAM

	#define E AV_OPT_FLAG_ENCODING_PARAM

	static const AVOption options[] = {

	 { "blocksize", "blocksize data size (in bytes)", OFFSET(blocksize),

	 AV_OPT_TYPE_INT, { .i64 = 1024 }, 48, INT_MAX, .flags = D|E },

	 { NULL }

	};

	定义一个AVClass，关联前面定义的options。

	static const AVClass book_class = {

	 .class_name = "book", // 名称

	 .item_name = av_default_item_name,

	 .option = options, // 参数

	 .version = LIBAVUTIL_VERSION_INT, // 版本号

	};

	定义一个协议结构体，关联前面定义的BookContext及AVClass结构，并定义一些回调函数。

	const URLProtocol ff_book_protocol = {

	 .name = "book", // 协议名称

	 .url_open = book_open, // 打开时回调函数

	 .url_read = book_read, // 读数据回调函数

	 .url_write = book_write, // 写数据回调函数

	 .url_close = book_close, // 关闭时回调函数

	 .url_get_file_handle = book_get_file_handle, // 获取文件句柄

	 .priv_data_size = sizeof(BookContext), // 私有数据内存缓冲区大小

	 .priv_data_class = &book_class, // 私有数据的类

	 .flags = URL_PROTOCOL_FLAG_NETWORK, // 这是一个网络协议

	};

16.4.2 回调函数

	打开文件时回调以下函数：

	static int book_open(URLContext *h, const char *uri, int flags)

	{

	 BookContext *s = h->priv_data; // s指向私有数据

	 char ip[256]; // 存放IP地址

	 int port = 0; // 端口号

	 struct sockaddr_in addr; // Socket地址

	 // 将URI拆分为IP地址和端口，存放到相应的变量中

	 av_url_split(NULL, 0, NULL, 0, ip, sizeof(ip), &port, NULL, 0, uri);

	 av_log(h, AV_LOG_INFO, "connecting to %s:%d\n", ip, port);

	 memset(&addr, 0, sizeof(addr)); // 初始化Socket地址

	 addr.sin_family = AF_INET; // 网络类型为Internet

	 addr.sin_addr.s_addr = inet_addr(ip); // 将IP地址转换为二进制表示

	 addr.sin_port = htons(port); // 端口号，大端序

	 // 创建一个Socket，这是C语言建立Socket的标准方式

	 if ((s->fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

	 return -1; // 如果创建失败则返回负数，表示出错

	 }

	 // 建立网络连接

	 if (connect(s->fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {

	 av_log(h, AV_LOG_ERROR, "Error connecting to %s\n", uri);

	 return -1; // 如果连接失败则返回负数

	 }

	 return 0; // 返回0，表示网络连接成功

	}

	当FFmpeg需要读数据时会回调以下函数，其中buf为数据缓冲区，size为期望读取的数据长度。

	static int book_read(URLContext *h, uint8_t *buf, int size)

	{

	 BookContext *s = h->priv_data; // s指向私有数据

	 int ret;

	 size = FFMIN(size, s->blocksize); // 获取size和blocksize两者的最小值

	 ret = read(s->fd, buf, size); // 从网络中读数据，返回实际读到的字节数，可能小于size

	 if (ret == 0) return AVERROR_EOF; // 如果读到0，返回EOF，代表读到文件尾

	 return (ret == -1) ? AVERROR(errno) : ret; // 否则返回实际读到的字节数或出错信息

	}

	当FFmpeg需要写数据时，触发以下回调函数，其中buf为数据缓冲区指针，size为数据长度。

	static int book_write(URLContext *h, const uint8_t *buf, int size)

	{

	 BookContext *s = h->priv_data; // s指向私有数据

	 return write(s->fd, buf, size); // 向Socket发送数据

	}

	当协议关闭时回调如下函数：

	static int book_close(URLContext *h)

	{

	 BookContext *s = h->priv_data; // s指向私有数据

	 if (s->fd > -1) close(s->fd); // 关闭Socket

	 return 0;

	}

	此外，还有一个特殊的回调函数，用于获取底层的文件描述符，该文件描述符用于select调用，探测网络上是否有可读的数据。在此，直接返回s->fd即可。代码如下：

	static int book_get_file_handle(URLContext *h)

	{

	 BookContext *s = h->priv_data;

	 return s->fd;

	}

	通过上面的代码和解释可以看到，我们实现的 book 协议非常简单，即通过直接调用底层的read/write函数从网络收发数据。

16.4.3 编译

	将上述代码存到book.c中，然后将book.c加入编译工程。

	1）修改protocols.c，加入一行：extern const URLProtocol ff_book_protocol。

	2）修改libavformat/Makefile，有以下两种方法。

	・在OBJS=最后加入一行：book.o，这样，编译时总会包含book.c。

	・加入一行：OBJS-$(CONFIG_PIPE_PROTOCOL)+=book.o，在执行./configure --enable-protocol=book时会条件编译book.c。

	做完上述修改后，直接执行make命令就可以编译了。

16.4.4 测试

	为了测试我们的book协议，需要有一个TCP服务器。在此，使用netcat进行测试。netcat是一个跨平台的网络工具，被誉为网络的“瑞士军刀”，大部分Linux平台上都有，可以通过apt-get install netcat或yum install netcat进行安装，在macOS上也有，不过命令行参数与Linux略有不同。下面，我们以macOS为例讲解。

	启动netcat服务（缩写为nc），-l表示监听。在此我们监听8000端口，将收到的所有内容重定向到out.mp4文件。

	nc -l 0.0.0.0 8000 > /tmp/out.mp4

	打开FFmpeg，从in.mp4中读取文件，内容发送到上面的监听地址。命令如下：

	ffmpeg -i /tmp/in.mp4 book://127.0.0.1:8000

	运行结束后，可以用播放器尝试播放out.mp4以查看效果。上面的例子会执行前面讲的book_ write回调函数，向网络发送数据。下面我们反过来测试，用netcat启动一个TCP服务器，读取一个in.mp4文件，并等待网络连接。

	nc -l 0.0.0.0 8000 < /tmp/in.mp4

	使用ffplay播放该网络文件。

	ffplay book://127.0.0.1:8000

	到这里，新的book网络协议就实现完毕并测试成功了。可以看到，实现一个网络协议也可以是一件很轻松的事情。当然，在实际应用中，还需要考虑更复杂的情况，如断线重连、拥塞控制等。感兴趣的读者可以翻阅FFmpeg的源代码，看一看实际的网络协议是怎么做的。相信到这里，读者再阅读FFmpeg的源代码时会变得很轻松了。

16.5 小结

	在本章中，我们通过实际的例子，带领大家在FFmpeg代码中添加了我们自己发明的音视频封装格式、编解码、滤镜和协议，简单起见，我们统一将它们命名为book。在示例中，我们详细介绍了相应模块对应参数的获取和解析方法，便于读者理解相应命令行上的参数。读者在阅读过程中可以亲自试一试，以便更深刻地领会FFmpeg代码的魅力和开发精髓。

第17章

FFmpeg调试与测试

	在前面的章节中，我们介绍了很多FFmpeg使用方面的知识，并介绍了FFmpeg的源代码及如何在FFmpeg中添加代码以实现自己的功能。不管直接使用FFmpeg还是修改FFmpeg代码，在使用过程中都免不了对FFmpeg源代码进行编译、调试等。本章就带大家来看一看FFmpeg调试与测试的选项、方法和技巧，以便大家在使用过程中遇到问题时可以很快地排查并解决。

17.1 自身的调试选项

	下面先介绍一下FFmpeg自身的一些调试选项，这些选项功能比较分散，很多时候可能注意不到。

17.1.1 debug选项

	我们先介绍AVCodecContext的debug选项，它主要用于解码和编码阶段的一些调试。该选项打印关于选定的音频、字幕或视频流的具体调试信息，如表17-1所示。另外，debug的具体选项与特定的编码器或者解码器密切关联，所以，使用前需要确认对应的编解码器是否被支持。

	表17-1 AVCodecContext的debug选项

	[image:]

	[image:]

	这些debug选项实际使用的场景限制颇多，大部分功能都可用第三方工具或者替代的方案完成，比如上面的pict选项，就可以用前面章节中bitstream滤镜的trace_headers来代替。除非能找到特别明确的场景，有些选项并不特别建议使用。

17.1.2 DTS/PTS问题的排查

	除了AVCodecContext的debug选项，更为常见的问题与DTS/PTS相关。一般而言，如果没有调试过PTS及音视频同步问题，大概不能称为入门多媒体领域。一般有3个工具可用于调试该类问题。

	・调试选项-debug_ts，它在处理过程中打印出时间戳信息。

	・选项-fdebug只有一个值ts，经常和-debug_ts选项一起使用，例如调试DTS和PTS关系。

	・滤镜showinfo。

	下面看一些简单的例子。先看看选项-debug_ts，分析一个只有3帧的视频文件。

	ffmpeg -debug_ts -i output.mp4 -c copy -f null /dev/null

	主要的输出内容如下：

	demuxer -> ist_index:0:0 type:video pkt_pts:0 pkt_pts_time:0 pkt_dts:-1024 pkt_dts_time:-0.08 duration:512 duration_time:0.04

	demuxer -> ist_index:0:0 type:video pkt_pts:512 pkt_pts_time:0.04 pkt_dts:-512 pkt_dts_time:-0.04 duration:512 duration_time:0.04

	demuxer+ffmpeg -> ist_index:0:0 type:video pkt_pts:0 pkt_pts_time:0 pkt_dts:-1024 pkt_dts_time:-0.08 duration:512 duration_time:0.04 off:0 off_time:0

	demuxer -> ist_index:0:0 type:video pkt_pts:1024 pkt_pts_time:0.08 pkt_dts:0 pkt_dts_time:0 duration:512 duration_time:0.04

	muxer <- type:video pkt_pts:0 pkt_pts_time:0 pkt_dts:-1024 pkt_dts_time:-0.08 duration:512 duration_time:0.04 size:776

	demuxer+ffmpeg -> ist_index:0:0 type:video pkt_pts:512 pkt_pts_time:0.04 pkt_dts:-512 pkt_dts_time:-0.04 duration:512 duration_time:0.04 off:0 off_time:0

	demuxer+ffmpeg -> ist_index:0:0 type:video pkt_pts:1024 pkt_pts_time:0.08 pkt_dts:0 pkt_dts_time:0 duration:512 duration_time:0.04 off:0 off_time:0

	muxer <- type:video pkt_pts:512 pkt_pts_time:0.04 pkt_dts:-512 pkt_dts_time:-0.04 duration:512 duration_time:0.04 size:1086

	muxer <- type:video pkt_pts:1024 pkt_pts_time:0.08 pkt_dts:0 pkt_dts_time:0 duration:512 duration_time:0.04 size:45

	在这个例子中，我们并没有执行解码，只是执行了demuxing操作，然后就将数据丢弃了。对应的3帧数据的DTS、PTS信息在整个过程中非常明晰，无须过多解释。读者也可以看看执行解码之后的打印结果，在上述命令中去掉-c copy部分即可。选项-fdebug的使用与之类似，读者可以自行测试。

	另外一个非常有用的工具是滤镜showinfo，它可以显示的信息非常多，不光只是用来调试DTS、PTS问题。下面是它的一个使用示例：

	ffmpeg -i output.mp4 -vf showinfo -f null /dev/null

	里面打印的信息如下：

	[Parsed_showinfo_0 @ 000001c507902e40] config in time_base: 1/12800, frame_rate: 25/1

	[Parsed_showinfo_0 @ 000001c507902e40] config out time_base: 0/0, frame_rate: 0/0

	[Parsed_showinfo_0 @ 000001c507902e40] n: 0 pts: 0 pts_time:0 duration: 512 duration_time:0.04 pos: 48 fmt:yuv420p sar:1/1 s:512x512 i:P iskey:1 type:I checksum: E8800F00 plane_checksum:[00000000 3C000780 3C000780] mean:[0 128 128] stdev:[0.0 0.0 0.0]

	[Parsed_showinfo_0 @ 000001c507902e40] side data - User Data Unregistered:

	[Parsed_showinfo_0 @ 000001c507902e40] UUID=dc45e9bd-e6d9-48b7-962c-d820d923eeef

	省略掉部分打印信息...

	[Parsed_showinfo_0 @ 000001c507902e40]

	[Parsed_showinfo_0 @ 000001c507902e40] color_range:unknown color_space:unknown color_primaries:unknown color_trc:unknown

	[Parsed_showinfo_0 @ 000001c507902e40] n: 1 pts: 512 pts_time:0.04 duration: 512 duration_time:0.04 pos: 824 fmt:yuv420p sar:1/1 s:512x512 i:P iskey:0 type:I checksum: 2DBBF707 plane_checksum:[12C5E807 3C000780 3C000780] mean:[8 128 128] stdev:[36.0 0.0 0.0]

	[Parsed_showinfo_0 @ 000001c507902e40] color_range:unknown color_space:unknown color_primaries:unknown color_trc:unknown

	[Parsed_showinfo_0 @ 000001c507902e40] n: 2 pts: 1024 pts_time:0.08 duration: 512 duration_time:0.04 pos: 1910 fmt:yuv420p sar:1/1 s:512x512 i:P iskey:0 type:P checksum: CD9CB9B6 plane_checksum:[E28DAAB6 3C000780 3C000780] mean:[8 128 128] stdev:[35.8 0.0 0.0]

	[Parsed_showinfo_0 @ 000001c507902e40] color_range:unknown color_space:unknown color_primaries:unknown color_trc:unknown

	打印信息中显示了对应的timebase、DTS、PTS、帧类型，以及是否为关键帧，也计算了checksum等。这个滤镜非常适合用来调试一个滤镜链路前后帧的各种信息变化，并且可以多次使用。

17.2 loglevel与report

	loglevel和report大概是使用最多的调试、跟踪方案之一了。一般情况下，设置好对应的loglevel，即可获取相应的调试信息。而当控制台的输出很长或者想把调试信息直接保存在文件中时，就可以使用report选项。通过report选项可以将测试结果保存到文件中，默认的文件命名规则为ffmpeg-yyyymmdd-hmmss.log，其中黑体字部分表示当前日期和时间。

17.2.1 使用loglevel

	loglevel设置的日志级别决定了在处理过程中控制台输出什么内容，可使用的参数为字符串或其对应的整数值，如表17-2所示。要设置日志级别，除了使用-loglevel选项，也可以使用它的精简选项-v。例如，对于verbose级别，可以使用以下命令：

	ffmpeg -i input.avi output.mp4 -v verbose

	表17-2 日志级别选项

	[image:]

	默认情况下，FFmpeg会将日志记录到标准错误（stderr）中。如果终端支持颜色，就会用不同的颜色来显示错误和警告。可以通过设置环境变量AV_LOG_FORCE_NOCOLOR来禁用日志着色，也可以通过设置环境变量AV_LOG_FORCE_COLOR来强制着色。

	另外，loglevel也能将重复的日志信息展开，在默认情况下，重复的日志信息是被折叠的。下面的例子将展开折叠的日志信息，并将loglevel设置成verbose。

	ffmpeg -loglevel repeat+level+verbose -i input output

17.2.2 使用report

	除了上面的loglevel，我们还可以使用report选项将完整的命令行和日志输出转存到当前目录中一个名为program-YYYMMDD-HHMMSS.log的文件中。这个文件对错误报告很有用，同时也意味着隐含设置了-loglevel debug。

	将环境变量FFREPORT设置为任何值都有同样的效果。如果该值是一个以“:”分隔的key= value序列，这些选项将影响报告；如果选项值包含特殊字符或选项分隔符“:”，则必须转义（参见ffmpeg-utils手册）。

	下列选项可以被识别。

	・file：设置报告使用的文件名；%p被扩展为程序的名称，%t被扩展为时间戳，%%被扩展为普通的%。

	・level：使用一个数值来设置日志的粗略程度（见17.2.1节）。

	例如，使用数值为32的日志级别（日志级别信息的别名）向名为ffreport.log的文件输出一份报告。

	FFREPORT=file=ffreport.log:level=32 ffmpeg -i input output

	注意：解析环境变量的错误不是致命的，也不会出现在报告中。

17.3 在调用库时的调试

	在大部分情况下我们使用FFmpeg命令行处理相关工作，但是也有更高级的应用，比如在手机端、服务器侧开发基于FFmpeg API的应用程序或者框架，在这种情况下，需要知道怎么来完成对应的调试工作。一般而言，有两类方式：基于日志的方式或者直接基于源代码使用调试信息的方式。

17.3.1 基于日志

	FFmpeg返回的错误码是公用的，比如-22表示“invalid argument”。但是到底是哪一个参数没有设置正确，FFmpeg根本没有任何提示，特别是对于多层嵌套、代码路径比较深的场景。这种情况下可以考虑使用基于日志的方式来调试。一般而言，使用av_log_set_level()来开启更高的日志级别，就能解决很多问题了。其设置细节与前面用命令行方式设置loglevel是一致的。下面是一个典型的例子，在代码的开头，将日志级别设置为DEBUG。

	/* 在调用FFmpeg相关函数前设置FFmpeg打印的日志级别为DEBUG */

	av_log_set_level(AV_LOG_DEBUG);

	在运行程序时，FFmpeg会打印所有调试信息，这可以帮助我们找到可能原因的错误信息。

	在另外一些场景，则需要接管整个日志系统。在这种情况下，一般使用自己的日志回调函数，使用的函数是 av_log_set_callback()。这使得调用方有机会完全接管所有的日志信息，用于存储、网络分发等。

	/**

	 * Set the logging callback

	 *

	 * @note The callback must be thread safe, even if the application does not use

	 * threads itself as some codecs are multithreaded.

	 *

	 * @see av_log_default_callback

	 *

	 * @param callback A logging function with a compatible signature.

	 */

	void av_log_set_callback(void (*callback)(void*, int, const char*, va_list));

17.3.2 基于带调试信息库

	在使用FFmpeg API接口出现问题时，如果能通过gdb断点调试FFmpeg相关文件，将有助于快速定位问题。此时需要我们手动编译带调试信息并去掉编译优化的FFmpeg库。一般而言，可以直接将其编译成静态库，这样调试起来比动态库稍微方便一些。下面是一个典型的编译带调试信息库方式的代码。

	./configure \

	 --prefix="/usr/" \

	 --pkg-config-flags="--static" \

	 --extra-libs="-lpthread -lm" \

	 --bindir="/usr/bin" \

	 --enable-debug=3\

	 --disable-optimizations \

	 --disable-stripping \

	 --disable-asm \

	 --disable-shared \

	 --enable-pic \

	 --enable-gpl \

	 --enable-nonfree \

	 ...

	在上面的选项中，比较重要的选项如下。

	・--disable-optimizations：用于禁止编译优化，这样可以避免在gdb调试时出现“optimized out”的提示。

	・--disable-stripping：禁止去掉gdb所需的符号信息，这样使得调试便利一些。

	・--disable-asm：禁止汇编优化，这样使得调试一些C的函数而不开启汇编优化。不过这个选项会极大地引起性能问题，在实际产品中不建议开启这个选项。

	通过上述方式编译出来的库，就可以使用gdb跟踪FFmpeg中的具体出错代码。这样，在熟悉代码的情况下能快速定位问题。若想调试FFmpeg的这些工具集合，可使用ffmpeg_g、ffprobe_g、ffplay_g这些版本。

17.4 给社区汇报Bug及提交补丁

	如果你遇到一个Bug，欢迎向社区汇报。当然，如果你发现一个Bug并自己写了一个补丁（Patch），社区会更欢迎。但每个社区都有自己的规则，在给社区提交Bug或补丁之前，了解一下社区的规则，有助于与维护者更好地沟通，也有助于你的补丁更快地得到认可并被合并。

17.4.1 代码风格

	规范代码风格的作用主要就是使代码易读，而无论是对程序员本人，还是对其他人。好的代码风格对于好的程序设计具有非常关键的作用。一个开源项目最先被注意到的地方之一就是其代码风格，我们讨论风格，也是为了使读者在阅读本书其余部分时能特别注意这个问题。

	程序风格的设计原则源于实际经验中得到的常识，而不是随意的规则。代码应该是清楚的、简单的，即具有直截了当的逻辑、自然的表达式、通用的语言使用方式、有意义的名字、有帮助作用的注释等，同时，要避免耍小聪明的花招、使用非常规的结构语法等。一致性是一个项目中非常重要的东西，如果大家都坚持同样的风格，其他人就会发现你的代码很容易读懂，你也很容易读懂其他人的代码。FFmpeg有自己的代码风格要求，这是你在读代码或者向FFmpeg添加代码时应该遵循的基本准则。下面我们看看FFmpeg的代码风格约定，主要涉及代码格式、注释、C语言特性、命名约定等。

	1. 代码格式约定

	关于源代码文件的缩进，FFmpeg有以下准则：

	・缩进为4个字符。

	・在Makefiles之外，禁止使用TAB字符，也禁止使用任何形式的尾部空白。包含这两种字符的提交将被Git仓库拒绝。

	・应该尽量将代码行限制在80个字符以内，这样做能极大地提高可读性。

	・使用K&R编码风格。

	K&R编码风格的表现形式受到了indent -i4 -kr -nut的启发。FFmpeg优先考虑的是简单性和小的代码量，这样可以尽量减少错误的出现，毕竟没有代码就没有错误。

	代码使用K&R风格，具体如下：

	・控制语句的格式是在语句和小括号之间加空格，具体方法如下。

	for (i = 0; i < filter->input_count; i++) {

	・case语句总是位于switch的同一层。

	switch (link->init_state) {

	case AVLINK_INIT:

	 continue;

	case AVLINK_STARTINIT:

	 av_log(filter, AV_LOG_INFO, "circular filter chain detected");

	 return 0;

	・函数声明中的大括号写在新的一行。

	const char *avfilter_configuration(void)

	{

	 return LIBAV_CONFIGURATION;

	}

	・不要通过比较来检查NULL值，if (p)和if (!p)是正确的；if (p == NULL)和if (p != NULL)则不是。

	・if单句不需要大括号。

	if (!pic || !picref)

	 goto fail;

	・不要把空格放在括号内。“if (ret)”是有效的样式；“if (ret)”则不是。

	2. 注释

	FFmpeg使用JavaDoc/Doxygen格式的注释（见下面的例子），这样就可以自动生成代码相关的文档。对于所有重要的函数，都应该在其上方有一个注释，以解释该函数的作用，即使有时候只需要用简单的一句话就能说清楚。另外，所有结构体和它们的成员变量也应该尽量注释。

	同时，需要避免使用Qt和类似Qt注释的Doxygen语法，在FFmpeg中可以用“///”和类似的语法代替“//!”。另外，对于标记命令应采用@语法，即使用@param而不是\param的方式。

	/**

	 * @file

	 * MPEG codec.

	 * @author ...

	 */

	/**

	 * Summary sentence.

	 * more text ...

	 * ...

