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译 者 序

本书全面讲述了现代编译器的结构、编译算法和实现方法，是 Andrew W.Apple 的"虎
书"——Modern Compiler Implementation——"红、蓝、绿"三序列之一。这三本书的内容基
本相同，但是使用不同的语言来实现书中给出的一个编译器。本书使用的是更适合广大读者的
C语言，而另外两本书分别采用 ML 和Java 语言。
国外关于编译技术有三本比较著名的书，分别被誉为"龙书""鲸书"和"虎书"。"虎书"
即本书，已经被国外许多著名大学选作编译原理课程的教材。编译器的设计与实现是一种实践
性很强的工程。作为讲述编译器实现方法的编译原理课程，既需要讲述理论和原理，也离不开
具体的实践。本书的章节按照编译器处理过程的各个阶段依次组织，并精心设计了一个"学生
项目编译器"的框架和模块接口。每一章结尾给出了与该编译器一个模块对应的编译器项目实
现的习题，使得学生在掌握了编译原理和方法的同时，能够理论联系实际地亲自动手体验具体
的实现过程，并逐步实现一个编译器。它弥补了目前一些编译原理教科书在实践方面的不足。
这是本书的特点之一。
本书的另一个特点是增加了一些其他编译原理教科书没有涉及的内容。前端增加了面向对
象的程序设计语言、函数式程序设计语言等现代语言的编译实现方法，后端增加了针对现代计
算机体系结构特征的一些比较成熟的优化方法。这部分内容展现了现代商业编译器需解决的一
些关键问题，开拓了学生的视野，为学生未来进行更深入的研究奠定了基础。
在翻译过程中，我们力图忠实于原文，使译文通顺流畅，并保持专用术语的译法与惯用的
一致。对于那些没有明确译法的术语，则根据原义拟定，并给出了英文以利读者对照。
本书第1~～4章由沈志宇翻译，第5～14章以及前言和附录由赵克佳翻译，第 15~21章由
黄春翻译。全书经过三人的反复校对，最后由赵克佳定稿。在本书的翻译中，我们深感阅读英
文专业书籍和较好地翻译出来是两回事。翻译好一本专业类图书除了要有相应的英文和专业功
底外，还要有比较好的中文功底。我们自感在这三方面都有所欠缺，难免会留有遗憾。衷心欢
迎读者批评指正，因为读者的批评指正对我们是极好的帮助。



前 言 

近十余年来，编译器的构建方法出现了一些新的变化。一些新的程序设计语言得到应用，
例如，具有动态方法的面向对象语言、具有嵌套作用域和一等函数闭包（first-class function clo-
sure）的函数式语言等。这些语言中有许多都需要垃圾收集技术的支持。另一方面，新的计算机
都有较大的寄存器集合，且存储器访问成为了影响性能的主要因素。这类机器在具有指令调度
能力并能对指令和数据高速缓存（cache）进行局部性优化的编译器辅助下。常常能运行得更快。
本书可作为一到两个学期编译课程的教材。学生将看到编译器不同部分中隐含的理论，学
习到将这些理论付诸实现时使用的程序设计技术和以模块化方式实现该编译器时使用的接口。
为了清晰具体地给出这些接口和程序设计的例子，我使用C语言来编写它们。本（序列）书还
有使用ML和Java语言的另外两个版本。

实现项目。我在书中概述了一个"学生项目编译器"，它相当简单，而且其安排方式也便于
说明现在常用的一些重要技术。这些技术包括避免语法和语义相互纠缠的抽象语法树，独立于
寄存器分配的指令选择，能使编译器前期阶段有更多灵活性的复写传播，以及防止从属于特定
目标机的方法。与其他许多教材中的"学生编译器"不同，本书中采用的编译器有一个简单而
完整的后端，它允许在指令选择之后进行寄存器分配。
本书第一部分中，每一章都有一个与编译器的某个模块对应的程序设计习题。在http∶//
www.cs.princeton.edu/~appel/modern/c中可找到对这些习题有帮助的一些软件。
习题。每一章都有一些书面习题;标有一个星号的习题有点挑战性，标有两个星号的习题较