	 */

	typedef struct Foobar {

	 int var1; /**< var1 description */

	 int var2; ///< var2 description

	 /** var3 description */

	 int var3;

	} Foobar;

	/**

	 * Summary sentence.

	 * more text ...

	 * ...

	 * @param my_parameter description of my_parameter

	 * @return return value description

	 */

	int myfunc(int my_parameter)

	...

	3. C语言特性

	FFmpeg主要基于ISO C90语言编程，但是也使用了非常少的ISO C99的一些特性，主要包含以下几个特性：

	・inline关键字。

	・使用“//”注释。

	・结构体指定初始化，如struct s x = { .i = 17 }。

	・复合字元，如x = (struct s) { 17, 23 }。

	・带有变量定义的for循环，如for (int i = 0; i < 8; i++)。

	・带变量的宏，如#define ARRAY(nb, ...) (int[nb + 1]){ nb, __VA_ARGS__ }。

	・实现定义的有符号整数的行为被假定为与二进制补码的预期行为一致。整数转换中的非可表示值被二进制截断。有符号值的右移使用符号扩展。

	这些特性被FFmpeg项目所支持的编译器都支持了，所以提交的代码中可以包括上面这些特性。

	所有代码必须用最近版本的GCC和其他一些目前支持的编译器来编译。为了确保兼容性，应避免使用额外的C99特性或GCC扩展。特别要注意避免下面这些：

	・混合语句和声明。

	・使用long long类型（建议使用int64_t代替它）。

	・__attribute__没有被#ifdef __GNUC__或类似的机制加以保护。

	・GCC语句表达式（(x = ({ int y = 4; y; })）。

	4. 命名约定

	所有的名称都应该由下划线“_”组成，而不是驼峰方式。例如，avfilter_get_video_buffer是一个可接受的函数名称，而AVFilterGetVideo则不是可接受的函数名称。关于这一点有一个例外情况即类型名称，如结构体和枚举，它们应该始终使用驼峰方式。

	变量和函数的命名有以下惯例：

	・局部变量不需要前缀。

	・声明为静态文件范围的变量和函数不需要前缀。

	・在文件范围之外可见，但只在一个库的内部使用的变量和函数，应该使用ff_前缀，例如，ff_w64_demuxer。

	・在文件范围之外可见，且在多个库的内部使用的变量和函数，使用avpriv_作为前缀，例如，avpriv_report_missing_feature。

	・除了常用的av_之外，每个库都有自己的公共符号前缀（如libavformat的avformat_、libavcodec的avcodec_、libswresample的swr_等）。检查现有的代码并选择相应的名称。注意：一些没有这些前缀的符号也会被导出，这是考虑了前向兼容性。这些例外在 lib <name>/lib<name>.v文件中声明。

	此外，为系统保留的名称空间不应该被侵入。以_t结尾的标识符是由POSIX保留的。也要避免使用以“__”或“_”结尾的大写字母开头的名称，因为它们是由C标准保留的。以“_”开头的名称是在文件级别上保留的，不能用于外部可见的符号。如果有疑问，就完全不使用以“_”开头的名称。

	5. 头文件顺序

	除了config.h，FFmpeg源文件中的头文件应该按照一定的顺序排列。请注意，config.h只应在你需要使用它里面的条件性检测标记的时候才添加。具体而言，头文件的顺序如下：

	・当需要时，首先是config.h。

	・然后是系统头文件。

	・接着是其他非本地库的头文件。

	・最后是本地头文件。

	记住，在不同的分组之间应该插入一行空行，并保持组内的头文件按照字母顺序排列，这样重复的头文件会很容易被发现。下面是一个不同的组之间使用空行来区分的例子。

	#include "config.h"

	#include <stdint.h>

	#include <string.h>

	#include "libavutil/mem.h"

	#include "libavcodec/internal.h"

	#include "avformat.h"

	如果包含有条件性检测的头文件，应该把“#”作为第1个字符，然后在初始块后留3个空格。

	/* 正确的条件包含示意 */

	#ifdef ARCH_ARM

	#include "arm/bswap.h"

	#endif

	/* 不建议的条件包含示意 */

	#ifdef ARCH_ARM

	#include "arm/bswap.h"

	#include "arm/bswap.h"

	#include "arm/bswap.h"

	#endif

	最后，检查文件是否包含了它所需要的所有头文件，甚至那些已经被其他文件包含的头文件。运行make check和make checkheader是个好办法，可以避免出现头文件相关的问题。

	注意：要特别注意Windows头文件！windows.h应该包含在winsock2.h之后（如果没有，可能会触发编译警告，但不会出现编译错误），而libavformat内部文件可能包括winsock2.h，所以在这种情况下，要检查它们是否最后被包含。

	6. 其他约定

	・libavformat和libavcodec中禁止使用fprintf和printf，可使用av_log()代替。

	・只有在必要时才应使用圆括号。如果括号不能使代码更容易理解，这类不需要的括号也应该避免使用。

	为了避免因代码风格异常检测而消耗人们大量时间，FFmpeg项目在代码目录的tools下提供了patcheck工具，专门用于做代码风格检测，可以覆盖大量的代码风格异常检测。

17.4.2 给FFmpeg贡献代码

	FFmpeg作为典型的社区驱动的开源项目，对外部贡献者持开放的态度。但如同大部分的开源项目一样，它有自己的运作方式和规范。对于代码而言，一般需要考虑代码风格、版权等。在一些细节方面，可以参考下面这些规则，这些都是一些非常好的开发实践，对于其他项目或者日常的开发工作也颇具价值。

	（1）Patch的许可证必须与FFmpeg兼容

	前面提及FFmpeg主要以LGPL 2.1为基础，贡献者提交的Patch也应该遵循相应的版权许可。实际上，向任何开源项目贡献代码都应该仔细考虑这个事情。

	（2）Patch不能破坏FFmpeg的代码

	这意味着未完成的代码被启用并破坏了编译，或者编译了但不工作或破坏了回归测试。在某些情况下，未完成的代码可能会被允许，比如缺少测试文件或只实现一个功能的部分子集。在推送之前，一定要检查邮件列表中是否有审阅者的问题，并测试FATE以保证没有引入回归问题。

	（3）Commit message的主提交消息应该简短，并在下面有一个完整精确的描述

	Patch的Commit message应该有一个简短的第1行，以“主题：简短描述”的形式作为标题，用一个换行符与正文隔开，而在正文中解释为什么需要修改。如果该提交修复了Bug tracker上的一个已知Bug，提交信息应该包括其Bug ID。对于提到Bug tracker上的问题，需要在提交信息中写上该Bug的摘录，这样其他人查看时不必每次都去翻看Bug tracker。下面是一个好的Commit message的式样，读者能很快通过它知道作者改了什么模块、具体的原因是什么、作者是谁等关键信息。

	Author: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>

	Date: Thu Jan 27 16:39:26 2022 +0100

	 avcodec/h264_ps: Remove ALLOW_INTERLACED cruft

	 Since e1027aba680c4382c103fd1100cc5567a1530abc,

	 ALLOW_INTERLACED is no longer defined in h264_ps.c,

	 leading to a warning when encountering an SPS compatible

	 with MBAFF. This warning was always nonsense, because

	 ff_h264_decode_seq_parameter_set() is also used by the parser

	 and it makes no sense for the parser to warn about missing

	 decoder features; after all, it is not a parser's job

	 to warn when a feature is unsupported by a decoder

	 (and in this case it is even weirder, because even if the H.264

	 decoder is disabled, the warning will only be shown for MBAFF

	 sequence parameter sets). So remove the warning in h264_ps.c.

	 Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>

	（4）测试充分但不要过度

	如果Patch对你和其他人都有效，并且通过了FATE测试，那么只要符合其他提交标准，就可以提交了。不用担心过度测试的问题，如果你的代码有问题（比如可移植性、触发编译器的错误、不寻常的环境等），这些实际上会在后续被最终修复。

	（5）不要把不相关的修改放在一起提交

	这是很多人容易犯错的地方，实际上，应该把不相关的内容分割成相互独立的部分。同时也不要忘记，如果B部分依赖于A部分，但A不依赖于B，那么A可以先提交，并与B分开，这也有助于以后的调试工作。另外，如果你对分割或不分割这些提交有疑问，不要犹豫，直接在开发者邮件列表中询问或讨论。

	（6）在你改变构建系统（配置等）之前与社区有充分的沟通

	在没有事先讨论的情况下，不要提交对构建系统（如Makefiles、配置脚本）的改变，这将改变行为和默认值等。这同样适用于编译器警告修复、微不足道的外观修复以及由其他开发者维护的代码。我们通常有一个理由来做我们所做的事情，即把你的修改作为Patch发送到ffmpeg-devel邮件列表，如果代码维护者说可以，你就可以提交。这并不适用于你编写或维护的文件。

	（7）小的代码美化以单独的提交出现

	FFmpeg社区拒绝将源代码缩进和其他外观上的改变与功能上的修改混在一起，这样的提交会被社区拒绝和删除。

	注意：如果你不得不把if(){ ... }放在一大段（大于5行）代码上，那么要么不要改变内部部分的缩进（不要把它移到右边），要么在单独的提交中这样做。

	（8）正确填写提交信息

	每次提交都需要写提交日志信息，用几行字描述你改变了什么及为什么。如果你修复了一个特定的Bug，可以参考邮件列表的帖子，诸如“fixed”或“Changed it”这样的提交说明是不被接受的。一般推荐的格式如下：

	area changed: Short 1 line description

	details describing what and why and giving references.

	（9）Patch作者的许可

	请确保提交的作者设置是正确的（见git commit -author）。如果你应用了一个补丁，给ffmpeg-devel（或者你从哪里得到的补丁）发一个回复，说明你应用了这个补丁。

	（10）复杂的补丁应该参考相关的讨论

	如果应用已经在邮件列表中讨论过的补丁，请在日志信息中提及该主题。

	（11）在推送修改前一定要等待足够长的时间

	不要在未经允许的情况下提交由他人积极维护的代码。向ffmpeg-devel发送一个补丁，如果在一个合理的时间范围内没有人回答（12小时用于构建失败和安全修复，3天用于小改动，1周用于大补丁），那么只要你认为你的补丁没问题，就可以提交。另外请注意，维护者可以要求更多的时间来审查。

17.5 小结

	调试是一个非常大且琐碎的话题，一般而言，我们认为编码和调试的工作量之比可能为1:4，这使得我们在调试时需要掌握大量的技巧，也需要注入更多的心力。本章介绍了一些常用的调试FFmpeg相关问题的方式，希望能起到抛砖引玉的作用。另外，找到一个可以复现的过程也非常重要，这差不多代表问题已经被解决了一半。

	关于编码风格与约定及怎么往FFmpeg社区提交代码的内容参考了https://ffmpeg.org/developer. html，读者可以访问该网址以查看更多内容（及相关更新）。

	随着本章的结束，笔者也要跟大家说再见了。感谢阅读本书，希望本书能为读者使用FFmpeg命令和进行FFmpeg相关开发工作提供帮助。也欢迎加入FFmpeg社区，为FFmpeg提交更多Bug汇报和补丁，一起促进FFmpeg社区的磅礴发展。

	配套资源验证码：231148

Copyright Copyright 2010, 2012 Adobe Systems Incorporated (http://www.adobe.com/), with Reserved Font Name ‘Source’. License This Font Software is licensed under the SIL Open Font License, Version 1.1. This license is copied below, and is also available with a FAQ at: http://scripts.sil.org/OFL SIL OPEN FONT LICENSE Version 1.1 - 26 February 2007 PREAMBLE The goals of the Open Font License (OFL) are to stimulate worldwide development of collaborative font projects, to support the font creation efforts of academic and linguistic communities, and to provide a free and open framework in which fonts may be shared and improved in partnership with others. The OFL allows the licensed fonts to be used, studied, modified and redistributed freely as long as they are not sold by themselves. The fonts, including any derivative works, can be bundled, embedded, redistributed and/or sold with any software provided that any reserved names are not used by derivative works. The fonts and derivatives, however, cannot be released under any other type of license. The requirement for fonts to remain under this license does not apply to any document created using the fonts or their derivatives. DEFINITIONS "Font Software" refers to the set of files released by the Copyright Holder(s) under this license and clearly marked as such. This may include source files, build scripts and documentation. "Reserved Font Name" refers to any names specified as such after the copyright statement(s). "Original Version" refers to the collection of Font Software components as distributed by the Copyright Holder(s). "Modified Version" refers to any derivative made by adding to, deleting, or substituting â€” in part or in whole â€” any of the components of the Original Version, by changing formats or by porting the Font Software to a new environment. "Author" refers to any designer, engineer, programmer, technical writer or other person who contributed to the Font Software. PERMISSION & CONDITIONS Permission is hereby granted, free of charge, to any person obtaining a copy of the Font Software, to use, study, copy, merge, embed, modify, redistribute, and sell modified and unmodified copies of the Font Software, subject to the following conditions: 1) Neither the Font Software nor any of its individual components, in Original or Modified Versions, may be sold by itself. 2) Original or Modified Versions of the Font Software may be bundled, redistributed and/or sold with any software, provided that each copy contains the above copyright notice and this license. These can be included either as stand-alone text files, human-readable headers or in the appropriate machine-readable metadata fields within text or binary files as long as those fields can be easily viewed by the user. 3) No Modified Version of the Font Software may use the Reserved Font Name(s) unless explicit written permission is granted by the corresponding Copyright Holder. This restriction only applies to the primary font name as presented to the users. 4) The name(s) of the Copyright Holder(s) or the Author(s) of the Font Software shall not be used to promote, endorse or advertise any Modified Version, except to acknowledge the contribution(s) of the Copyright Holder(s) and the Author(s) or with their explicit written permission. 5) The Font Software, modified or unmodified, in part or in whole, must be distributed entirely under this license, and must not be distributed under any other license. The requirement for fonts to remain under this license does not apply to any document created using the Font Software. TERMINATION This license becomes null and void if any of the above conditions are not met. DISCLAIMER THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.
	*文中代码字体版权说明
	 [image: Copyright Copyright 2010, 2012 Adobe Systems Incorporated (http://www.adobe.com/), with Reserved Font Name ‘Source’. License This Font Software is licensed under the SIL Open Font License, Version 1.1. This license is copied below, and is also available with a FAQ at: http://scripts.sil.org/OFL SIL OPEN FONT LICENSE Version 1.1 - 26 February 2007 PREAMBLE The goals of the Open Font License (OFL) are to stimulate worldwide development of collaborative font projects, to support the font creation efforts of academic and linguistic communities, and to provide a free and open framework in which fonts may be shared and improved in partnership with others. The OFL allows the licensed fonts to be used, studied, modified and redistributed freely as long as they are not sold by themselves. The fonts, including any derivative works, can be bundled, embedded, redistributed and/or sold with any software provided that any reserved names are not used by derivative works. The fonts and derivatives, however, cannot be released under any other type of license. The requirement for fonts to remain under this license does not apply to any document created using the fonts or their derivatives. DEFINITIONS "Font Software" refers to the set of files released by the Copyright Holder(s) under this license and clearly marked as such. This may include source files, build scripts and documentation. "Reserved Font Name" refers to any names specified as such after the copyright statement(s). "Original Version" refers to the collection of Font Software components as distributed by the Copyright Holder(s). "Modified Version" refers to any derivative made by adding to, deleting, or substituting â€” in part or in whole â€” any of the components of the Original Version, by changing formats or by porting the Font Software to a new environment. "Author" refers to any designer, engineer, programmer, technical writer or other person who contributed to the Font Software. PERMISSION & CONDITIONS Permission is hereby granted, free of charge, to any person obtaining a copy of the Font Software, to use, study, copy, merge, embed, modify, redistribute, and sell modified and unmodified copies of the Font Software, subject to the following conditions: 1) Neither the Font Software nor any of its individual components, in Original or Modified Versions, may be sold by itself. 2) Original or Modified Versions of the Font Software may be bundled, redistributed and/or sold with any software, provided that each copy contains the above copyright notice and this license. These can be included either as stand-alone text files, human-readable headers or in the appropriate machine-readable metadata fields within text or binary files as long as those fields can be easily viewed by the user. 3) No Modified Version of the Font Software may use the Reserved Font Name(s) unless explicit written permission is granted by the corresponding Copyright Holder. This restriction only applies to the primary font name as presented to the users. 4) The name(s) of the Copyright Holder(s) or the Author(s) of the Font Software shall not be used to promote, endorse or advertise any Modified Version, except to acknowledge the contribution(s) of the Copyright Holder(s) and the Author(s) or with their explicit written permission. 5) The Font Software, modified or unmodified, in part or in whole, must be distributed entirely under this license, and must not be distributed under any other license. The requirement for fonts to remain under this license does not apply to any document created using the Font Software. TERMINATION This license becomes null and void if any of the above conditions are not met. DISCLAIMER THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.]

EPUB/images/image_091.jpg
free ZEREE

skip ZERRE

udta BrisE

cprt copyright{z &

meta

hdir v

dinf

dref

ipme

EPUB/images/image_067.jpg
E 3¢

B

ast

vst

sst

stats

fast

sync

e - AR ESFRE T R ES%

autoexit

SERERTES

Hiffplay : ffplay2ti) SEIE LR EHENE

exitonkeydown

SEERE TS £ Eifplay

EPUB/images/image_342.jpg
i g i 1
O s b e T s
i i

o
g

cotipen
iy
oot
Py

0 o gt s g 0
iy

ot s

ey

o

o G2t

o

Owlo
R

Pty
T
i g it |

e

P

EPUB/images/image_156.jpg
mpegts_start_pid

REE1PIDITA/L (32~8186 - &
PIDREEEY

FREER Em2AsEXT

mpegts_m2ts_mode

ZREm2AsE - TEETHEREFERERX

muxrate

MPEG-TS#HE 2 =

- OBk

pes_payload_size

£/\PES packet payload37A /) » B3

mpegts_flags

i latm - AACEFLATMIT Z185
i system_b - E&ESystem B (DVB) T3k
AFEEAT © nit - FEHNITE

resend_headers - £ F— 41

pat_pmt_at_frames - e

A (ATSC) : initial_discontinuity » 53

mpegts_copyts

R

MEHEEE
Hauto)

» MIEREFRARATET I8 -

STEEBORS - &

tables_version

SZEPAT - PMT + SDTRINITET4,
—& « BESFTFHHAVFormatContext (FZEEAPI

Z7Z5tables_version{z - Bt

FERP LSRRI - 2EE
ST REFESFFmpegzkSl - 25

EPUB/images/image_059.jpg
time_base BF[EIEET (EEitEtimestamp) |1/1000
bit_rate 200000
max_bit_rate EREER N/A
nb_frames fEL N/A

EPUB/images/image_148.jpg
ES

Video
—*| Encoder —+ES Packetizer o
_.F Multiplexer
Audio
—|
Encoder ES Packetizer
Video
Encoder —+ES Packetizer PEG2TS
Multiplexer
Audio
—
Encoder "FES Packetizer

Program Stream

(gnDVD)
—_—

Transport Stream
(fnovB)

—_—

EPUB/images/image_431.jpg
BELG

B

AVFiterGraph

AVFilterLink

Fi/]*AVFilterCo

APIETE

2S5 E#EI%A - AVFitterLink

ntext - £

EE - 5

AVFilterinOut

AVFilter

AVFilterContext

=

AVFilterPad

S IS ED

T Epad RE—N

“Z3FAVFilterLink

EPUB/images/image_462.jpg
Bob Alice

200 0K (SDP)
ACK

2000K

EPUB/images/image_245.jpg
B8 il k)
window_size BE | FICUERCSUESIAER
extra_window_size | 81 | E3[SUEZSMTIIR TEEEE
min_seg_duration |57 SIS & (HF))
remove_at_exit R
use_template R | EBERIR
use_timeline AR | RER SR ERR
single_file R | REURAEHER
single_file_name | F¥sE | RELIE UESELER
init_seg_name FEE | RER TESTER
media_seg_name |F{FE |ABIIRTHEER

EPUB/images/image_187.jpg
BarChart

Strm 178
228,150

WO W

T ls

Arothart

1 distance
P distonce
B count
ey distance
Koy comt
a1l 1%s by
Stm Picturs Pixels Moadors Statistics
Streos Viewor

oxtomonsy o 5610 (user_datn unregistered)
oxtooooze [e benter (1, 1k
Oxtongereg [stice beoder (7
oxtonacans [shice beoder (81
oxtonacror o stice beader (8
outomarre o stice beader (8
ontomarse o stice beader (P
oxtomoasas o slice beader (B

wooonadon [sice_heoder | B

it ollocation; sumnt (6 ¢ 28); metric

& x

Overlay

Predictad

8 x| putrer
& e

tnfiltersd

Detinec

scale:

010385

Residoal

st0(es)

00 10:965

EPUB/images/image_373.jpg
av_packet alloc ——Gvcadec find décoder }—»Gv peiser it

aveodec_open2

aveodec_alloc_context3

(av_frame_alloc |————{ av_parser_parse2 |———{ avcodec_send_packet |

T =

(‘aveodee_free_context Ja—{ av_get bytes. per sample)-— aveodec._receive_frame |

[]

(‘av_parser_close 4.(aumme_r.ee }—.(av _packet_free |

EPUB/images/image_334.jpg
list_standards | 2557 Tl

timestamps | 5557 EERER

g e (R AEY

uselibvdl2 | FET

FiF

FE=5Elbv4l2

EPUB/images/image_020.jpg

EPUB/images/image_229.jpg
Processes: 325 total, 65 running, 7 stuck, 253 sleeping, 1967 threads
23:05:12 Load Avg: 138.07, 88.31, 52.35

CPU usage: 78.28% user, 17.71% sys, 4.0% idle

SharedLibs: 145M resident, 21M data, 10M linkedit.

MemRegions: 83757 total, 1713M resident, 60M private, 1158M shared.
PhysMem: 8108M used (2679M wired), 82M unused.

VM: 905G vsize, 533M framework vsize, 710388(@) swapins, 1152611(0) swap
Networks: packets: 1798911/1503M in, 1894665/341M out.

Disks: 3680567/72G read, 2501962/74G written.

PID COMMAND %CPU TIME #TH #WQ #POR MEM PURG CMPR PGRP
96322 ffmpeg 481.1 28:09.93 18/7 @ 29 90M ©B 40M 96322

EPUB/images/image_381.jpg
APl

k]

av_buffer_pool_init

4 {E—-AVBUff

av_buffer_pool_init2

T4 EAVBUffert

av_buffer_pool_uninit

BIAVBuffert - EREEFERLUE

av_buffer_pool_get

4+EE—/F78IAVBuUffer - FEAVBuffer;z EEES!

JAVBuffer

av_buffer_pool_buffer_get_opaque

ZigAVBuffer; = E S ECAVBuffersy EifopaqueZ £t

EPUB/images/image_284.jpg
output.mp4

o
2022-07-06 14-25-01

EPUB/images/image_326.jpg

EPUB/images/image_012.jpg
235

EPUB/images/image_407.jpg
101 | gblur

102 |geq

103 | gradfun

104 | graphmonitor

105 | grayworld

106 | greyedge

107 | guided

108 | haldclut REHaldCLUT
109 | hflip #FE
110 | histeq

111 | histogram

EPUB/images/image_423.jpg
283 |allyw

284 | cellauto

285 |color

286 | colorspectrum

287 |coreimagesrc | == Corelmage APIfE>
288 | gradients B

289 | haldclutsre —videntity HaldCLUT
200 |iife PSR

291 |mandelbrot — i *Mandelbrot7
292 |nullsre b

293 |pal7bars LFPAL T5%T a5

EPUB/images/image_276.jpg
cosh(x) HEXETT AL

atan2(x, y) | HELF(Y)IIESERED

bitand(x, y) | HEXY)EZIS

bitor(x, y)

exp(x) THEXETIEEE -

gauss(x)

ged(x, y)

hypot(x, y) ELITRTS(K VEIRSETESR

st(var

expray{EE Livar:

expr)

Favardy NS = E

Id(var) REEASEERFE

EPUB/images/image_179.jpg
e o O o e e

10 |4:2:2 | predictive
7P R = = z B B B B
= = 2 |B B B B
SIRISPSE & =3 ' | |B |B B
Ecat = = z B B B B
= = z B B B B
= = z B B B B
= = z B B B B
Flexible Macroblock Ordering (FMO) | & £ = |z |5 |5 |=
Abitrary Slice Ordering (ASO) = = = |2 |2 |7 |

EPUB/images/image_253.jpg
sl

aud

-
278

sample_aspect_ratio

overscan_appropriate_flag

video_format

video_full_range_flag

colour_primaries

transfer_characteristics

matrix_coefficients

EPUB/images/image_454.jpg
e
- i —— i
- i i
i : e =
T | | i
o e : ! I | 1
L P ST i
7 o li i R
v dump_format i i i i
— | [T Fevezeeeer [
I | | P |
| |] i
|
FreTe e [pepep— g
e | |) = I i
T i2 | i
v I eoaprp— | | I S wam
e e ‘ :
i k2] 1
RS o) H g
T T i ECLTETY T
SRR AR LT | T -
¥) L e | R
ot |
n ! I
| P
H T
[e
e !

EPUB/images/image_350.jpg
CONTRIBUTING.md LICENSE.md
COPYING.GPLv2 MAINTAINERS
COPYING.GPLv3 Makefile
COPYING.LGPLv2.1 README.md
COPYING.LGPLv3 RELEASE

CREDITS compat
Changelog configure
INSTALL.md doc

ffbuild
fftools
Libavcodec
libavdevice
Libavfilter
Libavformat
libavutil
1ibpostproc

libswresample
libswscale
presets
tests

tools

EPUB/images/image_438.jpg
(7

. 4

HILETX

7/ A K

sws._getContext

7/ RANS

»f

i

sws scale

#HRLETX
sws_freeContext

EPUB/images/image_357.jpg
aviormat_alloc_output_context2
aveodec_copy_context

avfomat_find_stream_info

av_interleaved_write_frame
avformat_close_input | - (avformat write_trailer

EPUB/images/image_075.jpg
B8

B

pf

bf

bb

EPUB/images/image_172.jpg
HeAF

R%
2 T & Q casAC
‘liéﬁlﬂ!
P i
L8 T L i
ﬁ“_’ edfe
i
Hitfesk
m o
Qs T
DPB t s
m— o ﬁ{ﬁfrf SAOZH(

EPUB/images/image_019.jpg
Un Uiz
051U

Us; Usp

Usr Usz

EPUB/images/image_044.jpg
(or (o v }—{)

[tmp] [flip]

EPUB/images/image_205.jpg
forced-idr |#T

b_adapt | %R

zerolatency | /5

nonref_p | #/R

cq 24

aud R

EPUB/images/image_036.jpg
ks ae| g Eat
wEE| ags A M| AT EE| B EetE LS
= B g |2 | e TR | g We e B s
—
BEEE 1.0 x T x » x x x x
- -
STk 20 v |x |x % % 8 % |%
L]
IR 3.0 v v o x -] x x x
- -
mgEE (30 |/ |x |x % % % solx
-
- -
mEETEE |40 v x|« . . # o
—a
- -
. ® | MifrrusE 4.0 v x x x s e x x

EPUB/images/image_222.jpg
7 100 80~120 -qa’
v8 85 70~105 -gas
9 65 45~85 -ga9

EPUB/images/image_397.jpg
n

&R

fER

abuffersink

anullsink

EAiigiit

EPUB/images/image_028.jpg
08

0.6

0.4

0.2

RTOUS 2.2

08

08

04

02

MBRE 1/22

02

04

06

08

b)

EPUB/images/image_389.jpg
55 |asegment
56 |aselect

57 |asendemd

58 |asetnsamples

59 |asetpts EAHEIREPTS

60 |asefrate TEUEPCMEGE - MiSZIRMS

61 |asetth

62 |ashowinfo ~pts ~
63 |asidedata i1 £ aTside data

64 |asoftclip

65 |aspectralstats

EPUB/images/image_132.jpg
frag_duration

1 F &&Tduration

min_frag_duration TEEE 15 F/)\&Jduration

frag_size it —2-7¢ HIH J|ABIAN
ism_lookahead EEE FEEUSMIT{$a951E
video_track_timescale | 2557 ETER
brand == Zmajor brand

use_editlist Fofral FEeditlist

fragment_index it -=2-7¢ T—H

mov_gamma 0~10 gama boxijgamma(z

EPUB/images/image_311.jpg
input 0

input 2

input 1

stream 0

stream 0

input 4

stream 0

z]

stream 0

output 0

EPUB/images/image_041.png

EPUB/images/image_109.jpg
FB|REST|

AbOXETA/N

mdia

EPUB/images/image_140.jpg
RAVR/AN

%2 FEHEE

RPN (H.2645EF » T Liseekayi)

2: HPBH (H.264(5 + K olLlseeksTi)

255 (FrameType) 4Afr
3 {[UmAETFH.263
4 S (REBRER)
5 WA= RS
CodecZRIE I »
2 : Sorenson H.263 (F&/))
3 : Screen Video (E/8/))

%35 (CodecID) 4r 4:0n2VP6 ({E/RE)

5 : ZAlphaiZiZ470n2 VP6 (EFE)
6 : Screen Video 2 (B%&/)

7:H284 (BERIERE

EPUB/images/image_051.jpg
bufsize

=21

keyint_min

=2

sc_threshold

me_threshold

mb_threshold E-27¢ BEERBE - B0

profile =24 EEEWHAprofile - 2

level 2274 BEZWMLlevel » B

timecode_frame_start | £557 EEGoPHigyF #4875 - E=7Enon-drop-frameZti g R FER
channel_layout =i BEE

threads

=2

EEREBTFIIEEN

EPUB/images/image_303.jpg
out

st
74

aybg :

aybh : ;

aybe ©

aybd

mi:

mr:

RFFHET—T)

i

| EEFET)

EPUB/images/image_117.jpg
FB | REIFT &
R |4 0x00000010
274 smhd
iz] 0x00

3 0x000000
|2 0x0000

2 0x0000

EPUB/images/image_098.jpg
FB il
R~ 0x0000006¢
mvhd
e 0x00
R 0x000000
B 18] 0x00000000
fgiTadiE 0x00000000

timescale

0x000003e8 (1000)

duration

0x00002716 (10006)

EPUB/images/image_318.jpg

EPUB/images/image_237.jpg
B8 il k)
seekable FR TP Z A =T LU{TseekiR(E
chunked_post b EEchunkedi#=: (£
http_proxy FRE
headers S7EXHTTP Headerfi2

content_type

SHETASERE

user_agent

HTTPERE 18

multiple_requests

post_data
cookies FreE +7257Cookies
icy® R

EPUB/images/image_004.jpg

EPUB/images/image_365.jpg
av_packet_make_refcounted

EFTEAVPacketaIdatais

FITHIETbUIE - X

av_packet_make_writable

JZAVPacketEa7buf:;

av_packet_rescale_ts

JZAVPacketaJpts - dts - duration=;

RiSFTAVEIEE

EPUB/images/image_292.jpg

EPUB/images/image_164.jpg
http_user_agent FHE HTTP

var_stream_map

cc_stream_map

“IClosed Captionsi="Eks:

hitp_persistent FreE EAHTTPEEEER - HELE B EHTTPEEES -
REHLSSHEREN THEFIEMISE - TESFIINET - SEASEAEIFIE (Mulivariant
master_pl_name e

Playlist) /& 1% (Master Playlist)

EPUB/images/image_188.jpg
i Bitrate Viewer - D:\Sources\FFmpeg_book_new\video\output-cbr.ts

Max.
10000

@

MPEGS
Q)

5000

0

MIN = 3740 kbps MAX = 6374kbps AVG = 5000 kbps FRAMES = 3614

1920 1080, NTSC 23.976 fps (92,798 M)

x
00:02:30:734
5000 kbps:

| 6374kbps
00:01:05:065
5802 kbps ©

(= =

EPUB/images/image_463.jpg
RE—MME?

marker == |

EPUB/images/image_102.jpg
ZmEdlE |48 |Movie boxa ket [E] - 6T [E121904-1-1 0:00 AM
iZiT551E |4/8 | Movie boxaTiEiTaE] - ZEE (E£1904-1-1 0:00 AM
trackiD 4 TS igtrackay—NES(E
4 ZEHO
duration |4/8 trak&gduration » FEEEATE EET » Straksvedts listyad [FERIIRE » SHTETEIBLITE » B FIT tracke B HTeT 2 =B
FEHLS+ MP4iZET » EXXNZER
RE 8 £
layer 2 WA= 70 » {E/NIYEE b

EPUB/images/image_341.jpg

EPUB/images/image_066.jpg

EPUB/images/image_299.jpg
B

EPUB/images/image_213.jpg
max_ap_i 274 KQPIEZE
min_qp_i =38 1=/ NQPIEE
max_gp_p =234 PHiZAQPIEE
min_qp_p PifiE/NQPFR
max_ap_b 28
min_op_b 5 |BUIEIQPEE
g SEIERSE - XEAH R RS Z2unknown - displayremoting
scenario 5% |videoconference - archive - livestreaming + cameracapture - videosurveillance + gamestreaming
remotegaming
idr_interval IDREAERE (GoP Size)
cavic EEFECAVLC

single_sei_nal_unit

EPUB/images/image_083.jpg
AEHAFH 8T
AN

£

L AR

EPUB/images/image_269.jpg
136 units total
Pos NALType o size

3:5: DR - Codod slico of an DR pcturo o 23200
: 1: non-IDR - Coded sice of non-IDR picture 0 1563
5:%:non-IDR - Coded sice of anon-iDRpictwe 0 13832
6: 1:non-IDR - Coded sice o a nan-IDR piture. o 1a3e
7:%:non-IOR - Coded slice of anon-IDR pictwre 0 13206
8: 1:non-IDR - Coded sice of a non-IDR picture. 0 13200

o oron Cocedsice st v on pore o 13377

1315... 12: 1: non-IDR - Coded sice o a non-IDR piture. o iss
144.. 13:%:non-iOR - Coded slice of anon-iDR pictwre 0 13240
14: 1: non-IDR - Coded sice o a non-IDR picture. 0 12020
(15:1:n0n-IDR - Coded slice of anon-IDR picture 0 12846
183~ 16: 1 non-IDR - Coded slce of a non-IDR picture. o 1z2s
(17:%:non-IDR - Coded sice of anon-IDRpicture 0 13237
18: 1: non-IDR - Coded siice of 3 non-IDR picture 0 13208
19:1:non-IDR - Coded sice of anon-DRpicture 0 13182
20: 1:non-IDR - Coded sice of 2 non-IDR picture 0 _i3a85.
21:1:non-IDR - Coded slice of anon-IDR picture 0 13250
22: 1 non-I0R - Coded slce of non-IDR picture 013568
23:%:non-IDR- Coded sice of anon-DRpictwre 0 13277
26 1 non-1DR - Coded slce of anon-IDR picture. 013544

‘"

B

i

i

Nofiter . Extract selected units

NAL SPS PPS Sice SEI MB QM Reflists Stats HRD

EPUB/images/image_074.jpg
vismv pf

EPUB/images/image_447.jpg
B~

EPUB/images/image_147.jpg
Couputfvy T S R — T ek

56) mo)

e RV (3 s
Verion: 1 (3 bye)
eFogmResre (5 bis
Tieragehodo 1 (160

Trefaper0 (160 i
Toerogides 1 (b4 EE

Drfaraodacse)$ (3) i

PrevouTagsasiners 010 :

serpeTog i ;

Tog Hender i i

et 2 g s
ity
o 2016000 e
e 28205000
P 7140000 s
s, 3500000 i i
—)
160500

[y —
cder ST E6A01
e, 718170000
hoides 1

Wsiae GOSSIS 0000

EPUB/images/image_460.png

EPUB/images/image_374.jpg
(aveodec_find_encoder }—b(avcodeciallocicomexl! }——»{ aveodec_open? |

(‘av_frame ic‘,bufrex)-—{ av,ﬁame,auoc)-—{ av_packet_alloc |

av_frame_make_writable aveodec_send_frame

aveodec_receive_packet av_frame_free |

aveodec_free_context

EPUB/images/image_110.jpg
FB | KEFT i3
R~ 4 4box
4 mdhd
B 1 XAbOXEEE A
FE 3 XEH0
EmetiE |4 Movie boxgJRE#4a7 (5] - £ &7 (5121904-1-1 0:00 AM
&iTEdE |4 Movie box#fZiTe7 (8] - Z &8T5 1904-1-1 0:00 AM
timescale |4 fir » TS MrackTI L& £454 timescale
duration |4
EE 2
2 BENERRE

EPUB/images/image_139.jpg
FB EEIAN k)
2% (Reserved) 2fr
e
8 (0x08) : BHTAG
TAGZE! (TagType) Sfir 9 (0x09)
18 (0x12) : EIEEHE (ScriptData - FlziMetadata)
#d24/) (DataSize) 2411 TAGETDataZ3 53374/
& [E]) 2477 ==37[2/0x000000
4 EEFEE (TimestampExtended) | 8% By #h FEET |
2487 —E80

TAGEIData (Data)

£5E - TTa£startcode

EPUB/images/image_422.jpg
weave,

e

273 |xbr R R EXBREUA
274 |xcorrelate

275 |xfade

276 | xmedian ENATRA TR P rEE
277 | xstack

278 | yadif R

279 | yaepblur

280 | zoompan

281 |zscale =

282 |alirgb L£FFERGBHE

EPUB/images/image_099.jpg
0x00010000 (1.0)

EUREE 0x0100 (1.0)

RE 0x00 00 00 00 00 00 00 00 00 00

0x00010000,0,0,0,0x00010000,0,0,0,0x40000000

TEXE | 2440x00

“F—Mrack ID| 0x00000003

EPUB/images/image_285.jpg
...

)
FEF UL

EPUB/images/image_325.jpg
s &9 :

EPUB/images/image_196.jpg
Full-

Feature D/E D/E/Es D/E/Es D/E D/E/Es D/Es D
HEVC 10bit
Free- D/E D/E D/E D/E D/E D D
Kernel
Full-
HEVC 10bit Feature D/E D/Es D/Es D D/Es
422 Hee D D D D
Kernel
Full-
HEVC 10bit Feature D/E D/E D/E D/E D/E
444 Free- D/E D/E D/E D/E D/E
Kernel
Full-
Feature D D/Es D/Es
HEVC 12bit
Free- D D D

Kernel

EPUB/images/image_236.jpg
BE

video :
allowed_media_types | #7352 | audio :
data : REEUTEEE
subtitle : REFLIFH
min_port S5 [EES/A#UDPEED -
max_port £ | RESALHUDPED -
listen_timeout £ | BESALTENE (B ABTERE (-12TRET)
timeout £
reorder_queue_size |Z£:7
buffer_size =278

user-agent

EPUB/images/image_090.jpg
tthd

tracksrH 3k

trun tracks3 5 runiz £
sdtp FEITFIEI SRR SRR
sbgp RiE4

subs

mfra

tfra

tracks £ 518

mfro

B R BEERIREE

mdat

EPUB/images/image_414.jpg
181 | premutiply EBEVFIEVT {FalphaTise
182 | prewitt prewittEF

183 |psnr AR

184 | pullup =5

185 |ap

186 | random

187 |readeiag08

188 | readvitc

189 | reattime

190 | remap FEYEIERE - EEX - YREEER
191 | removelogo FLogo

192 | repeatfields (= BIFES L EFarepeat_field - 225

EPUB/images/image_068.jpg
exitonmousedown

LERTERESET LB play

loop BESEESEFRI

framedrop

infouf R R
vf

acodec

veodec BRIEREBNAEDSR

scodec BRI R

EPUB/images/image_343.jpg

EPUB/images/image_246.jpg
B8 2E BB
window_size S5 | REHDSUSFIZI S AT

extra_window_size | 857

min_frag_duration | £

remove_at_exit | T

EPUB/images/image_173.jpg
S Bl Y

preset

tune

profile

fastfirstpass

level =
passlogfile FEE
wpredp

a53cc

x2640pts

EPUB/images/image_437.jpg
APIZEOI%

SHEEE

av_dict_count

av_dict_parse_string

av_dict_free

av_dict_copy

av_dict_get_string

+ Ekey=value:

=

S

=

Svalue

av_dict_set_int

EEdictzEEY

EPUB/images/image_270.jpg
16 units total
Pos NALType

5:IDR - Coded slice of an IDR picture

7:.5P5 - Sequence parameter set
PPS - Picture parameter set

:5:10R - Coded sice of an IDR picture

824.. - 10:7:SPS - Sequence parameter set
824 11:8: PPS - Picture parameter set
824 12:5:1DR - Coded sice of an IDR picture

Nofiter N

0 size
0 23200
o 28
0 1
o ssa1
o 28
0 1
0 30312

Extract selected unit

NAL SPS PPS Slice SEl MB QM RefLists Stats

HRD

EPUB/images/image_309.jpg
mono.

output 0

EPUB/images/image_013.jpg
-04 -03 -02 -01 +01 +02 +03 +04
-01

EPUB/images/image_380.jpg
APIZ

B

av_buffer_alloc

ERIEEA/ETUferAE

av_buffer_allocz

av_buffer_create

=3&bufferiiE

av_buffer_default_free

—Mree®(E » LT HfreeEl]

E57 (F Hav_buffer_ default_free{%:

av_buffer_ref

av_buffer_unref

5buffersIZ |8 -

av_buffer_is_writable

Eigbuffers T -

av_buffer_get_ref_count

FiSbufferit 2

av_buffer_make_writable

uffel

av_buffer_realloc

EFEELTbufferE;

av_buffer_replace

FiEbufferE= EaTbuffer

EPUB/images/image_408.jpg
112

hadn3d

113 | hwupload_cuda |CUDAL
114 | hax

115 | hstack

116 | hsvhold

117 | hstack

118 |hue

119 | huesaturation
120 | hwdownload
121 | hysteresis
122 | identity

123 |idet

EPUB/images/image_221.jpg
LAMERS %

lame 2 fE 5% | FHIRR/Kbit/s | BRI [E/Kbitls | FFmpegifE 535
320 320 320 (CBR) |-b:a 320k

Vo 245 220~260 a0

V1 225 190~250 qat

v2 190 170~210 qa2

v3 175 150~195 qa3

V4 165 140~185 qad

V5 130 120~150 qas

V6 115 100~130 qab

EPUB/images/image_124.jpg
mooy

EPUB/images/image_252.jpg
U eats “[_Property name Property value
+ b mda type aveC
L mana size 12
o srart 1166512
* B it Jconfigurationversion 1
;""‘"" [AVCProfilelndication 100
g rofile_compatibiticy
. e [WeLevellndication 31
Lengihsizelinusne 3
< ssd
nb_SPS_nalus !
< b ava
s [object Object]
U avee
b_PPS_nalus 1
Ueor - -
— [object Object]
ext 253,218, 248,0

EPUB/images/image_358.jpg
AVIOContext

AVFormatContext

[Fbutrer: unsigned char *
+burrer size: int
+buf_ptr: unsigned char =

[+buf_end: unsigned char =
[+buf ptr_max: unsigned char
—{+opague: void *

+airect: 1nt

+pos: intea_t

+eof_reached: int
+urite_fiag: int

+nax_packet size: nt
rerror: int
+nin_packet_size: int
+seekabie: int
e —
[~read_packet(): Callback
+urite packet(): Callback
[+seek(): catiback

+update cnecksun(): Callback
£ 0

— JURiProtocol

[“ifornat: AVInputFormat ©
[+ofornat: AvoutputFormat

+priv_data: void * = MOVContext, MOVMuxContext
+pb: AvIOContext =

[+streans: AvStrean ++

+prograns: AvProgram +*

+metadata: AVDictionary *
[+snterrupt_caltback: AvIOInterruptcs
+1internal: AVFornatinternal *

[+priv_data: void +

+video_codec: AVCodec *

+opaque: votd

[+10_open(): Caliback
+10 close():_cattack

rdetault whitetst

Furt_open()
+urt_open2()
[rurt_accept()
[+urthanashake()

ol read()
urtwrite()
rurt_seek()

[+url ctose()
+url”read_pause()
[+urtread_seek()

urt get_Tile handle()
+urt_get nulti_fite handte(
[+urlget short seek()
[+urt shutdoun ()
+urtcheck()

Kby

char +

URLProtocol ~ URLContext
[hame: char + [Forot: URLProtocol
|+priv_data_size: int +priv_data: voia *
+riags: int +ritenane: char =

[+max_packet_size:
115 streamed: int
+15” connected: int
+nin_packet_size:
[+rw_tineout: inted t

[+interrupt cattback(): AVIOInterruptq

int

int

urt_protocots(]|
profocol_List.