难但仍可解决，偶尔出现的标有三个星号的习题是一些尚未找到解决方法的问题。

授课顺序。图0-1展示了各章相互之间的依赖关系。
A A

第5章第3章 第4章第2章

鲜学期；
语文分析抽象语法语法分析词法分析 8

第8章第6章 第7章 基本块和轨迹

学期/活动记录 翻译成中间代码
第12章第9章第1章 绪论 整合为 体一指令选择

挚学期，第11章。第10章
寄存器分配活跃分析

第19章第18章第17章
循环优化 静态单赋值形式数据流分析

学期第20章第16章第15章
流水和调度多态类型函数式程序设计语言

第21章第14章第13章 存储层次垃圾收集 面向对象的语言

图0-1 内容结构图



2 前 言

·一学期的课程可包含第一部分的所有章节<第1～12 章），同时让学生实现项目编译器
（多半按项目组的方式进行））。另外，授课内容中还可以包含从第二部分中选择的一些
主题。
·高级课程或研究生课程可包含第二部分的内容，以及另外一些来自其他文献的主题。第

二部分中有许多章节与第一部分无关，因此，对于那些在初始课程中使用不同教材的学
生而言，仍然可以给他们讲授高级课程。
·若按两个半个学期来安排教学，则前半学期可包含第1~8章，后半学期包括第9～12意
和第二部分的某些章。

致谢。对于本书，许多人给我提出了富有建设性的意见，或在其他方面给我提供了帮助。
我要感谢这些人，他们是 Leonor Abraido-Fandino、Scott Ananian，Stephen Bailey、Max Hailp-
erin、David Hanson、Jeffrey Hsu、David MacOueen、Torben Mogensen,Doug Morgan、Robert
Netzer,EIma Lee Noah、Mikael Petterson,Todd Proebsting、Anne Rogers、Barbara Ryder、Amr
Sabry、Mooly Sagiv、Zhong Shao、Mary Lou Soffa、Andrew Tolmach、Kwangkeun Yi 和 Kenneth
Zadeek。
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第一部分 编译基本原理

论第1章 绪 i”
编译器（compilcr）;原指一种将各个子程序装配组合到一起的程序 【连接-装配器】。当

1954年出现了（确切地说是误用了）复合术语"代数编译器"（algebraic compiler）之后，这个
术语的意思变成了现在的含义。

Bauer.和 Eickel 【1975】

本书讲述将程序设计语言转换成可执行代码时使用的技术、数据结构和算法。现代编译器
常常由多个阶段组成，每一阶段处理不同的抽象"语言"。本书的章节按照编译器的结构来组

织，每一章循序渐进地论及编译器的一个阶段。

为了阐明编译真实的程序设计语言时遇到的问题，本书以 Tiger语言为例来说明如何编译一
种语言。Tiger 语言是一种类 Algol 的语言，它有嵌套的作用域和在堆中分配存储空间的记录，

虽简单却并不平凡。每一章的程序设计练习都要求实现相应的编译阶段;如果学生实现了本书

第一部分讲述的所有阶段，便能够得到一个可以运行的编译器。将Tiger 修改成函数式的或面向
对象的（或同时满足两者的）语言并不难，第二部分中的习题说明了如何进行这种修改。第二

部分的其他章节讨论了有关程序优化的高级技术。附录描述了Tigcr 语言。
编译器各模块之间的接口几乎和模块内部的算法同等重要。为了具体描述这些接口，较好

的做法是用真正的程序设计语言来编写它们，本书使用的是C语言。 代当

1.1 模块与接口

对于任何大型软件系统，如果设计者注意到了该系统的基本抽象和接口，那么对这个系统的

理解和实现就要容易得多。图1-1展示了一个典型的编译器的各个阶段，每个阶段由一至多个软

件模块来实现。
将编译器分解成这样的多个阶段是为了能够重用它的各种构件。例如，当要改变此编译器所
生成的机器语言的目标机时，只要改变栈帧布局（Frame Layout）模块和指令选择（Instruction

Selcction）模块就够了。当要改变被编译的源语言时，则至多只需改变翻译（Translate）模块之前的模

块就可以了，该编译器也可以在抽象语法（Abstract Syntax））接口处与面向语言的语法编辑器相连。
每个学生都不应缺少反复多次"思考-实现-重新设计"，从而获得正确的抽象这样一种学习
经历。但是，想要学生在一个学期内实现一个编译器是不现实的。因此，我在书中给出了一个4
项目框架，其中的模块和接口都经过深思熟虑，而且尽可能地使之既精巧又通用。

抽象语法（Abstract Syntax）、IR树（IR Tree）和汇编（Assem）之类的接口是数据结构的

形式，例如语法分析动作阶段建立抽象语法数据结构，并将它传递给语义分析阶段。另一些接
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口是抽象数据类型;翻译接口是一组可由语义分析阶段调用的函数;单词符号（Token）接口是