1 [eurtctosen
T e

s> ff_file_protocol l
V [rraner crar = = vite
1 [+priv data size: 1nt = sizeof(Filecontextp>——| FileContdxt
1 [frags: e
. rar int
i fiserine nsteusst: enar R
! [iteopenn: urt_open [btockssze] sat]
! [openay fotton: ink
ot accept () seekabte: fnt
1 [t hansshake Lair: o
rurtreas()
1 [Lnceriten
1 [eurtseek()
1 [anccsen
o
'
'
I
s f_tcp_protocol
h
N [+name: char tep’ Y
| [*priviata size: 1nt - sizeot (Tcpcontextfe>——— TCPContext
1 [trags: ant o int
| [fderautt whitetsst: char R
1 [Fecpopeny: urt_open open tineout: tnt
1 [rurt-openz() v tiseout: int
1 [uncaccestn recy. butter_size: int
1 [nanasnakeqs send butter size: int
1 Jurtreaso tcp.rodetay: int
1 furcuriten tcp mss: int
rurtseek()

EPUB/images/image_078.png

EPUB/images/image_108.jpg
duration 4 0x00002716 (10006)
=3 8 0x00 00 00 00 00 00 00 00
layer 2 0x0000
alternate group | 2 0x0001
EE 2 0x0100
2E 2 0x0000
00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00
36 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00
40 00 00 00
wE 4 0x00000000 (00.00) : fE5EE » Y FAudio » FEFI
BE 4 0x00000000 (00.00)

EPUB/images/cover.jpg
i B

CRNER
— FFmpeg

ok B E HEE BXAN REBA &

RES =
FFmpeg. SRS #l FreeSWITCH SEBkFF &% ERATEE, BEEWMER AR
BREE, TIHRERER, SRLRE FFmpegS ¥R 4. APIfE . AR A9 FF
REFEFFHE, RIEIEFARIET PRI S R RH, 8

BhiEE RN FFmMpeg,

‘*[ﬁﬂgmnﬁm Al

EPUB/images/image_465.png

EPUB/images/image_141.jpg
H.26457512530
(AVCPacketType)

ZLiCodec yH.2642 57 S8 (1

=%)

LH.264R B EEFLVS - BELIT322H 26487502

0 : H.26457Sequence Header
1:NALU (H.264 =Rt EEEE7)

2 : H.26487Sequence End

CTS (CompositionTime)

B o FE 24

CTSETHRPTSHIDTSY [E&VE(E - ZHRBEEBY - NIDTS
FIPTSFIEE

ITEE

RS AIAR

EPUB/images/image_214.jpg
i

max_dec_frame_buffering | 557 | DPBEAZE:

look_ahead FEVBRE £8T Hlookaheadi# =,

look_ahead_depth £

q

W
il
3
g
g
g
z
z
3
0
E:
o
i
ot
k!
!
g
g
g
z
g
g
2

look_ahead_downsampling

int_ref_type =5
int_ref_cycle_size 54
int_ref_qp_delta =234
profile 551 | &=BEorofile : ZiFbaseline - main « high
o3
none : RIS AR
load_plugin 28

heve_sw : H.265%

=
s

heve_hw : H.26

load_plugins iRt Rt AERE

EPUB/images/image_396.jpg
E20

fER

abuffer | LIEFFIE=E

aevalsre | fRIEFEELTE

anulisrc

fite

anoisesrc |7

sine Y 1/BEIE— T

EPUB/images/image_125.jpg
coni Va1 oo oot
oo Vew Noiguion Took Wep
RIOEICENCICICI S NORCICICICIEC sciccard @

i

wuedi .. L ,
9 o) B) i Caln)

e et [avean 3 detor: 0 e 50090550 03055360 | AT OO [

EPUB/images/image_052.jpg
FB B
codec_type |HEEZE - FIHITA
stream_index | & &S]

pts SEAFERE EE

pts_time

dts SEEEDHEE

dts_time S EEELHEE TR ERER

EPUB/images/image_469.jpg
B | BT B
quiet |-8

panic |0

fatal |8

error |16

warning | 24

info |32

verbose | 40

debug |48

trace |56 |EmR—i]

EPUB/images/image_400.jpg
21 | chromanr
22 |ciescope CIEF&®
23 | codecview

24 | colorbalance

25 |colorcontrast

27 |colorcorrect 5FERE

28 |colorize

29 | colorkey

30 |colorhold

31 |colorlevels

32 |colorchannelmixer |3

33

colormatrix

EPUB/images/image_220.jpg
S8 il L)

joint_stereo

abr

compression_level | £

a £

cutoff (—lowpass) |23

reservoir st BB - SRELEEMRD)

EPUB/images/image_118.jpg
FB | KEFT #

E

7/
o
IS

4 dref
2 1 XANDOXATHTA
R 3

£EZE |4 data reference (3325%) 87512

— = data referencezr

ZSEEET

R+ 4 EAbOXET =TT

EPUB/images/image_131.jpg
moov_size i34 EEMOOVEEHTZ AN
BERTPEHHRAIRIE

latm EEMPAA-LATMSZ F3AACE AT

rfc2190 EFERFC21905%;H.264 - H.263
rtpflags

skip_rtcp REEEERTCP

h264_mode0 EERTPEmode0s7H264

send_bye RTCPEIBYES
skip_iods Fitaei) FE Aiodsz2:
iods_audio_profile 0~255 & EiodsiE Hiprofile 522
iods_video_profile 0~255 fods&77 Hiprofile 522

EPUB/images/image_304.jpg

EPUB/images/image_089.jpg
sgpd

subs

mvex T ETE
mehd MR BEHEL
trex tracki =
ipmc IPMPiz2IZ522
moof WA
mfhd WRTH %
traf tracksr 5

EPUB/images/image_364.jpg
av_packet_new_side_data

Fr=igside_dataiz iEEIAVPacketE

av_packet_get_side_data

2P EETside_dataZZI3E/EAVPacketiTside_datagiE

av_packet_side_data_name

= EaTside_data

“£AVPacketz7side_data

av_packet_pack_dictionary

#ZAVDictionary7= £ E]AVPacketsTside_dataZ

av_packet_unpack_dictionary

Tside_dataF=2IAVDictionary£7#;

35IAVDictionary=

av_packet_copy_props

\VPacket 5] EI£Z] 5 FFAVPacket E + SiSside_data - [ERT Z2data

av_packet_unref

FE5TAVPacketaside_data - bufER7TE » ElET: 15088 - FEEFTREAVPacke

av_packet_ref

\VPacketE £
T S #FAVPacket=:

| S $5AVPacketE - Eisside_datatidata - S5h - 1
SIFE » ENEREN

AVPacketEEz3 | Ei

w2,
?,

av_packet_clone

| JEAVPacketE%: FTEIAVPacket

Fav_packet_ref

av_packet_move_ref

AVPacketi$z1Z] S8JAVPacket

EPUB/images/image_029.jpg

EPUB/images/image_178.jpg

EPUB/images/image_453.jpg
T SDL_OpenAudioDevicd) SDL_AudioSpec SDL_PauscAudioDevice
FTIFE S O RO A, AT I E AR JFUR P &

PRI R R

EPUB/images/image_415.jpg
193 | reverse
194 | rgbashift RGBAEES
195 | roberts

196 | rotate

197 | removegrain

198 |sab

199 |scale

200 |scale_npp

201 |scale2ref

202 |scdet

203 |scharr

EPUB/images/image_080.png

EPUB/images/image_432.jpg
AVFilterCommand

buffersrc

% B ERIIFERR LS
(Tav_butfersre_add_frame) TLUTEEE

BIMETEETLE S (S8 © time_base @r‘f&

EEERES - AuioRiFE=E)

buffersink

EPUB/images/image_157.jpg
omit_video_pes_length

R

EEMEIEGMIPESEIEEEE
LIZEEEE - RELPESEITE

Z S

- PESEEG K EHREN

» RRPESHIEE T

| Ftrue

ES

L1E%) (milisecond)

: EHREPCRIER

per_period ‘ e
202 - VBREEE I : [EZET100=F)
pat_period
BSfE
sdt_period

nit_period

EPUB/images/image_195.jpg
Full-

Feature D* D D/Es D/Es D D
VP8

Free- D~ D D D

Kernel

Full-

Feature D/E D/E/Es D/E/Es D/E D/E/Es D/Es D/Es D/Es
HEVC 8bit

e D/E D/E D/E D/E D/E D D D

Kernel

Full-

Feature D/E D/Es D/Es D D/Es
HEVC 8bit 422

Free- D D D D

Kernel

Full-

Feature D/E D/E D/E D/E D/E
HEVC 8bit 444

e D/E D/E D/E D/E D/E

Kernel

EPUB/images/image_084.jpg
Y Al
A

size | type

Lo

EPUB/images/image_268.jpg
© Semve oo,
261 units total

76220 6 1:on DR - Coded sceof apon-1DR picture

54918~ 9: 9: AUD - Access unit delimiter

10: 1: non-IDR - Coded slce of a non-IDR piture.

823 13: 9: AUD - Access unitdolimier
52372 14: 1 non-IDR - Coded iice of 3 non-IDR picture

109.0 17:9: AUD - Access unit delmiter
109 18:1: non-IDR - Coded slce of anon-IDR piture.

1370.. 21 9: AUD - Access unitdelimiter
1370.. 22:: non-IDR - Coded sice of 2 non-IDR picture

1641... - 25:9: AUD - Access unit delimiter

Nofiter < Exract selcted units

NAL SPS PPS Sice SEIMB QM Reflists Stats HRD

EPUB/images/image_291.jpg
outputfiv

EPUB/images/image_379.jpg
av_frame_copy_props

av_frame_get_plane_buffer

av_frame_new_side_data

5iE—/EAside_data

+ E#side_dataizZ/AVFrame *

thav frane new side dsta from butdS—/ AVBUTferRelIESE

av_frame_new_side_data_from_buf

AVFrame&Jside_data3T 25

#Fr47side_data

av_frame_get_side_data

Y AVFrame=i%Eiside_datalE 5 - & EGRES:

{EZRIEE side_data-tZEUEES

av_frame_remove_side_data

IAVFrame s H{E#E E2£ ZaTside_data

av_frame_side_data_name

EPUB/images/image_231.jpg
Haw

3

rtmp:/127.0.0.1/telvue-rtmp/fmle

Lt

758 o734

EPUB/images/image_319.jpg
& e

FRAME_RATE | IRIBIIEZ R EIIER(E - RATEENE

PTS 0 A\EptsaT [E1EL

RTCTIME EARTCETE E{E AR E8: (BUSEA)

B WA EIATE EE

EPUB/images/image_180.jpg
Redundant Slices (RS) 2 £ s |8 |8 |8 |&
FESE = = 5 |5 |5 |5 |=&
Interlaced Coding (PICAFF - MBAFF) | Z 2 2 |2 |2 |2 |2
4:2:0 Chromata=,, = =z 2 (B 2B |B
4:0:0 Chromat&=% = = TR |R R B
4:2:2 Chromafg= = g g (B |B |B B
4:4:4 Chromatg=t = = g & |B |

fr i = = 2 (B B B |B
9 10irFHE = g T B BB B
N~ 14 RiF = = = |5 | |B |®

EPUB/images/image_035.jpg

EPUB/images/image_310.jpg
input 0

mono

input 1

stream 0

mono

output 0

EPUB/images/image_163.jpg
his_subtitie_path

single_file : £R—MNEATHRIISFTHIE

delete_segments : BIEMIUBIT{E SR £ 4T #ITTSYIR S04

his_flags
round_durations : £ 5Z&IM3UBETE {
discont_start : £5tM3U85:
omit_endlist : ZEM3USREF:

stritime

stritime_mkdir

his_playlist_type

method

EPUB/images/image_189.jpg
WEAF ARG

Under
TR L0 iR

the Hood

B
_ . .

Microsoft
RISV

. HV

WG/ e RSB

Pk b

it
14 >
HEY
BA
FiiR A REFGPU
Webcam ——— B AR B I

EPUB/images/image_018.jpg
Uiz Uiy Uz

EPUB/images/image_103.jpg
alternate

track s 0 » FFistrackk S E ftrtrack 552
group
=8 2 EittracksTEE - 1.0V EEEE
RE 2 E770
36 ZRERERE ST ttrack RPN RZE [ERYB SR %
wE 4 WEZtrack:
BE ! = ZtrackEVideo track - FHENERIEE (16162 557)

EPUB/images/image_014.jpg

EPUB/images/image_146.jpg
s 0
reg: 71400
s 25160
e 200

ncodatee: 12485

sRERTOReRD:
e esie o, el

SR EAREE

000000000,
0000001
0:00000020;

000000040

0<00000070;
0000000
<0000

0000001 1
000000120
0000001 3

0000001 7

3
B
b
i
&
I
i
]
&
o
o
0
7
0
n
7
6
)
o
o
3
7
6
&
I
]
i
8
I
o
2]
i
I
0
3

56
o
6

I
7
I
6
o
©
I
o
5
0
o
i
7
8

o
o
&
3

8
7
B

7
5
7
€
5
i
8
o
3
o

o
o
7
B
I3
I
I
0
3
B
8

Bl
70
o
I
8
6
I3
o0
o

7
0
3
5
7
8
I
51

54

5
o
s
"
7

0o
o
0
2
o
8
7
0
o
6
o
0
6
81
0
o
2
7
3
8
7
8
3%
o
I
I
I
oc
o
0
o
I3
i
El
u

0
w
0

0
50
6

5
I
I
&
0
7
&
I
o
o
b

7
o
w
o
%
59
o
7
o
&
&

]
5
&

o
o
ic
c
o
o
7
7
o
o
5

o
5
o
o
8

o
B
5
3
o
4
31

o
o
o
B
B
o
o
a
0
0
)

0
o
o
I
)
6
o
ic
7
oF
o
73
o
7
0
6
i
70
0
I
1
o
o
o
ol
6
7
0
o
13
85
15
4

0
I3
o
sc
o
w
7
0
oc
o
6

6

o
51

o
&
i
I3
3
6

&
i
3

rl
I
0
7
55
6

7
I
€6
I
ic
n

0
€
4
2
o
w
8
5
7%
o
7
7
€7
0
0
&
w
o
7
14
3
0
w
0
ac
w
)
I
n
&
o
7
u
&

i

i
)
75
o
o
o
o
7
5
o
8
6
i
7
o
o
o
0
73
5
o
o
0
o
6
6
5
85
5
64
o
o
Bl
7
&

0
&
7
05
0%
o
g
)

6
I
7
8
I
5
%
8
o
I
8
I3
0
o
&
o
61

&

7
68
i
&
0
0
0
7
0

(]

EPUB/images/image_286.jpg
S xE HH

filename

format_name, f

stream_index, si

seek_point, sp

stream, s FEE

loop -4

discontinuity

B Bl 2

EPUB/images/image_022.jpg

EPUB/images/image_367.jpg
avforamat_open_input

avformat_find_stream_info

| aveodec parameters to cnmexDq— avcodec alloc commz)q—{ aveodec find decoder |
avcodec_open2 i av_init_packet
av,image,copy}; avcodec,dccodc,vidcoﬁ.—{ av_read_frame |

avpacket_unref’

avfonnan,clm,inpuﬂ.—{ aveodecfree_context

avirame_unref

EPUB/images/image_065.jpg
® O @ Hello World, This is a sample

EPUB/images/image_316.jpg

EPUB/images/image_251.jpg
7~

Audio Specific Config (ASC) - =)
General Audio Specific Config (GASC)
Audio | Audo | samping | channel | extension sion sampling | Frame | Depends | oo program [oo
Ghiea | objec e | remency | conigneton | Auo oty | Exersonsalg | ol | e’ | enson | "G | et
Type () | Ext(5) | Index (@) @ i Type Flag | coder Element

Explicit Backwards Compatible SBR/PS Signaling (ASC Extension)
Sync Extension | Extension | saR

Extension | Audio Object | Aucio Ob

Type 1)

Type (5)

Type Ex

Present

Fiag 1)

rersonsompin [
Frequency Index (4) by

Type (11)

PS present
Flag (1)

EPUB/images/image_359.jpg
avformat_alloc_context
avio_alloc_context

=

read_pac} avformat_open_input

avformat_find_stream_info

av_read_frame |)
avformat_close_input

EPUB/images/image_030.jpg

EPUB/images/image_138.jpg
FB

RAVR/AN

B

E—ATAGHIA/IN
(PreTagSize0)

4 (3260)

TAG1

FLVTAG (FLVTAGE

—)

Z14TAG

E—ANTAGEIA/N
(PreTagSize1)

4575 (32fir)

E—ATAGETIA/N »

T3 BT

AN

S TAGE Header+ Body + TAG#THeader /v 112

1= 5+TAGETBodyET A/

TAG2

E—NTAGETR

(PreTagSize0)

2/ TAG

E—ANTAGHETAN
(PreTagSizeN-1)

4FT (32

EPUB/images/image_294.jpg
[base] 640480

[upperleft] 320x240 [upperright] 320x240

Tlowerleft] 320x240 llowerright] 320x240

EPUB/images/image_170.jpg
top - 16:30:22 up 36 days, 1:57, 2 users, load average: 0.58, 0.17, 0.05
Task 1 total, 1 running, O sleeping, O stopped, @ zombie
Cpu(s):100.0%us, 0.8%sy, 0.0%ni, 0.0%id, 0.0%wa, ©.0%hi, 0.0%si, 0.0%st
Mem: 502276k total, 360796k used, 141480k free, 4988k buffers

Swap: 1015800k total, 13020k used, 1002780k free, 184796k cached

PID USER PR_NI_V RES
8882 root 20 © 137m O3m 4424 R 99.0 19.0 0:18.05 ffmpeg

EPUB/images/image_073.jpg
ERREHE EHRERIZRE LY

" IS_PCM (MB_TYPE_INTRA_PCM) FF (REREFEET)
n (IS_INTRA && IS_ACPRED) || IS_INTRA16x16 | 16x 163773l

] IS_INTRAdx4 AxABFATI

[] IS_DIRECT EEAE (BifisH)

] IS_GMC 8& IS_SKIP 16x 168k (PEBHISE)

] IS_GMC (SH.264%5)
] IUSES_LIST(1) (PZBHizZE)
] 1USES_LIST(0)

USES_LIST(0) & USES_LIST(1)

EPUB/images/image_093.jpg
bxml binary XMLZ=22
pitm EESEHAR
fiin

paen partition .1
fpar
fecr FEC Reservoir
segr
gitn HIDEETRER

tsel

EPUB/images/image_050.jpg
B8 =l B

EEMAIIRERATEE - 20\ 9200kbit's - EEZSETHbVEE

b =
ab E=2e
9 24 BEWHGOP (TTLEEANRRWER) A/ - BRiLZ126—1GoP

ar BEEHRIEE » R0
ac =2
bf B
maxrate =21

minrate BE

EPUB/nav.xhtml

 Table of Contents

 		
 版权信息

 		
 内容提要

 		
 推荐语

 		
 序

 		
 前言

 		
 服务与支持

 		
 上篇 基础与参数详解

 		
 第1章 多媒体基础

 		
 第2章 FFmpeg简介

 		
 第3章 FFmpeg工具使用基础

 		
 第4章 封装与解封装

 		
 第5章 编码与转码

 		
 第6章 流媒体技术

 		
 第7章 bitstream过滤器

 		
 第8章 滤镜使用

 		
 第9章 采集设备操作

 		
 下篇 API使用及开发

 		
 第10章 libavformat接口的使用

 		
 第11章 libavcodec接口的使用

 		
 第12章 libavfilter接口的使用

 		
 第13章 FFmpeg辅助库的使用

 		
 第14章 音视频播放器开发实例

 		
 第15章 FFmpeg在RTC中的实例解析

 		
 第16章 定制FFmpeg模块

 		
 第17章 FFmpeg调试与测试

EPUB/images/image_271.jpg
il L

e
un

PI 3.14159265358979323846 | A F=

& 2.7182818284590452354

PHI

1.61803398874989484820

EPUB/images/image_166.jpg
B

reference_stream

{15 S FaTstream

segment_format

segment_format_options

segment_ist

segment_ist_flags

* live ~ cache

segment_list_size

segment_list_type

segment_atclocktime

segment_clocktime_offset

IR B SRS

EPUB/images/image_339.jpg
SHE *E e

list_devices =T
video_device_index | 5551
audio_device_index | 251 EFRERTIES

pixel_format » FIyw420 ~ V12 ~ rgh24
framerate = A - 4125
video_size

capture_cursor

capture_mouse_clicks

EPUB/images/image_123.jpg
trun | sdtp

EPUB/images/image_387.jpg
33 |alpass
34 |aloop

35 |amerge

36 |ametadata

37 |amix RBESNE

38 | anequalizer frsHEHBRME
39 |amuttiply

40 |anequalizer

41 |animdn

42 |animf

43 |anims E R AR

EPUB/images/image_344.jpg

EPUB/images/image_088.jpg
stz2 SREEA/IN

stco |+

coB4 64frchunkiEi
stss FEIF xR
stsh FRERSR
padb izpadding
stdp

sdtp

sbgp

EPUB/images/image_142.jpg
FB

EEIA/N

B

=

(SoundFormat)

1: ADPCMEFifE="

4 : Nellymoser 16kHz Mono
5 : Nellymoser 8kHz Mono
6 : Nellymoser

7: G711 Adaw

8: G.711 mu-law

11 : Speex
14 : MP3 8kHz
15 : REFHNEE

=T 8- 14 155

- Speex

EPUB/images/image_301.jpg
sbsl: 2

sbsr :

sbs2l : =

sbs2r @ #

ab2l 1 ETFEBESHEE (

ab2r: FFEBESTE (

I

EPUB/images/image_425.jpg
306 |ahistogram

307 |avectorscope

308 |showcat

309 |showfreqs

310 |showspatial

311 |showspectrum | 3%, TR
312 | showspectrumpic AHRE—EE
313 |showvolume

314 |showwaves

315 | showwavespic

316 |spectrumsynth

EPUB/images/image_185.jpg
THE FOLLOWING PREVIEW HAS BEEN APPROVED FOR
APPROPRIATE AUDIENCES
BY THE MOTION PICTURE ASSOCIATION OF AMERICA, INC.