函数形式，分析器通过调用它而得到输入程序中的下一个单词符号。

环境

表

抽象阁港单调符号颤稍序噩 眼树 鼠喇转换射约 汇编指令语义语法 朝义 赔译 规范化分析 选择分析动作

速
栈帧布局

审重追做代码蓄存器指糠 慧编诵音 剔器谐言肿突留汇编 澈图 奇存器 代码数据流控制流 连接器汇编器流出分析分析 分配

图1-1 编译器的各个阶段及其之间的接口

各个阶段的描述

第一部分的每一章各描述编译器的一个阶段，具体如表1-1所示。

表 1-1 编译器的各阶段

阶段章号 描 述
词法分析 将源文件分解为一个独立的单词符号。
m 语法分析 分析程序的短语结构

语义动作一 建立每个短语对应的抽章语法树

语义分析： 确定每个短语的含义，建立变量和其声明的关联，检查表达式的类型，翻译每个短语

枝顿布局师 按机器要求的方式将变量、雨数参数等分配于活跃记录（即栈帧）内

翻译 生成中间表示树（IR树），这是一种与任何特定程序设计语言和目标机体系结构无关的表示

如 规范化 提取表达式中的副作用、整理条件分支，以方便下一阶段的处理

a 指令选择 将 IR 树结点组合成与目标机指令的动作相对应的块

控制流分析10 分析指令的顺序并建立控制流图。此图表示程序执行时可能流经的所有控制流

收集程序变量的数据流信息。例如，活跃分析《livenessanalysis）计算每一个变量仍需使用数据流分析10
其值的地点（即它的活跃点）

为程序中的每一个变量和临时数据选择一个寄存器，不在同一时间活跃的两个变量可以共享
寄存器分配11 同一个寄存器

代码流出12 用机器寄存器替代每一条机器指令中出现的临时变量名



第1章 结者 论 3

这种模块化设计是很多真实编译器的典型设计。但是，也有一些编译器把语法分析、语义

分析、翻译和规范化合并成一个阶段，还有一些编译器将指令选择安排在更后一些的位置，并
且将它与代码流出合并在一起。简单的编译器通常没有专门的控制流分析、数据流分析和寄存

器分配阶段。

我在设计本书的编译器时尽可能地进行了简化;但并不意味着它是一个简单的编译器。具

体而言，虽然为简化设计而去掉了一些细枝末节，但该编译器的结构仍然可以允许增加更多的
优化或语义而不会违背现存的接口。

1.2 工具和软件

现代编译器中使用的两种最有用的抽象是上下文无关文法（context-free grammar）和正则

表达式（regular expression）。上下文无关文法用于语法分析，正则表达式用于词法分析。为了
更好地利用这两种抽象，较好的做法是借助一些专门的工具，例如 Yacc（它将文法转换成语法

分析器）和Lex（它将一个说明性的规范转换成一个词法分析器）。

本书的程序设计项目可借助Lex（或更为现代的 Flex）和 Yace（或更为现代的 Bison），用
任何 ANSI标准C编译器来编译。这些工具中有些可免费从因特网上得到，更多的信息可参看

yo网页∶http∶//www. cs， princeton. edu/appel/modern/c/。

Tiger 编译器中某些模块的源代码、某些程序设计习题的框架源代码和支持代码、Tiger 程

序的例子以及其他一些有用的文件都可以从该网址中找到。本书的程序设计习题中，当提及特

6定子目录或文件所在的某个目录时，指的是目录$TIGER/。

1.3 树语言的数据结构

编译器中使用的许多重要数据结构都是被编译程序的中 间表示。这些表示常常采用树的形

式，树的结点有若干种类型，每一种类型都有一些不同的属性。这种树可以作为图1-1所示的

许多阶段的接口。

树表示可以用文法来描述，就像程序设计语言一样。为了介绍有关概念，我将给出一种简

单的程序设计语言，该语言有语句和表达式，但是没有循环或if语句 【这种语言称为直线式程

序（straight-line program）语言】。
该语言的语法在文法1-1中给出。

文法1-1 直线式程序设计语言

Stm →Sim;SIm (CompoundStm) Eplist→Ep,ExpList (PairExpList)Stm→id :-Ep (AssignStm) (LastExpList)ExplList → ExpSm → print(Explist)(PrintStm) Binop →十 (Plus)(dExp)Eyp→ 1d Binop →- (Minus)(NumExp)Exp→ num (Times)Binop→x(OpExp)Ep → Eep Binop Ep (Div)Binop →I(EsqExpEp→(Stm,Exp)

这个语言的非形式语义如下。每一个Stm是一个语句，每一个Exp 是一个表达式。8;8表

示先执行语句s，再执行语句 s。i∶=e表示先计算表达式e的值，然后把计算结果赋给变量 i。
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print（e，e∶⋯，e。）表示从左到右输出所有表达式的值，这些值之间用空格分开并以换行符
结束。
标识符表达式，例如i，表示变量 i的当前内容。数按命名它的整数计值。操作符表达式

e;ope∶表示先计算e;再计算e;，然后按给定的二元操作符计算表达式结果。表达式序列（s，e）
的行为类似于 C语言中的逗号操作符，在计算表达式e（并返回其结果）之前先计算语句 s的

副作用。了
例如，执行下面这段程序;

a :=5+3; b :=(print (a,a-1),10*a); print(b)

将打印出∶
8 7
80

那么，这段程序在编译器内部是如何表示的呢?一种表示是源代码形式，即程序员所编写
的字符，但这种表示不易处理。较为方便的表示是树数据结构，每一条语句（Strm）和每一个
表达式（Exp）都有一个树结点。图1-2给出了这个程序的树表示，其中结点都用文法 1-1 中产
生式的标识加以标记，并且每个结点的子结点数量与相应文法产生式右边的符号个数相同。

CompoundStm

CompoundSImAssignStm
PrinfStmOpFExp AssinStm看
LasExpLitNoumExp O EscqExpNumExp Pus
IdExp’目 OpExpPrifStm ；岳

ParExpList ldExpNumExp Times
，谁ldFxP LasrExpList 10

OpExp。善

IdExpMinus NumExp
·时

a:5＋3;b:(print(a,a-1),10*a);print(b)
图1-2 直线式程序的树表示

我们可以将这个文法直接翻译成数据结构定义，如程序1-1所示。每个文法符号对应于这
些数据结构中的一个 typedef∶命
文法 typeder

A stmSam-
EO A_exp

A.cxpListEeplist
stingid
int羟um
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程序1-1 直线式程序的表示

typedef char *string;
typedef atruct A_stm_*A_8tm;
typedet struct A_exp_*A_exp;
typedef struct A_expList_·A_exptist;
typedef enum{A_plus,A_minus,A_times,A_div}A_binop;

struet A_stm_(enum{A_compoundStm,A_assignStm,A_printStm}kind;
union{(struct{A_stm stml, stm2;}compound;
struct{string id;A_exp exp;}asaign;
struct {A_expLiet exps]print;
)u;
1

A_stm A_CompoundStm(A_stm stm1,A_stm stm2);
A_stm A_AsignStm(string id,A_exp exp);
A_stm A_PrintStm(A_expList exps);

struct A_exp_(enum{A_idExp,A_numExp,A_opExp,A_eseqBxp)kind;
union(string id;
int num
struct {A_exp 1eft;A_binop oper; A_exp right;] op;
struct(A_stm stm; A_exp expi}eseq;
一白”:

A_exp A_IdExp (string id);
A_exp A_NumBxp(int num);
A_exp A_OpExp(A_exp left,A_binop oper,A_exp right);
A_exp A_EseqExp (A_stm stm,A_exp exp);

(enum {A_pairBxpList,A_1astExpList)kind;struct A_expLAist__{
union(struct {A_exp head;A_expList tall;)pair;
A_exp laat;
一占”
);

每一项文法规则都有一个构造器（constructor），隶属于规则左部符号的联合（union）。这

些构造器的名字在文法1-1各项右部的括号内。
每一项文法规则有若干右部成分，这些成分都必须用数据结构来表示。例如，CompoundStm

的右部有两个 Stm;AssignStm有一个标识符和一个表达式，等等。表示每一个文法符号的结构

（struct）都含有一个联合（union）和一个kind域，前者用于存放可选的成分值，后者用于指

明选用这个联合中的哪一个成员。

对于每一种选择（CompoundStm、AssignStm 等），我们创建一个构造函数（constructor

function），它用 malloc 为此数据结构分配空间并对其进行初始化。程序1-1 只给出了这些函数的
原型;A CompoundStm可这样定义∶

A atm A CompoundStm(A stm stm1,A stm atm2)(
A stm s =checked malloc(sizeof(*g));
g->kind =A_CompoundStm;
8->u,Compound.stm1-stm1; s->u.compound,stm2=stm2;
return ⑧;

二元操作符（Binop）的情形要简单些。尽管我们也可以为 Binop 创建一个结构（此结构中
的联合的成员分别表示 Plus、Minus、Times、Div），但这样做是多余的，因为这些成员并不存放数