EPUB/images/image_057.jpg
FB B -
index FRTEYES KR 0
codec_name El=r h264
codec_long_name | i 242 MPEG-4 part 10

profile ZEaprofile High
level =i level 31
has_b_frames 2
codec_tyoe video

EPUB/images/image_468.jpg
1 Cerror recognition)

©
ilf

mmco H.26455MMCO (memory management control operation) 82/
bugs ERgs
buffers

thread_ops

nome

EPUB/images/image_045.jpg
124

EPUB/images/image_002.jpg

EPUB/images/image_452.jpg
flagsF B} 34

SDL_RENDERER_SOFTWARE

i
it

ol
i
i

SDL_RENDERER_ACCELERATED

SDL_RENDERER_PRESENTVSYNC

SDL_RENDERER_TARGETTEXTURE

EPUB/images/image_395.jpg
122 | surround

123 |treble

124 |tremolo

125 |vibrato

126 |volume

127 |volumedetect - AR - ITEIER:

128

anullsink

EPUB/images/image_100.jpg
FB | RBEIFT i3

R+ |4 XAbOXETA/N

4 tkhd/mdia/clip/matts

EPUB/images/image_444.jpg

EPUB/images/image_085.jpg
fos-2 D i3
| N
ftyp
pdin TEHAEER
moov A
mvhd | EEEk
trak Vv
tkhd Bl #trackk
tref tracke%752

EPUB/images/image_258.jpg
video_formatff | YfRIEYE

0 Component
1 PAL

2 NTSC

3 SECAM

4 MAC

=

EPUB/images/image_267.jpg

EPUB/images/image_215.jpg
=]

(Media SDK | - (‘oneVPL Intel GPU | - (A soneVPLE A |

EPUB/images/image_401.jpg
34

colorspace

35 |colortemperature

36 |convolution

37 |convolve BEIMARSEMAREETS

38 |copy HHEEIMEN FREREE

39 |coreimage) API

40 |crop

41 |cue

42 |cropdetect 5 RE e
43 |curves

44 | datascope MRS kSR

EPUB/images/image_042.jpg
LETR SN

AR TERR

EPUB/images/image_224.jpg
1997

Perceptual Noise 1999

Substitution
(PNS)

MPEG-4 (
HE-AAC AAC-LC

Perceptual Noise

Substitution
(PNS) 2003

Replication
(SBR)

Spectral Band ‘

EPUB/images/image_017.jpg

EPUB/images/image_115.jpg
FB | KEFT L

B+ |4 0x00000014
=3 4 vmhd
R 1 0x00

3 0x000001
HHER |2 0x0000
Opcolor |6 0x0000 0000 0000

EPUB/images/image_158.jpg
ERE
cux 2@ ey

_h3 [mean [7o oo 8y 182
0 o Yo I — =3 o me n
- msezmn o - o oaommo raramsn soumREzOmro -0
' meromn o - |1 comom aramen
© rwn i - |12 oo scnwmen R AR a0 - 81
s o - 3 camns KaTses s SREZED .8 !
O ren o - i+ ccowon rawmen AR 5350 =81
o soms o - S cowee KRFSRWR RSEEID:8
Cwre B V- |6 oaomon scnmmen R AR 770
- o - 7 oomue KkTaews RSREZEmD-
 ocwn o - o ceowos saumen R AR 570
 son s B - |3 coomonc razamss sommEzOme-n
X naean ‘. e To oomeonc scxammn R MRS 550
 rcaumen " v- e e
v e o - |1 cammes xnmwmen R AR 570
7 o o v D onoms KATASER A@RTamDs
“xre o - 1 oomome scxamen 5% AR 50
- i o - | e e L e -
Wb o Yo
O smeman o -
o smeown o -
oo o -
7 sorcseun o -
ety o -
© arevenn o -
7 ssiwa . -

EPUB/images/image_151.jpg
FEETESENTESREpayload EEEHEE - 00 - £F : 01 - & data(payload) »

FeizsE 2 |ox30 =A 55010 REFIIFESE - B data(payload) : 11 FIIIFESE
+data(payload)
. (PID 8191%:5}) ZEEPIDF .0x00Z0x0F:2
- EERATREREEESE
EUFEH B3

EXEE (payload)

EPUB/images/image_459.jpg

EPUB/images/image_194.jpg
DG2/ATS-

Codec | st W DGU/SG1 | TGLx |JSLEHL| IcL KBLx BXTx SKL |BDW

Ful-

Feature |D/E DEEs |DEEs |DE |DEEs |DEEs |D/EEs |DEEs |DEs
e Free- DE DE DE DE |DE DE DE DE D

Kernel

Ful-

Feature |D DEs DEs D DEs DEs D DEs DEs
MEES S Free- D D D D D D

Kernel

Ful-

Feature D D D D D D D D
Ve Free- D D D D D

Kernel

Ful-

Feature |D/E DEE DEE DE |DE DE DEE DEE D
ke Free- DE DE DE pE |DE DE DE DE

Kernel

EPUB/images/image_239.jpg
reconnect_delay_max

o

o

reply_code 3%
listen &3
resource

short_seek_size

EPUB/images/image_371.jpg
av_packet_alloc —»i aveodec_find_decoder }——(av Apmer,inn)

aveodec_open2

aveodec_alloc_context3
av_frame_alloc 4>(av . parser_parse2 }——Gvcodec,send | packet

aveodee_receive_frame

av_parser_close 4>(avjramejree }——(av ,_packet_free

EPUB/images/image_070.jpg
Test Movie

EPUB/images/image_243.jpg
real Om0.578s
user 0m0.117s
sys 0m0.166s

EPUB/images/image_416.jpg
204 |segment
205 |select SIS
206 | selectivecolor

207 |sendemd

208 |separatefields

209 |setdar

210 | seffield

211 | setparams

212 | setrange

213 |sefsar

214 |settb

215 |shear

EPUB/images/image_200.jpg
i #31%3£%0 |DG2/ATSM | DG1/SG1 | TGLx | JSL/EHL | ICL | KBLx | BXTx | SKL | BDW

Ful-Feature | Yes Yes Yes |Yes Yes

Blending Yes |Yes |Yes |Yes
Free-Kernel | Yes Yes Yes |Yes Yes
Ful-Feature | Yes Yes Yes |Yes Yes

csc Yes |Yes |Yes |Yes
Free-Kernel | Yes Yes Yes |Yes Yes
Ful-Feature | Yes Yes Yes |Yest |Yes

Deinterlace Yes |Yes |Yes |Yes
Free-Kernel | Yes Yes Yes |Yes® |Yes
Ful-Feature

Denoise Yes Yes Yes Yes|Yes |Yes |Yes |Yes
Free-Kernel
Ful-Feature | Yes Yes Yes |Yes Yes

Luma Key Yes |Yes |Yes |Yes
Free-Kernel | Yes Yes Yes |Yes Yes
Ful-Feature | Yes Yes Yes |Yes Yes

Mirroring Yes |Yes |Yes |Yes
Free-Kernel | Yes Yes Yes |Yes Yes
Ful-Feature | Yes Yes Yes |Yes Yes

ProcAmp Yes |Yes |Yes |Yes
Free-Kernel | Yes Yes Yes |Yes Yes

EPUB/images/image_439.jpg
HWREE FORENEER (33

SWS_FAST_BILINEAR | 312

SWS_BILINEAR 100
SWS_BICUBIC 87
SWs_X 92
SWS_BICUBLIN 98

SWS_GAUSS 92

EPUB/images/image_023.jpg

EPUB/images/image_287.jpg
Lo

EPUB/images/image_244.jpg
real 0m21.242s
user Om0.148s
sys 0m0.227s

EPUB/images/image_430.jpg
avfilier_graph_al

P filterdn 4 1t H thfilterd % ft. ‘

! |

AVFilter(buffersrc) AVFilter(buffersink)

! !

AVFilterInOut(inputs) | | AVFilterinOut(outputs)

| I

AVFilterContext(sre) || | AVFilterContext(sink)

avfilter_graph_create_filter

!

avfilter_graph_parse_ptr

avfilter_graph_conf

EPUB/images/image_015.jpg
Y=0.299xR+0.587xG +0.114x B
U=-0.169xR—-0.331xG+0.5x B+128
V=05xR-0419xG—-0.081x B+128

EPUB/images/image_058.jpg
codec_time_base | BT EEE 1/50
pix_fmt Hig BTIERER yuv420p
coded_width EZESEE 1280
coded_height HgEE 714
codec_tag_string |1 [o][0]0]10]
r_frame_rate SCERIEE 2511
avg_frame_rate 251

EPUB/images/image_201.jpg
Ful-Feature | Yes Yes Yes |Yes Yes

Rotation Yes |Yes |Yes |Yes
Free-Kernel | Yes Yes Yes |Yes Yes
Ful-Feature | Yes Yes Yes |Yes Yes

Scaling Yes |Yes |Yes |Yes
Free-Kerrel | Yes Yes Yes |Yes Yes
Ful-Feature | Yes Yes Yes |Yes Yes

Sharpening Yes |Yes |Yes |Yes
Free-Kernel | Yes Yes Yes |Yes Yes
Ful-Feature

STD/E Yes Yes Yes Yes|Yes |Yes |Yes |Yes
Free-Kernel
Ful-Feature

TcC Yes Yes Yes Yes|Yes |Yes |Yes |Yes
Free-Kernel
Ful-Feature | Yes Yes Yes |Yes Yes

Color fill Yes |Yes |Yes |Yes
Free-Kerrel | Yes Yes Yes |Yes Yes
Ful-Feature | Yes Yes Yes |Yes Yes

Chroma Siting Yes |Yes |Yes
Free-Kernel | Yes Yes Yes |Yes Yes
Ful-Feature

HDR10 TM Yes Yes Yes Yes

Free-Kernel

EPUB/images/image_250.jpg
copyright_identification_start

aac_frame_length - ADTSHILE EEEEUE L FATRI | FraneLength= (ProtectionBbsent=:

13
7:9) +s:22(AACFrame)

i adts_buffer_fullness - £2:322 =L EEbuffer fullnes:
Bl

5 number_of_raw_data_blocks_in_frame » 7% 2T B nunber_of raw_data blocks_in frame + 1{-EiH (—/AACE
#EE—RHEN1024 R RIEREEE)

16 CRCE44E + Zprotection absent2057

EPUB/images/image_021.jpg

EPUB/images/image_064.jpg
ss

bytes
nodisp SAEREERED
f BRI B =ETREN

window_title | i%

af
vf HEE
codec FERIERIEEAICodec H{TER

autorotate

EPUB/images/image_317.jpg

EPUB/images/image_072.jpg
show vis_mb_type

EPUB/images/image_293.jpg

EPUB/images/image_122.jpg
FB | REIFT i3

By |4 A boxEyZ

edts

EPUB/images/image_351.jpg
SOURCE
libavformat

DEMUX
libavformat

DECODER
libaveodec

Audio ES 2

libavutils.

=

FILTER
libaviilter

Audio Filter

ENCODER MUX
libavcodec libavformat

Video
Renderer

a/v sync

-
Renderer

EPUB/images/image_259.jpg
Mediainfo

AVC: 420Ki8, 150 ms Wiiting brary: x264 core 148 12694 3670645

1Video stream: AVC Encoding settings: cabac="1/ ref=3 / deblock=10:0/

analyse=0¢3:0x113 / me=hex / subme=7 psy=1/
PsY.rd=100:0.00 / mixed.ref=1/ me.range=16 /
chroma_me=1/ trlis=1/ 8x8dct=1/ cam=0/
deadzone=21,11/ fast_pskip=1/
chroma_qp.offset=-2 threads=6 /
lookahead_threads=1/ siced.threads=0/ =0/

Go to the website of a player for this file
Vigeo
352 kbfs, 640°480 (4:3),at 5,000 FPS, AVC (NTSC) (High@L2.2) (CABAC 4 Ref Frames)
Goto the website o this codec

EPUB/images/image_038.jpg
L
[N] 70 |v |v |x x v 4 x
- -
ye s
808 25 714 v |V |x v v / x
¥
80 |/ |v |x x v v v
9.0 i v |x ' 4 v X
-
[’1 L= 11.14 |v v oV x E521E

EPUB/images/image_394.jpg
111 |resample
112 | rubberband

113 |sidechaincompress
114 |sidechaingate

115 |silencedetect

116 |silenceremove

117 |speechnorm

118 |sofalizer

119 |stereotools

120 |stereowiden

121 | superequalizer

EPUB/images/image_143.jpg
0: 55kHz

1: 11kHz
(SoundRate) 2: 22kHz
3 d4kHz
= 8kHZETAACH ST LI
SRR RERTEAREE
AN
(SoundSize)

1160 RE

0 : Mono sound

1 Stereo sound

0 : AAC Sequence Header

1: AAC raw

OV RS SR

EPUB/images/image_467.jpg
pict

ISPS - PPS -« Slicefg 2832 &

rc rate control - EEFEMPEG2 - SNOWZFFmpegE £

bitstream ER

mb_type

ap

det_coeff

FEISO/IEC 23001-11 (&E:

» BRITHRIER
green_metadata
BE

skip #TEISKipEE

startcode MPEG4z25Z 22workaround bug

EPUB/images/image_186.jpg
THE FOLLOWING PREVIEW HAS BEEN APPROVED FOR
APPROPRIATE AUDIENCES
BY THE MOTION PICTURE ASSOCIATION OF AMERICA, INC,

EPUB/images/image_424.jpg
294 | pal100bars Z£7PAL 100%
295 | rgbtestsrc £5RGB

296 |sierpinski Z—-Sierpinski£
207 | smptebars

298 | smptehdbars

299 |testsrc

300 |testsrc2

301 |yudtestsrc

302 |nulisink

303 |abitscope

304 |adrawgraph

305 | agraphmonitor

EPUB/images/image_216.jpg
| *_gsv codecsif i Fone VPLIA

Pii 3 WAy HTFXe R
cru G0 | imanony | oo
Codec
Libva/DirectX
1
Intel GPU Intel GPUREfF:

EPUB/images/image_383.png

EPUB/images/image_092.jpg
iloc FrElEEEasE
ipro EERPESE
sinf

frma

imif

schm

schi
iinf

xml

XMLEEE

EPUB/images/image_009.jpg

EPUB/images/image_345.jpg

EPUB/images/image_137.jpg
FB o i B
ELFEE (Signature) 8 FFFr (0x46)
EZFE (Signature) 8 = (0x4C)
EZFEE (Signature) 8 FfFv (0x56)
ERZ (Version) 8 SUHERRA (fFIZI0X0 1 FLVER A)
! (TypeFlagsReserved) |5 EEH0

(TypeFlagsAudio) 1

(TypeFlagsReserved) (1 FEA0

(TypeFlagsVideo) 1
£732{2% (DataOffset) 32

EPUB/images/image_388.jpg
44 |anul
45 |apad

46 |aperms

47 | aphaser

48 | aphaseshift
49 |apsyclip

50 |apulsator
51 |areattime
52 |aresample
53 |arnndn

54 |asor

EPUB/images/image_001.jpg

EPUB/images/image_159.jpg
jw” KT x

EPUB/images/image_193.jpg
®E WRHRERES
BDW Broadwell
SKL Skylake
BXTx BXT - Broxton : APL - Apollo Lake : GLK - Gemini Lake
KBLx KBL - Kaby Lake : CFL - Coffe Lake : WHL - Whiskey Lake : CML - Comet Lake ; AML : Amber Lake
ICL Ice Lake
JSL/EHL JSL - Jasper Lake : EHL - Elkhart Lake
TGLx TGL - Tiger Lake : RKL - Rocket Lake : ADL-S/P/N - Alder Lake : RPL-S/P - Raptor Lake
DG1/8G1 DG1 - Discrete Graphics 1 : SG1 - Server Graphics
DG2/ATS-M | DG2 - Alchemist : ATS-M - Arctic Sound-M

EPUB/images/image_116.jpg
FB | kT #

=4

Rt |4 X boxg!

smhd

R |1 XANDOXETHTA

EPUB/images/image_302.jpg
out

i = 28T (

—&

arbg

argg

arcg

agmg :

agmh

agme :

agmd :

EPUB/images/image_417.jpg
216 | showinfo BERIASNEIEIETER
217 | showpalette

218 |shuffleframes

219 |shufflepixels =5eE

220 |shuffleplanes

221 |sidedata

222 |signalstats LA B E AR ke F R EIRE
223 |signature

224 |signalstats

225 | split RIS N
226 |sr RS

EPUB/images/image_000.jpg
TR TS (8 1 mRER: | 1

w7

BDREN (B L)

+

EPUB/images/image_043.jpg
o

.H § ffmpeg ffplay

? 3 #BHHHTIA HFOUTHRE BTARSMAAES TORNESS, SRR
S

|

libavdevice libavutil

EATAE
% libavformat = #/## & mod miv. RTSPRTPRTVP.) | libswresample

[IBaVeodae T o7k tAusio. Viseol3NTSAE libpostproc

libswscale

libavfilter =maskisia

EPUB/images/image_266.jpg
NALU type NALU R 23535
0 TEFEEAS

1

2 ERHIERBA

B EEEIER&B

4

5

6

7 3% (SPS)

EPUB/images/image_223.jpg
VBR | G EgREEKbiUs | HIGER

1 |20~32 LC - HE - HEv2
2 [32~40 LC - HE - HEv2
3 |48~56 LC - HE - HEv2
4 |64~T72 Lc

5 |96~112 e

EPUB/images/image_272.jpg
BRIERF

THAE BB

=

F|+(-3)=-3

7 |-(@2+3)= -5

EPUB/images/image_338.jpg
eoce out.mp4

videolan.org

EPUB/images/image_086.jpg
edts edit listzg2
elst edit list7T
mdia
mdhd media
hdir media
minf media

vmhd WAmediask (RFETHAETrack)
smhd Efimediazk (RFETEHETrack)
hmhd Emmediazk (REETIERArack)

EPUB/images/image_037.jpg
4.0

5.0

TERRILEE

6.0

ez vz}

6.0

7ML

71

EPUB/images/image_165.jpg
REF

BB

language

~ CHNftZ

EILLRESE7£1S0-3166!

default

name

df
B

agroup

df

sgroup

EPUB/images/image_445.jpg
D e D e e e)|
]
.q—(aﬂsswm}—{ Rk Je—{ R)

EPUB/images/image_144.jpg
FB FEIRN B

1

21 String

* Boolean

3 : Object
4 MovieClip (2% » F#)

51 Null

oo
7
I
<t

6 : Undefined

7 : Reference

8 : ECMA Array

9 : Object end marker

10 : Strict Array

1: Date

12 : Long String

#42 (ScriptDataValue) SERIIET

AMFEZH7

EPUB/images/image_101.jpg
KB

T = iz
By 4 X boxé
4 tkhd
7 1 XA boxEgRRA

ERERELT ¢
e 0x0001 : trackZ£31

o 0x0002 : trackiE7=Movie=

o 0x0004 : tracki E7=MovieT

e 0x0008 :

EPUB/images/image_238.jpg
auth_type

+ S#nonefibasic

send_expect_100 FR ifExpect: 100-continue
location FrE UREIaTEEEaY

offset 257 FHEIEHTTPE RS RS E
end_offset =274

method FrE RE(EFEATHTTPS
reconnect R EHEE
reconnect_at_eof FHR IEOFEt A EE
reconnect_on_network_error | %5/ PR R HIITCP/TLS 88t 521
reconnect_on_http_error FE

reconnect_streamed

R

EPUB/images/image_372.jpg
[aveodec_find_encoder by_name }—h(widecj]lucjonl:xl} }—»(av packet_alloc |

av_frame_alloc j&—————{ avcodec_open2 |

av_frame_get_buffer

avcodec_send_frame

av_frame_make_writable

(aveodec._receive_packet av,«ameﬁeﬁ

aveodec_free_context av_packet_free

EPUB/images/image_071.jpg
I S Y S S N U

.ﬁ_.__.vnh."..,‘ Ay A an e ’v“v"“‘“‘v

EPUB/images/image_402.jpg
45 | dblur SERER

46 |detdnoiz {5/2D DCT (gk
47 | deband BREES

48 |deblock

49 |decimate

50 |deconvolve

51 |dedot

52 |deflate S deflates
53 |deflicker

54 |dejudder

55 |delogo == &logo

EPUB/images/image_366.jpg
AVCodecContext

[Flog_Tevel offset: int
rcodec_type: awediaType
rcodect Avcodec *
+codec_id: AvCodecID
+codec_tag: unsigned int
rpriv_data: void +
[intemal: AvCodecInternal *
+opague: void *
+bit_rate: int6d_t
+bit_rate_tolemace: int
qlobal_quality: int
rconpression Tevel: int
+flags: int
+flags2: int
rextradata: units_t +
extradata_size: int
+tine_base: AvRational
+ticks_per_frame: int
+delay: int
aadth. height: int
+codec_width, coded_height: int
int
AVPixelFornat

+siice count: int

slice offset: int *
sanple_aspect_ratio: AvRational
+stice_flags: int

+skip_top: int

skip botton: int

eb_Lmin: int

b Lmax: int

refs: int

rcolor_primaries: Avcolorprimaries
rcolor_trc: AVColorTransfercharacteristic
+colorspace: AVColorspace

+color_range: AVColorRange
schrons_sample_Location: AVchromLocation
rslices: int

+field_order: AvFieldorder
+sanple_rate: int

rchanneTs: int

+sanple_fut: Avsamplerormt
+Frane_size: int

[+ Frane_number: int

+block align: int

rcutofF: int

rchannel_Layout: uintsa_t
request channel_Layout uints
+audio_service_type: AvAwdioserviceType
+request_sample_fut: AVsampleFormat
racompress: Float

rcblur: float

rquin/quax: 1nt

enax_diff: int

huaccel: avmnceel
+huaccel_context: void *
+thread _count: int
+thread_type: int
cavtive_thread_type: int
+thread safe_callbacks: int
profile: int

[Hlevel: int
initial_padding: int
+Franerate: AvRational

+sw_pix_fat: AvpixelFornat
+pkt_timebase: AVRational
rcodec_descriptor: AvCodecbescriptor +
dts /dts: intea_t

codec_whitelist: char *

properties : unsigned
draw_oriz_band(): Callback
1get_Tormat) : Callback
rget_buffer2(): callback

rexecute(): Callback

vexecute(): Callback

+...()

[+long nane:
[+type: enun AviediaType
[+3d: enun AvCodectD
+capabilities: int

nal:20: unsigned
unsigned
[+priv_data_siz

[Finit static_data(): callback
[+init0): callback
[rencode2(): Callback

[+decode(): callback

[+ O
[rclose(): callback
[+receive_packet(): callback

[+receive_frane ()
[+Flush()7 callback

callback

L p] H264Context”

ff_h264_decoder

[Frame: const char + = “haea"
[+long_nare: const char +
[+type: enum Aviediatype

WVEDIA_TYPE_VIDEO

L L im Avodectn Av_conec. i iasa

[scapabitities: int
[+priv_data_size: int = sizeof (H26acontext)

Jsbsfs: const char =

[Fnit(): 264 decods_end
sdecede(): 1264 docode_frane
Je. o

[+close() : ‘hasa_decode_end
[+lush(): h2ea_decode_flush

[FcTass: const AvCLass +
[ravetx: avcodeccontext +

= ——

EPUB/images/image_323.jpg
FFmpeg

EPUB/images/image_150.jpg
£ 5 #&B (KD R
BFFT 8 | ox££000000 x47 (ASCIERG)
1 |oxe00000
— TR RS SEE - SRR ER
1 |oxa00000
(ELSD mE TR EEE
o2 s 1 0x200000
PID 13 |oxtezzoo
ZE (TSC) |2 |oxe0

EPUB/images/image_451.jpg
Fik SDL_CreateWindow SDL Crea(eRenderer SDL_CreateTexture
i AERED EEZEY ﬁd}i@{&*}i’f

SDL | RenderPresem SDL RenderCop
52 EGPU

EPUB/images/image_024.jpg

EPUB/images/image_199.jpg
Full-

Feature D/E
AV1 8bit

Free- D/E

Kernel

Full-

Feature DIE
AV1 10bit

Free- D/E

Kernel

EPUB/images/image_210.jpg
max_dec_frame_buffering

look_ahead =234

look_ahead_depth B

look_ahead_downsampling | £

int_ref_type =i

int_ref_cycle_size 57

int_ref_qp_delta £ | FIFERESEEEE

profile 551 | =@ s=profile - SziFbaseline - main - high

EPUB/images/image_288.jpg
o puLagd.

i FFmpeg

EPUB/images/image_016.jpg

EPUB/images/image_377.jpg
.

aveodec find_encoder_by_name with h264_vaapi

!

aveodec alloc_context3

v

avcodec_open2

v

aveodec_send_frame

Y

aveodec_receive_packet

A A

release

EPUB/images/image_113.jpg
FB KEIFT -

7
=

0x0000002d (45)

4 hdir
B U 0x00
3 0x00

0x00000000

[1
IS

®RE 12 0x0000 0000 0000 0000 0000 0000

component name TE VideoHandler\0'

EPUB/images/image_330.jpg

EPUB/images/image_055.jpg
FB B L=t
media_type video
stream_index | #iETEATES IR 0
key_frame ETEREN 1
pkt_pts Frame&&7pts 0
pkt_pts_time Frame & &7ptsayat (5] 27~ 0.080000
pkt_dts 80
pkt_dts_time Frame&47dts787 (5] 27 0.080000

EPUB/images/image_466.jpg
4 5 6 78910111213 14 15

2
[O]]
2

3
K
=

eSS EXzE D EERE
2B HUXABOFHS

HUXABLTFHSH 0

EPUB/images/image_202.jpg
AVKit

AVFoundation

Video Toolbox

CoreMedia

CoreVideo

EPUB/images/image_241.jpg
B8 sl k]
buffer_size 258
bitrate =
localport/iocal_port |7 | it
localaddr s | Atk
pkt_size 551 | SAUDPEEEE A/

reuse/reuse_socket| 7

UDP socketE &

broadcast
tl
connect /R | FRsocketdgconnect)EERERIER

EPUB/images/image_008.jpg
L5sin(x) + 0.8sin@yf Y 1.25in(3Y) ——

2 T3sin(0) ———-
- Q8
1Ay, " 1.250(3%)
5 3 ()
1 \, n R
N = -
b)
2xe
1
1 1
' (57
0 + -
. Rl 73 320
'

2 B

EPUB/images/image_105.jpg
RE 4 0x00000000

duration 4 0x00002710 (10000)
BRE 8 0x00 00 00 00 00 00 00 00
layer 2 0x0000

alternate group | 2 0x0000

EE 2 0x0000

#RE 2 0x0000

EPUB/images/image_063.jpg
E24

fs

an

vn

sn

EPUB/images/image_369.jpg
(‘avformat_open_input }—.(avfonm‘,ﬁnd,smam,mfo }—b(xvcodecﬂndjamdcr)

¥

(zvcodec,ope.a).—{ aveodec. Jalamelelsjo}omex()d—{ aveodec_alloc_context3 |

av_frame_alloc

av_init_packet

(avirame unref Ja—————— ‘avoodec_decode audiod

[av_sample_fmt_is_planar |——{ av_get_packed_sample_fmnt

av_read_frame |

aveodec_close

(avformat_close input }&—————{aveodec_free_context

EPUB/images/image_233.jpg
rtmp_subscribe FreE
rtmp_swfhash —i
E
rtmp_swfsize =34
rtmp_swurl T SWURLIZ518245URL
rtmp_swiverify FreE EaTSWiSZiFEIURLIEE
rtmp_teurl FiFE |RTMPEIConnectss< i3 EATtcURL S 1557, EIrMD: /X0 XXX XXX/
rtmp_listen =234 FFERTMPER &8 57 07
listen =34 Srtmp_listeniE &
b iodelay - {EATCP NODELAYR[HNagleEi% - FIRIZRIEELITCP 4 - & T RHFINagleE:
FRIER
timeout 25

254

EPUB/images/image_160.jpg
AudiolVideo
Inputs

Server

MP4 file

—_—

Distribution

HTTP.

Client

EPUB/images/image_411.jpg
147 | maskfun
148 | median EEMedianisz

149 | medeint WARTEGENE
150 | mergeplanes

151 | mestimate

152 | metadata AERF BRI
153 | midequalizer

154 | minterpolate

155 | mix

156 | monochrome AL

157 | msad

EPUB/images/image_296.jpg

EPUB/images/image_136.jpg
BBimpinfo-v1.7 [stavy.sun@hotmail.com)
& @6

T

EET YTy
E B9 19 9A 0F 49 C3 1D
P 06 13 1 30 C2 63 67
mnnoro
nawoAs e
B 5 CE 72 05 C9 94 43
788 32 A7 40 60 9F
1 55 6 20 05 86 10 77
12729 71 12 A B 1T
5 2 D 1D 06 14 56 9
@15 12 45 69 63 68
1 T2 13 30 AL D 30 17
o arca1s s ar v
7 07 12 68 90 31 77 40
5056 62 46 68 £ 51
22 48 19 96 M 00 5
1098 B 1290 06 74

mRoAZE DR
BioAz96EC2E 61 3T
90 60 19 5 26 65 3E
sMmxBA DL
B0 X 2 4625 47
21cia g 3B ar 15 %0
09017 10 77 96 15 17
o7 79 67 00 05 0 09 B
B4C B 0098 62 AT 60
05 A7 77 68 08 3% 77 30
91 51 9K 00 £2 18 9% 2¢
5968 PESI T D4 7T A
ANOIMBD

3397 40 6759 2 € %0
CF 9 69 87 10 75 45 60
W13 2B @
15 6 C6 6 45 97 2 77
PO T K05 10
PErTTEEEY

| [DASources\fimpeg-S.0.1-full buld\bin\output_desh.mpd

[1782-676-110464

EPUB/images/image_032.jpg
540

I 560
0.6
500
0.5|
0.4
0.3]

0.2

0.1

X
00 01 02 03 04 05 06 07 08

EPUB/images/image_217.jpg
S] L)

omx_libname | /¥ | OpenMAXE &

omx_libprefix | £/ | OpenMAXZEL/E

zerocopy B | BRERH AN

EPUB/images/image_393.jpg
100 |hded EIEE iR
101 |headphone S EHUREZE{EHRTFS A
102 |highpass 3dbIAES

103 | highshelf

104 |join

105 (ladspa £ LADSPAIE/E

106 |loudnorm EBUR1281E T

107 |lowpass 3dbFES

108 | lowshelf 3dbFES

109 [pan

110 | replaygain

EPUB/images/image_039.jpg
= P BOCRFEFOCORPFATIR X RS
=2x48000x16x60
=92160 000bit = 11520 000B =11.52MB

EPUB/images/image_314.jpg
i e s e

o i B e Gl

EPUB/images/image_230.png

EPUB/images/image_248.jpg
sors | aors
i
ADTS i
T
wors | ors
e | vorge | 6, | Rawoma
v | Vi |
AADTS Fixed Header
o e [somoing Gl
srcrd | [| oecion | e | somois e
ey compraton ome
02 @ | Absent | 1peq) | ndext | O)
ADTS Variable Header |
Conra | coprioe | ncrrame | st [t
B | S| Lot | ot | Do

EPUB/images/image_273.jpg
BRIERF | ShEE I | ROY

+ 1+2=3

= 2-1=1

- 2:3=6

/ 6/3=2

» =5 312=373=9

EPUB/images/image_337.jpg
oo .0 -

AL

EPUB/images/image_362.jpg
AVPacket

bor L | AVBufferRef
pts R buffer

dts |p{ data
data |4 size

size

stream_index

flags

side_data

duration

pos

time_base

EPUB/images/image_087.jpg
nmhd ZEmediazk (Eft&Ttrack)
dinf
dref FRSEESE - trackTmediadysE
stbl FEREE - BTENNESEERENTE
stsd
stts ZigE3(E (decoding)
ctts #Za7(E] (composition)
stsc chunksRt » ZEEH ExfE
stsz B2 NN

EPUB/images/image_265.jpg
e Syntax info | 26162
261 untstotal
bor WAL 70 size

|

'4:5:IDR - Codad sice of an DR picture 0 23
6:1:non-IDR - Coded sice ofa non-IDR picture 0 _iaso

i
H

549.__ 1. 1:non-IDR - Coded sie of 2 non-IDR picture 0 _issse
| 686.. 12:%:non-IOR - Coded siceof anon-iDRpicture 0 13293
82372 18 1:non-IOR - Codd slce of anon-IDR picturo 13197
96201 16:T:non-IDR - Coded sice of anon-IDRpictare 0. 13028 |
105.-_ 1. 1:non-IDR - Codod sic of 2 non-IR picture o _iswa
123 20:%non-iDR - Coded sice of anon-DRpicture 0 12064
T370... 721 non-DR - Coded sceof 3 non-IDR picture 0 om0
150.."| 1281 Tinon-IDR - Coded sice of non-IDR picture 00 3287

6: 1 non-IDR - Coded sice o # non DR picture 27

i

2

30: 1 non-IDR - Coded sice of 3 non-IDR picture 0 1azae

34: 1:non-IDR - Coded sice of 3 pon-IDR picture

15205

36: 1:non-IDR - Coded sice of 3 non-IDR cture

13062

274 42:1:non-IDR - Coded sie of a non-IDR icture o_issee
2881 14411 non-IDR - Coded sice of a non-DR icture 0 a2
302 46:1:non-IDR - Codod sco o 3 non-IDR lcture [RE)
3162, 148:%:non-IDR = Coded slice o non-1DR picture 101 13208 |
3 50:1:non-IDR - Coded sice of a non-IDR picture o _iseaz
13441 152:1:non-DR = Coded slice of non-1DR picure 10013306
358, 54:7:595 - Sequence parameter sot 0 2
3580 55:8:PPS - ictur parameter set 0 7
388, 56:5 DR - Coded sice o anIDR picture 0 _2ss3s

8

0:1: non-1DR - Coded slce of a non-IDR picture

430.. - 64:1:non-IDR - Coded sice of non-DR picture. o0 _enn
44| 66:1:non-IOR - Coded sice o anon-IDR picure 0 12038 |
457._ - 68: 1 non-IDR - Coded sico of a non-IDR picture 013260
| 471 70:1:non-IOR-Coded siice of anon-IDRpiewre 0 13298
485 72:1: non-IOR - Coded slce of non-IOR picture 0 _iassa
4981 74 1:non-IDR - Coded sice of anon-DR pcture 0. 3m3
512 76:1: non-DR - Coded slce of a non-IDR pcture 0 _isase
| 626 78:%:non-IDR-Coded sice of anon-DRpictwre 0 12965
539.. 80:1: non-IDR - Coded sice of 3 non-IDR icture 0 13226

1 non-IDR - Coded sl of 3 on-IDR picture isa60

[

88: 1 non-10R - Coded sfceof non-IDR picture 0 1369

£

192:1:non-10R - Code sce of non-IDR picture 0 13850

196:: non-10R - Coded sice of non-IDR picture 0 1616

100: 1: non-IDR - Coded sice of a non-IDR picture 013820

Fitorod Extractselected unts

| sps | s | Siice | SE1 | MB | QM | RefLists | Stats | HRD

EPUB/images/image_079.jpg
fﬂm \ /
kil P W TR
‘Aﬁ/ EHT‘%‘I \

EPUB/images/image_329.jpg

EPUB/images/image_354.jpg
(‘avformat_alloc_output_contex2 }—{avfonnalilmwislmmn)
g

P (avformat_write_header
i

(aviwri!eiuailea)q—{ av_interleaved_write_frame |

EPUB/images/image_192.jpg
AEERUAX R

S A 43 A 4
VAAPI
HEFLibva £ 11 B 3D Xl
DRMLib| [DRILib
XI55
Pz D“U
v v
P DRMP B
v
Ll g R

et WERD EGEL mwm OCHESE

EPUB/images/image_264.jpg
<1-] Syntax nfo

501 units total
Pos NALType

4:5:IDR - Coded siice of an IDR picture
©5:9: AUD - Access unit delimiter

6:7: SPS - Sequence parameter set

7. 8: PPS - Picture parameter set

8: 1: non-IDR - Coded slice of a non-IDR picture

9:AUD - Access unit delimitor
SPS - Sequence parameter set
PPS - Picture parameter set
non-IDR - Coded slice of a non-IDR picture

21:9: AUD - Access unit delimiter

Nofilter v Extract selected units.

NAL SPS PPS Slice SEl MB QM Reflists Stats HRD

EPUB/images/image_346.jpg
SH

EEEH

draw_mouse

show_region |

framerate | AR - al ~ ntsc
video_size

offset x | REREEEIEE

offset_y FRERRRBY MER

EPUB/images/image_450.jpg
& |DirectdD | Desktop OpenGL | OpenGL ES | Vulkan | Metal
Windows | 5235 X <
Linux X X X
mac0S =E X X
[X <
Android X <

EPUB/images/image_175.jpg
ssim R HEITEISSIME

intra-refresh |#/5 | EEPeriodic Intra Refresh{%IDRi

bluray-compat | %/

b-bias ==

b-pyramid 25 : none(0) ~ strict(1) - normal(2)
mixed-refs FIR E—Fpattion— 5% - TARE—NER—15F
8xdet FR

fast-pskip FR

aud R » B EAUD
mbtree AR

deblock s alphabetatfst

EPUB/images/image_281.jpg
B

fontfile

text

textfile

fontcolor | =:

box

boxcolor

fontsize

font

EPUB/images/image_427.jpg
&R

fER

buffer

TR

cellauto

coreimagesrc

mandelbrot
mptestsrc

freiOr_src reiOrE
life

allrgb

3E[E4096%4096 7 /\87 ~

ErERG

EPUB/images/image_183.jpg
11880

396

2Mbit/s

2 5Mbit/s

BMbit/s

8Mbit/s

320x240@36.0 (7)
352x288@30.0 (6)

21

19800

792

4Mbit/s

5Mbit/s

12Mbit/s

16Mbit/s

352x480@30.0 (7)
352x576@25.0 (6)

22

20250

1620

4Mbit/s

5Mbit/s

12Mbit/s

16Mbit/s

352x480@30.7(10)
352x576@25.6 (7)
720x480@15.0 (6)
720x576@12.5 (5)

40500

1620

10Mbit/s

12.5Mbit/s

30Mbit/s

40Mbit/s

352x480@61.4 (12)
352x576@51.1 (10)
720x480@30.0 (6)
720x576@25.0 (5)

<y

108000

3600

14Mbit/s

17 5Mbit/s

42Mbit/s

56Mbit/s

720x480@80.0 (13)
T20x576@66.7 (11)
1280x720@30.0 (5)

32

216000

5120

20Mbit/s

25Mbit/s

B0Mbit/s

80Mbit/s

1280x720@60.0 (5)
1280x1024@42.2 (4)

EPUB/images/image_435.jpg
av_opt_set_chlayout

St - SIZIAV_CHANNEL_LAYOUT_5POINTO

av_opt_set_defaults

lihlsencE ST

av_opt_set_defaults2

H7%E (opt->flags &

av_opt_set_from_string

EPUB/images/image_418.jpg
227 | smartblur

228 |ssim

229 |stereo3d

230 |streamselect

231 |astreamselect

232 | sobel 8 \TLI A sobel EF
233 |spp

234 | subtities i
235 | super2xsai

236 | swaprect =
237 | swapuv

238 |tblend

EPUB/images/image_094.jpg
iENn4ymetadata

meco
mere metabox=%
meta metadata (FE72)
styp
sidx ozl
ssix

prit

EFESENE

EPUB/images/image_322.jpg
FFmpeg

FFmpeg

EPUB/images/image_047.jpg
(e | w22 #a
e G G :.%Ma&
| 5)\1#}—4 ﬁx}—([T

EPUB/images/image_121.jpg
212 904603 | 30 360 904603 0.52
425 1158382 0.95
8764 1158807 0.97
2417 1167571 0.98
444 1169988 1.00

EPUB/images/image_403.jpg
56 |derain
57 |deshake

58 |detelecine

59 | despil Despil&

60 |dilation RE AT

61 |displace REL2MIEINCRETREE
62 | dnn_classify

63 | dnn_detect

64 | dnn_processing

65 | doubleweave

66 | drawbox

EPUB/images/image_128.jpg
HFFE®A %} ERAYHE: Eﬂsjg‘uﬁ‘?tfdt box=E&y
baseMediaDecodeTime - SERERIEEDTS - £
use_tfdt TR TiiE & Esidx boxiJearliest_presentation_time - EXFMPIEAT » 112
mfra box 2787 (51 87T] E » & Suse_mfra_fori it EIPTSHDTS « 5i&E
AE
ignore_chapters FIR ZEZchapters{z,
enable_drefs TR ShaftracksTi » B
Fudta g =i IRBISTbOX(EATTELERR E S - boxZsRIaTR4 M
export_all R .
#4 - ERilogfalse
SEXMP_boxF1uuid boxa £ 5 S
export_xmp R Sexport_alliiz: MNETLEE
EZEFEAXMP_ - 2il Hfalse
activation_bytes T3] EFAudible AAXFIAAX+ L EEEE4ETHS
BT ihEAudible AAAAX+ T EHEIEEH - CESHTMRREFT » ALl
audible_fixed_key]

CENEEEE

EPUB/images/image_145.jpg
B | KB L)
BB EELFLVET ERETflag
aac_seq_header_detect : FRIIAACE FizTSequence Header
no_sequence_end : £ 5FLVRai7FE | Sequence End
fivflags | flag

no_metadata : & 5FLVETFE \metadata
no_duration_filesize : B E#&577 Emetadatas = A duration Sfilesize

add_keyframe_index : £5FLVE 5205 A REITEE | E5 Elmetadatask

EPUB/images/image_209.jpg
IiEARQl

max_qp_i 3¢
min_qp_i S5 | 1E/QPT
max_qp_p 23 |PHEAQPEE
min_op_p 274
max_qp_b =
min_gp_b 24
HESIERSE - FENHEEE S2unknown - displayremoting «
scenario %% |videoconference - archive - livestreaming - cameracapture - videosurveillance - gamestreaming
remotegaming
idr_interval 54
cavic R

single_sei_nal_unit

NALUEHEE

EPUB/images/image_420.jpg
250 |tpad IEE T

251 |transpose

252 |trim

253 | unpremuttiply

254 |unsharp

255 | uspp

256 | untile B A
257 |v360

258 |vaguedenoiser

259 |varblur

260 |vectorscope E-REIFHERRIESE

EPUB/images/image_226.jpg
IgER BRGEbiYs | STIFRRAERKHz | EFEREFRKHz | FEER

8000~11999 |22.05 + 24.00 24.00 P!
12000~17999 {32.00 32.00 2

HE-AACV2 (AAC-LC +

SBR + PS)
18000~39999 |32.00 - 44.10 - 48.00 |44.10 2
40000~56000 |32.00 - 44.10 - 48.00 |48.00 2
8000~11999 |22.05 + 24.00 24.00 1
12000~17999 {32.00 32.00 1
18000~39999 |32.00 - 44.10 - 48.00 |44.10 1

HE-AAC (AAC-LC + SBR) | 40000~56000 | 32.00 - 44.10 - 48.00 |48.00 1
16000~27999 |32.00 - 44.10 - 48.00 |32.00 P!
28000~63999 |32.00 44.10 - 48.00 |44.10 2
64000~128000 [32.00 - 44.10 48.00 |48.00 2

EPUB/images/image_384.jpg
E20 fER

abench

acompressor

acontrast

=4

acopy

acue

acrossfade

acrossover

acrusher BEETREEE

adeclick

adeclip

EPUB/images/image_040.jpg
92160 000bit
60s

=15360 000bit /s = 1536kbit /s = 1.536Mbit /s

EPUB/images/image_256.jpg
ey

ueTe

EPUB/images/image_404.jpg
67 |drawgraph

68 | drawgrid ERABE EETWE
69 |drawtext FEAEITENE - (EFlibfrectypeE
70 |edgedetect

71 |eq

72 |extractplanes

73 |elbg

74 |entropy fEtel

75 |epx

76 erosion

7 estdif

EPUB/images/image_129.jpg
decryption_key

|

16FTIEIZH - TNER] - ETEZERISOERNZ (CENC/AES- 128
CTR ; ISO/IEC 23001-7) HZ&acis

max_stts_delta

=21

SFIFEERADTS - 2UREH

EPUB/images/image_392.jpg
89 |deshift
90 | dynaudnorm

91 |deesser =0T

92 |dmeter

93 | dynaudnorm

94 |earwax

95 |ebur128

9% |equalizer
97 | extrastereo

98 |firequalizer

99 |flanger

EPUB/images/image_315.jpg

EPUB/images/image_218.jpg
SE |EE B

profile | £ | 714 profile X E : baseline ~ main - high

level

allow_sw | %575 | R amiEs o

coder 254

= : CAVLC - VLC -~ CABAC - AC

FSHRGLFEREE

realime |75

HleveliZ W :13-30-31-32-40-41-42-50-51-52

EPUB/images/image_007.jpg
/\/\\/\\/«/\\ﬁ \/A\//\ «\//E\//\\/‘

Sin(x) + sin(2x)

Sin() + 5in(3x)

Sin() + $in(21) + sinG3y)

EPUB/images/image_242.jpg
fifo_size =554
overrun_nonfatal | 75/R%
timeout 25
sources FRE | SER

block

EPUB/images/image_153.jpg
splice

countdownizz=

1 0x04

BEHER

s FESENFEI R

EPUB/images/image_457.jpg
getAudioData()

SWr_convert
-4—{ asislsoL o Je—{ o s Jo— iﬂ:#&éa&#&

“AudioDecodeThread avoodscsend pacet ‘avcodec_receive frame
(somminmsc— EYT ii&w&)

EPUB/images/image_279.jpg
R prila k]

ceil(expr) RELEE - ATATRES Texprag s/ NEE
floor(expr) HepriTERE THE * BN TRESTopriTHA
round(expr) AR expriVE RIS A

trunc(expr)

clip(x, min, max) | EExFEmin~maciEX[E59E

print(t) PAEES Zealilc

EPUB/images/image_104.jpg
KB

0x0000005¢ (92)

4 thhd
B 1 00

wE 3 0x000003 (3-}Mrack AEED)
il 4 0x00000000

BiTEE 4 0x00000000

trackiD 4 0x00000001

EPUB/images/image_368.jpg
(‘aveodec_find_decoder |—>1 aveodec_alloc_context3 |—»{ aveodec_open2 |

- av_frame_alloc
aveodec_encode video?

(aveodec_close }—.(avjmmejree |

EPUB/images/image_470.png

EPUB/images/image_025.jpg

EPUB/images/image_386.jpg
22 |affidn
23 |affit

24 |afir

25 |aformat

26 |afreqshift s

27 |afutdn

28 |agate

29 |aiir =

30 |aintegral

31 |alatency mesmraTe
32 |alimiter

EPUB/images/image_410.jpg
135 |loop
136 |lumakey RERELRE

137 |luttd T1D LUT (Look-Up-Table)

138 |lut3d T30 LUT

139 | lumakey

140 |lut, lutrgb, lutyuv | HEHE—ALUT - SEIREES MRS HEEER
141 |2

142 | maskedclamp

143 | maskedmax

144 | maskedmin

145 | maskedmerge

146 | maskedthreshold

EPUB/images/image_300.jpg
B

EPUB/images/image_119.jpg
4 HourlfurmnZ2

729 1 #-data references7ErE

=
{
»
i
o
il
it
|

7= : 0x0001

]
a

i3 data reference(z 2

b

EPUB/images/image_130.jpg
E 3¢ L B
MP4 Muxerizi.
rtphint #IIRTP&Thint track
empty_moov FI#A{EZ=ETmoov box
frag_keyframe
separate_moof T FE—Mrack=4E1TEImoof / mdat box
frag_custom FE—caller RIEF—1HEx
isml
faststart
movflags omit_tfhd_offset | ZESthdE R TEIEMETERS

disable_chpl

£[#INero ChapterZs2

default_base_moof

FEtfhdZ 2212 Fdefault-base-is-moofiFit.

dash

FEDASHEZEIMPASTH

frag_discont

=-ixEdiscontinuous ;

delay_moov TR EIHER - EEH wRE
global_sidx ST KRB A HETsidGES |
write_colr AcolrE28

write_gama

S HERsgamas s

EPUB/images/image_289.jpg
3 opAmps.

EPUB/images/image_419.jpg
239

telecine

240

thistogram

241

threshold

242

thumbnail

243

tile

244

tinterlace

245

tut2

246

tmedian

247

tmidequalizer

248

tmix

249

tonemap

EPUB/images/image_203.jpg
INPUT

empty input buffers filled output buffers

0000 ooe®

Consumer
Client

(] 0o0oo

filled input buffers discarded output
buffers

EPUB/images/image_056.jpg
pkt_duration

Frame&4787 &

N/A

pkt_duration_tine | Frame 14787487 5] N/A
pkt_pos Frame SFTE L ESIEBLE 344
width 1280
height ETEIEE 714
pix_fmt eV EEERER yuv420p

pict_type

EPUB/images/image_331.jpg
FFmpeg ZeroMQ

EPUB/images/image_062.jpg
(19) I) 30 (o] B8]

resdy oo ke 0| daplay: 0 me: 00:00:00,000 00:0:17,600 | ofses 00006000043 [}

EPUB/images/image_167.jpg
segment_clocktime_wrap_duration

segment_time

segment_time_defta

segment_times

segment_frames

H

segment_wrap 274

segment_list_entry_prefix ez | =

segment_start_number 25 |FImBIE AR

strftime R IR £ ERYIR S9ETE S
break_non_keyframes ki

EPUB/images/image_442.jpg
swr_alloc

AREFX

“av_opt_set int
&

Y
wrinit

9‘%)&&

Swr_convert

#HPCM

swr_fiee

BRETX

EPUB/images/image_295.jpg
Tupperte]

Tlowerlen]

Tlowerright]

EPUB/images/image_031.jpg
100 x 100

EPUB/images/image_370.jpg
(aveodec_find_encoder }——Gvcodec,anac,mmem }——vadec,npenz |

frame Ja—| av_sample_get_buffer_size |a—| av_frame_alloc |

¥ v

(avccdcc,cncodc,audioz)——(av,fmmc,ﬁae }——(avcodcc,closc)

EPUB/images/image_184.jpg
245760

8192

20Mbit/s

25Mbit/s

B0Mbit/s

80Mbit/s

1280x720@68.3 (9)
1920x1088@30.1 (4)
2048x1024@30.0 (4)

41

245760

8192

50Mbit/s

50Mbit/s

150Mbit/s

200Mbit/s

1280x720@68.3 (9)
1920x1088@30.1 (4)
2048x1024@30.0 (4)

42

522240

8704

50Mbit/s

50Mbit/s

150Mbit/s

200Mbit/s

1920x1088@64.0 (4)
2048x1088@60.0 (4)

589824

22080

135Mbit/s

168.75Mbit/s

405Mbit/s

540Mbit/s

1920x1088@72.3 (13)
2048x1024@72.0 (13)
2048x1088@67.8 (12)
2560x1920@30.7 (5)
3680%1536@26.7 (5)

51

983040

36864

240Mbit/s

300Mbit/s

720Mbit/s

960Mbit/s

1920x1088@120.5 (16)
4096x2048@30.0(5)
4096x2304@26.7 (5)

EPUB/images/image_168.jpg
individual_header_trailer

write_header_trailer

AR

reset_timestamps

R

i

initial_offset

BB EEHRS

EPUB/images/image_409.jpg
124

125 | inflate
126 | interlace

127 | interleave

128 | kerndeint ZDonald Grafts) = ETAFETE
129 | kirsch SKirschigfz

130 | lagfun

131 |latency

132 | lenscorrection

133 | limitdiff

134 | limiter

EPUB/images/image_443.jpg

EPUB/images/image_257.jpg

EPUB/images/image_426.jpg
317

buffer

318

buffersink

EPUB/images/image_095.jpg
FB | RBIFT i3

Rt |4 = MMovie Header box&7=77%]

moov

EPUB/images/image_263.jpg

EPUB/images/image_347.jpg

EPUB/images/image_436.jpg
APIEEOI% SHEEE

av_opt_next FFISoptRIEATITRATT — P EEL

av_opt_get_int

av_opt_get_double

av_opt_get_q

av_opt_get_image_size

av_opt_get_video_rate

av_opt_get_pixel_fmt FIZIAV_PIX_FMT_YUV420P

av_opt_get_sample_fmt J + FIAV_SAMPLE_FMT_S16

av_opt_get_channel_layout IZIAV_CHANNEL_LAYOUT_5POINTO

av_opt_get_dict_val Zkey-value T

av_opt_get_key_value

EPUB/images/image_046.jpg

EPUB/images/image_191.jpg
HOW_STANDARDS PROUFERATE:
(682 AIC OHARGERS, CHARACTER ENCOONGS, INSTANT MESSAGING, ETC)
4?! RDICULOULS!
WE NEED To DEVELOP
. || ONE UNVERSAL STANDARD ,
SITUATION: || 4T coveRs Evervone's | | STTUATION:
THERE ARE USE CASES. e THERE ARE
|4 COMPETING \) 15 COMPETING
STANDPRDS. O STANDPRDS.

A

EPUB/images/image_135.jpg
BB mpdinfo-v1.7 [stavy.sun@hotmail.com] - x

& @4

[[mptinto [apstosl |

EPUB/images/image_321.jpg
FFmpeg

EPUB/images/image_174.jpg
crf

crf_max

ap

ag-mode

7E 1= (Adaptive Quantization) #=% ()

autovariance-biased (3)

ag-strength

psy

psy-rd

>:<psy-trellis>BUREATHES

rc-lookahead

FGERIZR

5

il

ST

weightd

weightp

= - iEnone - simple - smart=fHiE=

“2none (0) - variance (1) ~ autovariance (2) ~

EPUB/images/image_280.jpg
TE B

t | EERLPSET - O AEIBRERTL - TENAN
no | RAMED

pos | AMIETAIE - ASEKATELRNAN

w MAEIEE

h AT

EPUB/images/image_152.jpg
"G (K

&R fir#) s
;ﬁgi&% 8 EEEAF TS EUFRAIF T
RS R ST
i loxse i ﬁiﬁaav i—rHaJsgfgg‘
1 foxeo
1 foxzo RENRRFESEE;

PCRiFE

R FEPCRFE

OPCR#TE

o0x08

TEEOPCREE:

EPUB/images/image_458.jpg
schedule_refresh
R
SDL_PushEvent
LRI
A A BAB AL AT R

(vt (g R e s)

EPUB/images/image_114.jpg
KEIFT

Rl 4
4 vmhd
7 1 XA bOXETRTA
= 3 7 #70x000001
EER | 2 EEE= - FEEEUEERTE/RE
Opcolor |6 HEfE - RGBFAE(E

EPUB/images/image_385.jpg
11 |adecorrelate

12 |adelay

13 |adenorm

14 |aderivative

15 |adynamicequalizer
16 |adynamicsmooth
17 |aecho EEENEE
18 |aemphasis

19 |aeval

20 |aexciter

21 |afade

EPUB/images/image_225.jpg
MPEG-4. (
HE-AACv2 AAC-LC

Perceptual Noise
Substitution
(PNS)

Spectral Band
Replication
(SBR)

Parametric Stereo
(PS)

2004

EPUB/images/image_274.jpg
R THAEBE

between(x, min, max) | 1Emin<x<max -

ed(x. y) MEETY -
otx, y) SWRXRTFY -
gte(x,)

tx, y)

fte(x, y)

max(x, y) REIX ~ yREAREVE

min(x, y)

EPUB/images/image_375.png

EPUB/images/image_353.jpg
Lt

[imtSereions snt I
[t tames sntea [iissits: mpicesonary +

o tiner antia
Jots-rap.reforence: intoa_e I

AProgram s rSiean
b T b

T e [t

el N T fimste S8 s
e b it e oo s,
(St et e [t i e e i
e L I S e R L.

b Frams: antea ¢
[odscara: awsscars
[raaporstions int

e Apscketsidedats

[rarsart Stroce Acodecparsarcomtent =

fts-trap beheriar: it

EnT——

“AVIOContext

[roformt: Aougutrorsst +
[iorivsta: vosd

[FEoTTers wriomd char

o Aviocontert +

[sutfar size: int
Pt 57" nssgned char
[Pt and e char +
oot per-mx iesgned char
[revsiee: vord *

[edirect int

[sorogranes Aupragran
[retacsta: mmictionary «

i, ek vosd
[cosec: Avcodec +

Joapaaue: void »

[Fincerrupt_catinack: Aviorntarriptcs =

FFrormatContext

> (o R rmantort
[e emved streams: ant
tutr Mpscketiiet +
ettt +

[reof_reached: int

Fio_opan): CaTTEset

[erste-flags ant

[torets “catthack

o packet butfer: awackettist
o ekt Boffer and: Avpscketise

n packet size: int
[rmin packet size: int
[Feskamter int

Fresd padiex(y: LT
rories packet - Catthack
iscek 7% ot
Fipdste’dhckstm ¢ cottback
20

AVinputFormat

o e
Tons nam: comt char +

| fTage: nt

extinsians: cont char +

Coiee ta0: comst serit AvGadactag * const

i dsta sice: int

Fresd praben: Collback

resieadert) - Cottback
bk

éstiback

lparse s Apacket st +
[parse- e end: Apackertist +

[7o ket butferremsimng size: int
lotistes ntsa s

ot faet cinsosse: Aationst
[inject-stobat size data: ant

[ioaid pesatave & ose pts: int

[hartaat s intea

lnitiatizes: int

[streams amitistized: ine
[diua-ate: Ascrsonary «
lpactar codec frsasratar int

AVOutputrormat
[ramer conet char
[Fang-nava: comst char +
[mame-type: Comst char -
[Fevterasons: conet char +
o codecs snum veodecto
oo codec: anim AVCodocto
Fsubratto. codecs rum AvcodectD
[igas: i

[Fcodec” 120+ comst struct avcodecrag » comst +

EPUB/images/image_208.jpg
max_frame_size_p

max_slice_size

bitrate_limit

mbbrc

extbre

adaptive_i

adaptive_b

p_strategy

=5

FEEP-pyramid: 0-default - 1-simple + 2-pyramid (bfEE#LER0)

b_strategy

IP/BIEE S

dblk_ide

low_delay_brc

AR

EPUB/images/image_247.png

EPUB/images/image_336.jpg
S

L)

draw_mouse

follow_mouse

framerate

show,_region

region_border

video_size

MARENROISHR

EPUB/images/image_120.jpg
BRE

HBIRFS o MR | REAAN | REREE (K A EZE | Db S AH T AR B R R AR
(ID) (Mtkhd e ## (Mstsc | (Mstsz | stco - stscfiistsz | {62 (M | BFEI{RE (MsttsRimdhditEi 5
Fistcozk#F) #i8) *E) *E) AFFRIERIR) sttsikg) BRAIRE)
171 121923|12 682 121923 1024 0.00
683 122605 1024 0.04
682 123288 1024 0.09
683 123970 1024 0.13
683 124653 1024 0.17
682 125336 1024 0.21

EPUB/images/image_278.jpg
THAE BB

while(cond

expr)

087 - fEFF i+ Eexprd
Not A Number)

i

JexpradiE - Econdsy

—Efalse » TREEINAN (3E

s

S

not(expr)

YexptETF0 - NI3EE1.0 - ENERE0.0

if(x, y)

» MEElY - FNEE0

if(x, y, z)

ifnot(x, y)

ifnot(x, y, z)

isinf(x)

isnan(x)

EPUB/images/image_464.jpg

EPUB/images/image_049.jpg
seek2any 274 HEEseek : I seek T Likeyframe s

WEATHE

BENE AT &
FRR - ZAMET LA EF N -

analyzeduration | 53

EYEIRE

codec_whitelist | 5l EETLIERECodecs 5 EE

=
sk
&
i
a
©
b
=
g
3
3
3
i
i
T

format_whitelist

m

output_ts_offset | 57 BB TR E

EPUB/images/image_332.jpg
%=E

BB

framerate | #

EPUB/images/image_006.jpg
sin(x)

EPUB/images/image_154.jpg
PES packet data bytes

PES
PES data 5 stuffing
10 | scrombing | PES | aignment | copyrignt | Srdnel | 7 oeder al fields|| bytes
control prorty | indicator or copy flogs | data (ﬁfpp,
length
2 2 1 1 1 1 8 8 me8
PTS es | OM | addiional | Previous
ESCR trick PES |PES extension
0TS e | meK | copyinfo SR
3 2 2 s 7 16
5flags fields
pes | pack | program PES PES
pivate | header | packet | BSTC [extension extension
data field | seqentr field length field data
128 8 8 16 7

EPUB/images/image_421.jpg
261 |vidstabdetect

262 |vidstabtransform

263 | vilip

264 | virdet

265 |vibrance

266 |vif MRALREIVIF
267 |vignette HIER

268 | vmafmotion HEVMAFESH535
269 |vstack

270 | wafdif RXERATM
271 | waveform

EPUB/images/image_235.jpg
B8 %=E B

initial_pause kit

rtsp_transport %
udp_multicast : UDP53& 1%
hitp : HTTPE
https : HTTPS3:
RTSPEAELITHHE
fitter_sre : REZUIEEIPEIR

risp_flags listen : REHHEIEFIE - T NFFmpegt 7 ERTSPATServeri#=
prefer_tep : TCPEFI=: - {1 TCPE A - BH&TCPEH
satip_raw : % F#£EIMPEG-TS - Ti7FZdemuxing

EPUB/images/image_340.jpg
p—
=
A
&

[

EPUB/images/image_197.jpg
Full-

HEVC 12bit |Feature |D D D
422 Free- D D

Kernel

Ful-
HEVC 12bit |Feature |D D D
444 Free-

Kernel

Ful-

Feature |D/E DIE DIE DIE D/E
VP9 8bit

Free- D/E D/E D/E D/E D/E

Kernel

Ful-

Feature |D/E DIE DIE DIE DIE
VPO 8bit 444

Free- D/E D/E D/E D/E D/E

Kernel

EPUB/images/image_227.jpg
HE-AAC (AAC-LC + SBR)

64000~69999

32.00 -

4410 - 48.00

32.00

+51

70000~ 159999

32.00 -

4410 - 48.00

44.10

»51

160000~245999

32.00 -

4410 - 48.00

48.00

160000~265999

32.00 -

4410 - 48.00

48.00

51

AAC-LC

8000~ 15999

11.025 - 12.00 - 16.00

12.00

16000~23999

16.00

16.00

24000~31999

16.00

+22.05 - 24.00

24.00

32000~55999

32.00

32.00

56000~ 160000

32.00

+44.10 - 48.00

44.10

160001 ~288000

48.00

48.00

EPUB/images/image_456.jpg
sach aveodec_send_packet ‘aveodec_receive_frame hr vide
- RRAVPacket | B F—{"Fiwas e
SHRYER 5 Apicath 71 Je T2

EPUB/images/image_162.jpg
B

start_number

his._time
his._list_size S5 [BEMIUBHESE L
his_ts_options FEE |EETSHEISH
his_wrap 238

his_allow_cache =234

his_base_url FE

his_segment_filename | £75

his_key_info_file FHs

EPUB/images/image_413.jpg
170 |pad =] 2
171 | palettegen e el
172 | paletteuse

173 | perspective

174 | perms

175 | photosensitivity

176 | phase

177 | pixdesctest

178 | pixscope

179 |pp

180 |pp7

EPUB/images/image_081.jpg
Apple’s QuickTime File Format

1S0 Base Media File Format
(14496-12)

cor NAL- Unit o
(14496-15)
(AVC and HEVC file A

3GPP and 3GPP2 Formats MP4 File Format 'MPEG-21 File Format
(*3gp.*ee2) (14496-14, *.mpd) (21000-9, *.m21)

‘Timed text and

other visual overlays
in 150 base media Motion JPEG-XR(29199-3)
file format

(14496-30)

‘Motion JPEG-2000
(15444-3, *.mj2)

EPUB/images/image_391.jpg
77 | bandpass

78 | bandreject

79 |bass

80 |biquad

81 |bs2b

82 |channelmap

83 | channelsplit RPSEENEET— MR R
84 |chorus

85 |compand

86 | compensationdelay
87 |crystalizer

88 |crossfeed

EPUB/images/image_003.png

EPUB/images/image_448.jpg

EPUB/images/image_219.jpg
ozl
AL R TS

iR

EPUB/images/image_405.jpg
78

exposure

79 |extractplanes
80 |fade

81 |fftdnoiz

82 |fftit

83 |field

84 |fieldnint

85 |fieldmatch Eus:
86 |fieldorder

87 |filborders

88 |floodfil

EPUB/images/image_308.jpg
input 0

output 0

EPUB/images/image_190.jpg
Media Foundation Pipeline ‘

DXGI Device
Manager

1
MFT_MESSAGE_SET_D3D_MANAGER

Creates

ideo Renderer
or Applicat

Creates

EPUB/images/image_069.jpg

EPUB/images/image_352.png

EPUB/images/image_441.jpg

EPUB/images/image_026.jpg
TR
TTHH TSRS
m:“m:.'.'.'
Wt 1 '".oesv X0
33334344 T
3333 S I
eTser st I

cozeoseo|iiiliiliN

EPUB/images/image_363.jpg
APIEC1%

av_init_packet

T4 {EAVPacketiE

av_packet_alloc

=% — MAVPacket 17z

] - [ERAVPacketE]

av_packet_free

FERIAVPacket17Z - EfEAVPacketadside_data - bufEA7E -
av_packet_unref 2 #257AVPacket

BHHE - BETEAT

av_new_packet

HiE—MAVPackel IEFZEE] - EIZAVPacketZETbuf

av_shrink_packet

'NAVPacketsTE#E A/

av_grow_packet

EAVPackets IR

av_packet_from_data

ST5EEE EEIAVPacketiIdataE

av_packet_free_side_data

av_packet_add_side_data

i2frside_datai#AVPacketE2Tside_data

EPUB/images/image_282.jpg
output.mp4.

L]
hello world

EPUB/images/image_107.jpg
KEIFT

0x0000005¢ (92)

4 tkhd

R 1 00

= 3 0x000003 (/Mrack:%i3% 5 B MEH =)
£ 4 0x00000000

fEiTed e 4 0x00000000

trackiD 4 0x00000002

Bz 4 0x00000000

EPUB/images/image_111.jpg
FB | KBEIFT i3

R+ 4 0x00000020 (32)

4 mdhd

1 0x00

3 0x000000
EeETiE |4 0x00000000
BiTedE (4 0x00000000
timescale |4 0x000061a8 (25000)
duration |4 0x0003d090 (250000)
EE 2 0x55¢c4
HE 2 0x0000

EPUB/images/image_204.jpg
B8 il B
EERAE - BROEENRECAE - BT (3 gmediumiEiR) © default ~ slow -
preset E254
medium ~ fast ~ hp ~ hq ~ bd I llhg - Inp ~ lossless - losslesshp
profile &8 |MmEDprofilez ; baseline - main ~ high ~ high4ddp
TiEElevelZ 4 s auto~ 12 1.0~ 1> 1.0b~ 1.1+ 1.2+1.3+2-20-21-22-3-3.0-3.1-32-4-40
level E254
41-42-5-50-51
e £ £1#17 : constap ~ vbr - cbr ~ vbr_m - ingp - Il_2pass_quality ~ I_2pass_size ~ vbr_2pass
re-
=5
lookahead
GPUEELI T
gpu 234 EHEE—GPU
no- . .
R | BRUBRESEAM

scenecut

EPUB/images/image_290.jpg
] L)
x FREE xLiT
y
eof_action | 257
shortest | #/R
format ==

EPUB/images/image_061.jpg
JEEERERELEE

f

L

-

RERRR95TEER53 8RR 592558825 SRBRT

22355882558

il
Hﬁﬁanﬁ&ﬂﬁiﬁi

EPUB/images/image_177.jpg
b_strategy s |UPBEEEEE

chromaoffset RREZ FANERSH

sc_threshold

noise_reduction

udu_sei T |REESUser Data Unregistered SEI +

x264-params F Sx264optsZE Ll « ERERH""

WEHETIEx2640pts

i

EPUB/images/image_320.jpg
FFmpeg

EPUB/images/image_134.jpg
SBmpainfo-v1.7 [stavy.sun@hotmail.com] - x

=@ 4

[aptinto st |

EPUB/images/image_126.jpg
= ot [t |

T e R Tt

(rrrei—vrery

[t i ot Ta—Ci000T
) o it
i nescate: 1000
v iz D

[Tt s
e iz S
LA SR
o
s
&

moenTne mmomnmmn

mocEs TR MmONN@mE e

o0 00 c0 00 02 00 00 0300 00 00 00 00 0 00 00

oz o0 01 50 09 46 00 03 00 45 00 00 00 0 00 00

00 00 €O 10 77 F7 00 0D 00 30 61 75 69 43 01 64 i

EPUB/images/image_169.jpg
top - 15:59:19 up 36 days, 1:26, 2 users, load average: 0.08, 0.03, 0.04

Task: 1 total, 1 running, @ sleeping, © stopped, @ zombie
Cpu(s): ©.3%us, ©.3%sy, ©.0%ni, 99.0%id, 0.0%a, 0.0%hi, 0.0%si, 0.3%st
Mem: 502276k total, 257628k used, 244648k free, 3756k buffers

Swap: 1015800k total 13020k used, 1002780k free, 168380k cached

PR
20

@ 49972 9268 3080

8862 root

EPUB/images/image_077.jpg
NERHRERE

B (SIS

9710 RTINS S - ORIOfT FIHEE
71 NEE ¢ AT NRER
i e e

9FIESC s

EPUB/images/image_232.jpg
B sl B

rtmp_app FEE | RIMPHRAS » B EEURLIE= 8Tapp

rtmp_buffer 274 wbufferf/ly (4 0 Zfp) - BRIA3000=R) (3%))
rtmp_conn FHE | ERTMPEICoNnects:< NS = LAMFEEE

rtmp_flashver

flashplugingT4 A=

rtmp_flush_interval | £

ERBRIFEIEE ((TRTMPT)

FEERTMP R RIE 2T

any (-2) : EERSEEE

rtmp_live =5
lve (1) : EHiE
recorded (0) : 53§
rtmp_pageurl T#E |RTMPEConnects: < JPageURLE e FR AR Web T EETURL

rtmp_playpath FreE RTMPii&ngyStreamitritt - P B ERE XA - ERETURLFaTplaypath

EPUB/images/image_360.jpg
FB B

buf < MIRAZE BRRERASIATEIH
pts

dis FFmpeg

duration FFmpegryZs

size AVPacketdTEEER /N

stream_index

LTS

FUAV_PKT_FLAG_KEY - #:F
\V_PKT_FLAG_TRUSTED

ZIAV_PKT_FLAG_CORRUPT -

#MEIAVPacketaJEHE G KE! - SELRT
AV_PKT_FLAG_DISCARD - :
ZIAV_PKT_FLAG_DISPOSABLE

flags

EPUB/images/image_254.jpg
chroma_sample_loc_type

tick_rate

fixed_frame_rate_flag

zero_new_constraint_set_flags |

crop_left 254

crop_right 24

crop_top

crop_bottom

sei_user_data BEHEPSEXSEEEE

delete_filler =34 TEXSEHEE.

EPUB/images/image_211.jpg
B8 il B
async_depth 274
avbr_accuracy 551 | FEHEIAVBRIZE
avbr_convergence 550 |UZBEAVBRIZE]
preset £ IETT - Everyfast - faster - fast ~ medium - slow - slower - veryslowETHIFES TS
forced_idr R RS DRIN
low_power ki
rdo =5
max_frame_size 274
max_frame_size_i 557 |IiEAsize R E

EPUB/images/image_262.jpg
y

= 0243 0.692 (Wrattens8)
8 = 0145 0.049 (Wratten58) | 3
o 0681 0.319 (Wrattens8)
B (c 0310 0316
9~255| 25 SEES - FEITU-TISO/NECH

EPUB/images/image_275.jpg
R

THAEBE

abs(x)

sin(x)

cos(x)

acos(x)

asin(x)

tan(x)

atan(x)

tanh(x)

sinh(x)

EPUB/images/image_034.jpg

EPUB/images/image_207.jpg
5%

S

async_depth

avbr_accuracy

avbr_convergence

preset

forced_idr

low_power

max_frame_size

max_frame_size_i

EPUB/images/image_305.jpg

EPUB/images/image_378.jpg
APLZ B

\VFramegr#&:

5 931 - SR
AVBufferRefé & —/-#r;

J51F - S0RercH A T

& Moz flEdst - 7 =1
- W& EERHAR IS

av_frame_ref

av_frame_unref

franeBF3|F

Hrav_trane_resZ BIE BT AVFramesI s

av_frame_clone _
TFav_frame_alloc()+av_frame_ref()

av_frame_move_ref ZEAVFramesJ/E

M EFIIAERR - £

AFRRELEEERS.

av_frame_get_buffer

St

av_frame_is_writable HEAVFrame AE RS T

av_frame_make_writable SSAVFrame ABEEANTEA

av_frame_copy FFEAVFrame s £ —{3%] Ea7AVFrames

EPUB/images/image_348.jpg
-

EPUB/images/image_335.jpg

EPUB/images/image_010.jpg
WEE/dB

10
120
o

EPUB/images/image_433.jpg

EPUB/images/image_181.jpg
5 |= = |2 |2 |& |&
5 |= = |72 |2 |& |&
5 |= = |2 |z |& |&
5 |= = |z |z |5 |=
5 |z = |= |z |= |=

EPUB/images/image_053.jpg
duration SEE S AR EE

duration_time | IR ERE= T BN S EHE SR EE

size

pos SEREFRENERBUE

flags FEEERE - RRESFHERBELIRE

EPUB/images/image_171.png

EPUB/images/image_429.jpg
&R

buffersink

AFRFR - B

nulisink

AT ELT]

EPUB/images/image_096.jpg
FB KEIFT f3d
R~ 4 Movie Header box&7="
4 mvhd

s ; Movie Header boxgJt5iz » Bl{E7705¢1 ATEENT - IRE » BLEEREE -~ BT
|FfIduration 264 (7/8=

v 3 # EEIMovie Headeri;

S radiE (418 Movie box&J224487 8] - 257 [E1£1904-1-1 0:00 AM

iBiTaslE | 418 Movie box&J/5iTa% 8] - ZE67 [EE1904-1-1 0:00 AM

EPUB/images/image_307.jpg
input 0

stream 0

mono

output 0 output 1

EPUB/images/image_260.jpg
Re L)

5 AEES #ITU-TISONECES
RE X ¥

= 0300 0.600

= 0.150 0.060 ITU-R BT.709-5%3%

o 0640 0330

3 (D65) 03127 0.3290

B ERTRENA

RE x Vi

= 021 071

= 014 008 ITU-R BT.470-6%3(3M% 5
o 067 033

& (C) 0310 0316

EPUB/images/image_155.jpg
S xE HH

mpegts_transport_stream_id | 555! |2Etransport_stream_id + 3/

mpegts_original_network_id | 51

mpegts_service_id

ETSI-EN 300 468<37service_type - 51{E70~255 » EiZdigital_t/(1) - £
digital_radio(2) + £ : teletext(3) - Teletext : advanced_codec_digital_radio(10) -

mpegts_service_type

EERTEL

HEPMTRERRPID (5 fEM - FEm2AsiE

mpegts_pmt_start_pid
= TPMTEIPIDEE E27I0x0100

EPUB/images/image_112.jpg
KB

FB = Egd
B 4 X/NbOXAT
4 hdir
R 1 XA bOXETREA
s 3
handles7FiE. 4 handlersJFizE L.
media handlerztdata handlersj2£E! - 1= component typesEmhir - Z-FEERE L T EEEEI2EE » 40 » videfEvideoZ]
handlegy 72 4 2+ sounfESOUNAETE ¢ Z1Ecomponent typeZdhir - 3 1> a1i=RX ARG
R 12

component name

EPUB/images/image_333.jpg
BHE il B

standard FRE | REVIRE - EENESTINES

channel 3¢ AR ESE ER

video size | BB/ | REREMMAAN

pixel_format

input_format | FiFE | AERENMISER
framerate FRE | RERETAME

list_formats | 2557 Sl A MAMESER

EPUB/images/image_376.jpg
decode_wiite

aveodec_send_packet

hw_decgder_init

"‘lﬂ<l-<|

av_image_copy_to_buffer

EPUB/images/image_082.jpg
header

FH 4
AR

size | type

FRRFAT

EPUB/images/image_382.jpg

EPUB/images/image_449.jpg
SDL_INIT_TIMER e E
SDL_INIT_AUDIO T EEmLE
SDL_INIT_VIDEO T EEERER

SDL_INIT_EVENTS

T LB

SDL_INIT_EVERYTHING

Filie ot b

EPUB/images/image_390.jpg
86 |aspit

67 |astats

68 |asubboost

69 |asubcut

70 |asupercut

71 |asuperpass

72 |asuperstop

73 |atempo

74 |atit

75 |atrim SREEH

7%

axcorrelate

EPUB/images/image_228.jpg
AAC-LC

16000~23999

11.025 - 12.00 - 16.00

12.00

24000~31999

16.00

16.00

32000~39999

16.00 - 22.05 - 24.00

2205

40000~95999

32.00

32.00

96000~111999

32.00 - 44.10 - 48.00

32.00

112000~320001

32.00 - 44.10 - 48.00

44.10

320002~ 576000

48.00

48.00

AAC-LC

160000~239999

32.00

+51

240000~279999

32.00 - 44.10 - 48.00

32.00

+51

280000~ 800000

32.00 - 44.10 - 48.00

44.10

51

EPUB/images/image_161.jpg
i HLS MPEG-DASH
HEETHTTPEIABR = =
o = =
CDNZZ#EER #: 7CDNZ#H 53CDNZZ#
DRMEA —3EEHApple Fairplay —&%(F B Microsoft PlayReady*1Google Widevine

S#CENC (Common| _

Encryption) 7fMP4

Gl

108 - SafariRETH - EitEE

EEBRTIREE

EIREAR LL-HLS LL-DASH
TEEA SZ#VAST & VPAID!Z S VAST & VPAID
BERR MP4 » =3Google#™ & T WebM

Video Codeczi%

H.265 - H 264

7EVideo Codec » £5MP4/WebM3z35a7Video Codec.

Audio Codeczi%

AAC-LC ~ HE-AAC v1 & V2 ~ xHE-
AAC - Apple Lossless - FLAC

ETEEAudio Codec + EXMP4/WebMZ27Audio Codec:

EPUB/images/image_297.jpg

EPUB/images/image_313.jpg

EPUB/images/image_356.jpg

EPUB/images/image_399.jpg
bilateral

11 | bitplanenoise
12 |blackdetect
13 | blackframe
14 |blend, thlend
15 |bm3d

16 | boxblur

17 | bwdif

18 |cas

19 | chromahold
20 |chromakey

EPUB/images/image_033.jpg
0.0

0.1

02

03

05

06

07

08

EPUB/images/image_076.jpg
rREEREHR Thke

R B

—ERmR |EE10E

— EJER |F#108)

EPUB/images/image_106.jpg
000100 00 00 00 00 00 00 00 00 00 00 00 00 00
EfEE 0001 00 00 00 00 00 00 00 00 00 00 00 00 00 00

400000 00

Fiﬂ

Nﬂ&

0x05000000 (1280.00) : &£ FEEIFE » TTLIFEE VideosT

EN}

W

0x02ca0000 (714.00)

Eﬂ}

EPUB/images/image_406.jpg
89 |fifo R

90 |find_rect

91 |cover_rect

92 |format

93 |fps SEEMSEREM
94 |framepack PR ESRARE — N I E
95 |framerate NEfE AFTIRIE NS

9 |framestep SN —

97 |freezedetect

98 |freezeframes

9 |freior Sfrei0rs

100 |fspp ERRE

EPUB/images/image_461.jpg
- Google

Aw, Snap!
Someting ot ooy o Bl

ol

2

EPUB/images/image_283.jpg
output.mp4

L]
hello world

EPUB/images/image_149.jpg
T es

- r
Transport
packet header | payload header payload Iheader | payload
stroam
transport payload transport ‘adaptation
e | Ve | s | RSO% | o | scamoing | g contnuiy - |Hadaptaton
indicator indicator control control
8 1 1 1 13 2 2 4
‘elementary
‘d'“p:!w‘ discontinuity i s stream 5flags loptional stuffing
indicator Bccee priority fields bytes
length indicator indicator
8 1 1 1 5
transport adaptation
o transport
splice private . field tional
PCR OPCR ‘countdown data p;':"':s extension 3 flags fields
length length
42 42 8 8 8 3
Itw_valid Itw piecewise splice
Tag ol o Yoo DTS_next_au
sosmoasat
Y} % 2 2

33

EPUB/images/image_240.jpg
E 4 i) BB
listen 57 | {E77Serversf XIR TCPETIR T
timeout =5 FEEEEE (

listen_timeout

=5

erverss LT TCPIR CRBETETE] (

(=

send_buffer_size

=5

g7bufferi v

recy_buffer_size

e
54

[189bufferfh

tep_nodelay

AR

{EFETCP_NODELAYZHInagle E%

EPUB/images/image_234.jpg

EPUB/images/image_277.jpg
root(expr, | fEFFE1Id(0): - E0ZImax X [E] LiEEFE e

max) eEaTRAREAL - Fkexpr,

SE Eexprd

IS FEONIE L Ftaylor(expr, x-

taylor(expr, | Lld(id) 5
X, id) Y) - SMRFHCARUREL - [

lerp(x, y.
2)

log(x)

mod(x, y) |EEXELLYATRE

pow(x, y) | EXETY:

o VSR T RERL

random(x) |3XE—1-0.02]1.0Z [E&3f

sgn(x) TEXETHEREEE

sqrt(expr) | EZHTexprEZI TSR

squish(x) | HEZZAEZ/(1 + exp(4)8

EPUB/images/image_327.jpg

EPUB/images/image_455.jpg
BEEFE

i seek £ #

EPUB/images/image_198.jpg
Full-

Feature D/E D/E D/E D/E D/E
VP9 10bit

Free- D/E D/E D/E D/E D/E

Kernel

Full-

Feature D/E D/E D/E D/E D/E
VPS 10bit 444

Free- D/E D/E D/E D/E D/E

Kernel

Full-

Feature D D D
VP9 12bit

Free- D

Kernel

Full-

Feature D D D
VPS 12bit 444

Free- D

Kernel

EPUB/images/image_412.jpg
158 | negate jEEralphazr &

159 | nimeans

160 | nnedi

161 | noformat

162 | noise

163 | normalize

164 | null

165 |ocr

166 |ocv (= 0penCV;#1T
167 | oscilloscope 2DE &

168 | overlay E=E—MIFEIS Y
169 | owdenoise ENERER

EPUB/images/image_446.png

EPUB/images/image_027.jpg

EPUB/images/image_133.jpg
frag_interleave it =274 SRR

encryption_scheme |=&F= AT E

encryption_key ot | #FH

encryption_kid

EPUB/images/image_324.png

EPUB/images/image_434.jpg
APIECI%

SHERE

av_opt_set_int

av_opt_set_double

av_opt_set_q

av_opt_set_bin

RiESTREIEEE

av_opt_set_image_size

av_opt_set_video_rate

{1, 25}

av_opt_set_pixel_fmt

FIZIAV_PIX_FMT_YUV420P

av_opt_set_sample_fmt

FI3IAV_SAMPLE_FMT_S16

av_opt_set_channel_layout| =

av_opt_set_dict_val

EPUB/images/image_328.jpg

EPUB/images/image_060.jpg
008 [ONA A NA 7y 8311 S
021 7 004 004 NIA A 51 @105
016 & 008 004 NA A 5898 15076 _
012 120 012 004 NA A 263 20994 _
02 160 016 004 NA A a2 21217
028 200 02 004 N/A WA ame 26219 _
032 200 024 004 NIA A 2005 29985 _
036 280 028 004 NA A er 3310
04 320 032 004 NA A 129 34087 _
04 360 036 004 NA A 202 3514
052 400 04 004 NA A 058 35668 _
048 a0 044 004 NiA A 137 a7vas_
088 80 04 004 NIA A 1031 37903 _
05 520 052 004 NA A 7 35

8

Z

7 [packet_ video
8 [packet video
9 [packet video
10 |packet _ video

8gE8aL888ERE
s alslssissasalssss

3

EPUB/images/image_361.jpg
pos AVPacketdJEEHEETFFATEY

EL{Spts - dts - durationf 5 EIEEET - FEFE Hetprobe -show_packetsETETIZEE[ETpts_time ~ dis_time +

time_base

duration_timeZ5 2
side_data | ELLERE ERAIF Metadata - EEIFEELIEIE
data AVPacketiF 237512 - EE2EFAVPacketsIbulEFTEEE

EPUB/images/image_206.jpg
Input
Stream

Scale/Transpose Encode Output
npp_scale h264_nvenc Stream

EPUB/images/image_398.jpg
E el
addroi
alphaextract 53 fE:
alphamerge FEAR2 I IFEIREE - 5

FE= - ERETASS (Advanced

s Substation Alpha) FET%
amplify BARIERMZ F8EE
atadenoise FHITATAD (SEMEHRTEEEE) A8
avgblur
- B OTEEEER SRR (HE B - B RENE— I GRTREERE
bench

EPUB/images/image_249.jpg
FE | KEM Eipis

A 12 syncword » BEIZIRIR—MASIFFE -

B 1 MPEGHRRFE »

c 2

D |1 protection_absent - s 1FREECRC

= | profile » #FiREEE/MESISIAAC < 1 + AAC Main ; 2 - AAC LC (Low Complexity) : 3 + AAC SSR (Scalable Sample
Rate) : 4 AAC LTP (Long Term Prediction) -+ £ X57Audio Object Type-12

F |4 sampling_frequency_index + %

G |1 private_bit + .

0 s channel_configuration : #3 #PIPCE (program configuration element) %%

BY)

original_copy + 48535

EPUB/images/image_312.jpg

EPUB/images/image_355.jpg
avformat_open_input |—{ avformat_find_stream_info av_read_frame)——(avfomm,close,mpm

EPUB/images/image_127.jpg
B8

B

use_absolute_path

TR e aTtrack - TEESE T LY AFFES

seek_streams_individually

ignore_editlist Kistand
Lignore_editlistiZ E Ffalse
%7 - {Fignore_editlistAIs AR E Hfalse » FELAE
advanced_editlist AR RS ﬁ, g“ e
HEE - LURBEditList boxdE sy 4A S B (E S saaT 18]
T FTIseeka ST E H A » MEFEATIE » MMedia Fragment Random
Access boxH i E 73 K BT [EIE;
auto Zmfrai [SEIEEAIPTSHDTS (2RiL)
use_mfra_for J
Uil = acs : Emiras FEHSEHOTS

mirasy (EEHEEIPTS

o : REEmfraRiEEeT 58

EPUB/images/image_440.jpg

EPUB/images/image_182.jpg
o baseline ~ extended - | high 10 | high10 4:2:2R1
WA high profile profile | high10 4:4:4F BASHER@
levelfg | Sif#HG BARGE (VCL)
i R BAGE BAGE BREXH = (DPB)
(vew) (VCL) |HmARGE (VCL)
128x96@30.9 (8)
1 1485 |99 |Bdkbitis 80Kbit/s 192Kkbit's | 256Kbit/s
176x144@15.0 (4)
128x96@30.9 (8)
1B |1485 |99 128Kkbit/s 160Kbit/s 384kbit's | 512kbit/s
176x144@15.0 (4)
176x144@30.3 (9)
11 |3000 (396 |192kbit's 240kbit/s 576kbit's | 768Kbit/s 320%240@10.0 (3)
352x283@7.5 (2)
320%240@20.0 (7)
12 |6000 (396 |384Kkbit's 480Kbit/s 1152Kkbit's | 1536Kbit's
352x283@15.2 (6)
320%240@36.0 (7)
13 [11880 (396 |768kbit's 960kbit/s 2304Kkbit's | 3072kbit/s

352x288@30.0 (6)

EPUB/images/image_011.jpg
-

U
ll RKT)

20 LN SO | | | .
05| w2 n|WzE
S0 ¥

ke EREtaEe

EPUB/images/image_054.jpg
FB B

filename X5
nb_streams =

nb_programs TEH

format_name EENHEERNET

format_long_name | 5584275

start_time
duration B R ERE
size SUEETAAN

bit_rate BRI

EPUB/images/image_097.jpg
B EITESM - GRS ASIERN60D—i - XEE—{ 2FHTtimescale - MPAEJE} 3T RrE Mrack 2424y

timescale |4 timescale : {1=timescale£90000 : Fi4 37 &5 — H EZ&Tduration7180180 + STLIES#7F) : 180180/90000 = 2.002
o

duration | 4/8 ST METIDUSEIRE aVERET & | EEHLSHMPAZRT - E

BHRE |4 1ONEEEEEE (1616872 5%7)

109ZATE (88802 E%T)

10

B

BFERERE X T HEMoviesh P MNATRZE [EETBE R %

24

T4
track ID

tracks9ID{E - OF2—VERETIDE

EPUB/images/image_298.jpg
5 W X TR
2 Oh, my God, it's beautiful.

EPUB/images/image_255.jpg
display_orientation

g (1

rotate
flip orizontalzzEvertical
level EESPSEEIFaTlevelFER

EPUB/images/image_428.jpg
9 |alyw EEI4096x4006 /1Y « BEFFEYUVEHT

10 |color

11 |haldclutsrc

12 |nulisre

13 |rgbtestsrc

14 |smptebars (#=4ESMPTE Engineering Guideline EG 1—1990)
15 | smptendbars ({=ZSMPTE RP 219—2002)

16 |testsrc

17 |testsrc2 Fltestsre - FE SRZRESHIRER:

18 |yuvtestsre

EPUB/images/image_212.jpg
max_frame_size_p 54

max_slice_size =234 sliceZzsizes:
bitrate_limit 554

mbbre 274 BREIGELRE
extbre 24

adaptive_i 24

adaptive_b 24

p_strategy 5% | FEP-pyramid: 0-default - 1-simple - 2-pyramid (bfEEHE
b_strategy ZE |UPBIEEEE
dblk_ide B ETFiz#ldeblocking
low_delay_brc et

EPUB/images/image_306.jpg
output 0

EPUB/images/image_048.jpg
B8

%

B

formatay & &5 E - Eri\790 -

avioflags
EABEIAN - FRE EBAHER

probesize E227¢

flush_packets : TrEl:ZpacketsiFERIEFZ A rfE s

genpts : T ANiF=Zpts

nofillin : FE&ET it FHEEZAVPacketEE LA E

igndts : ZEZdts

discardcorrupt : SEHAITETH
fflags IRiE sortdts : ZiZLIdtsHYIRFE T

keepside : F&FEEE
fastseek : fRiEseek (Efr) #fF - ERFBEE

latm : {ZERTP MP4_LATMZ3]

nobuffer SEEH » FEAbuffer : BT

bitexact : RE ABEHISE TR EATEGE

gz il

&:

3

EPUB/images/image_261.jpg
= X ¥
ITU-R BT.470-6%3(5B - G
= 030 0.60
ITU-R BT.601-6(625)
= 015 0.06
ITU-R BT.1358(625)
a 064 033
ITU-R BT.1700(625)PAL1(625)SECAM
5 (De5) 03127 0.3290
R X v
ITU-R BT.601-6(525)
= 0310 0595
ITU-R BT.1358(525)
= 0155 0070
ITU-R BT.1700 NTSC
a0 0630 0340
EFEESEATEFLF170M (1999)
5 (De5) 03127 03200
E= X y
= 0310 0595
= 0155 0070 Z1240M (1999)
a 0630 0340
5 (De5) 03127 03200

EPUB/images/image_005.jpg
e

EPUB/images/image_176.jpg
cplblur

partitions : P88 + p4x4 - bBx8 - i8X8 + i4x4 » none -+ all
direct-pred 254 : none(0) + spatial(1) - temporal(2) + auto(3)
slice-max-size |27 | 47E 575 AsizelE

stats

nal-hrd

avcintra-class

me_method otion-est

motion-est 274

forced-idr IR EREHUTIDRI

coder 254 445 : default ~ cavic ~ cabac ~ Vic - ac - Z=cavie=vic - cabac=ac

EPUB/images/image_349.jpg
SR ()
SHERE)
0 ()

 SRECVCLEBIN/ |

 Otemp

- 960x720
1280720
111111111111
 AutoCourse

- AutoCourse 1
- BaiduYunDows
beisai

ble
build-AutoCou
e

compat
Xz

libaveodec
Xtz

libavresample
P

libswscale.
B

gitattributes
S
05
Changelog
X
549K8

emdutis.o