第一部分 编译基本原理6 鼻

据。我们为它定义的是一个枚举类型A_binop。

程序设计风格。在用C表示树数据结构时，我们遵循以下一些约定。

（1）树都用文法来描述。

（2）一棵树用一至多个 typedef 来描述，每个 typedef 对应文法中的一个符号。

（3）每个 typedef定义一个指向相应 struct 的指针。这个 struct的名字以下划线结束，它

除了在 typedef 的声明中和该结构定义本身中出现外，决不会在其他地方使用。
（4）每个struct有一个kind域和一个u域。kind是一个指明不同选择的枚举量，每个枚举

值对应一个可选的文法规则;u是一个联合。e
（5）如果一个规则的右部有多个非平凡的（即携带有值的）符号（例如，规则Compound-

Stm），则它的 union有一个本身也是结构的成员给出组成它的这些值（例如，A_st_联合中的

成员compound）。
（6）如果一个规则的右部只有一个非平凡的符号，则它的 union有一个就是其值的成员

（例如，A_exp联合中的成员 num）。

（7）每个类有一个对所有成员进行初始化的构造函数。除了在这些构造函数中，其他地方

绝不会直接调用 malloc 函数。[10
（8）每一个模块（头文件）有一个唯一标识该模块的前缀（例如，程序1-5中的A）。

（9类型定义名（位于前缀之后的）应当用小写字母开头，构造函数名（位于前缀之后）
用大写字母开头，联合的成员（它们没有前缀）用小写字母开头。

C程序的模块化规则。编译器是一个很大的程序，仔细地设计模块和接口能避免混乱。在用

C编写一个编译器时，我们将使用如下一些规则。

（1）编译择器的每个阶段或者模块都应归入各自的".c" 文件，且该文件有对应的".h" 文件。

（2）每个模块应有该模块唯一的前级。由此模块导出的所有全局名字（结构和联合的成员

名字不是全局的）都应以此前级打头。这样，文件的阅读者就不必通过到文件之外去查找来确

定一个名字的来源了。

（3）所有函数都应有函数原型;如果使用了没有原型的函数，C编译器将给出警告信息。

（（4）我们将在每一个文件中用#include "uti1.h"包含 util.h∶

/*util.h *7
#include <assert.h>

typedef char *string;
string String(char *):

typedef char bool;
#define TRUE 1
#define FALSB 0

void *checked_malloc(int):

包含 assert.h是为了鼓励C程序员多使用断言。

（5）string类型表示分配在堆中的字符串，这种字符串在初次创建之后便不会再改变。函

数 String从C风格的字符指针来创建一个分配在堆中的字符串 string（类似于标准C库函数
strdup）。那些以string作为参数的函数都假定这些参数的内容决不会改变。

（6）C的malloc 函数在无内存空间可分配时返回 NUL，Tiger 编译器没有复杂的内存管理



第1章绪 论 7

来处理这种情形。相反，它从不直接调用 malloc，而只调用我们自己的函数 checked_malloc， 11
这个函数保证不会返回NUL;

void *checked_malloc (int len){
vold *p = malloc(1en);
aesert (p);
return p;

（7）我们也绝不调用 free。当然，达到软件成品级质量的编译器必须释放无用数据以避免

浪费内存空间。做到这一点最好的方法是使用第13章介绍的自动垃圾收集器（见第13章"推

荐阅读"中的保守收集）。没有垃圾收集器的支持，当结构 p即将变成不可访问时，程序员必须

特别小心地调用free（p）——既不能太迟，太迟了指针p将丢失;也不可太早，太早了会释放仍
然有用的数据（然后被改写）。为了能够使我们的精力更集中于编译技术而不是内存释放技术，

可以简单地不做任何释放动作。

程序设计∶直线式程序解释器

为直线程序设计语言实现一个简单的程序分析器和解释器。对环境（即符号表，它将变量

名映射到这些变量相关的信息）、抽象语法（表示程序的短语结构的数据结构）、树数据结构的
递归性（它对于编译器中很多部分都是非常有用的）以及无赋值语句的函数式风格程序设计，
这可作为入门练习。

这个练习也可以作为C程序设计的热身。熟悉其他语言但对 C语言陌生的程序员应该也能

完成这个习题，只是需要有关C语言的辅助资料（如教材）的帮助。
需要进行解释的程序已经被分析为抽象语法，这种抽象语法如程序1-5 中的数据类型所示。

但是，我们并不希望涉及该语言的具体分析细节，因此利用了相应数据的构造器来编写该程

序∶

A_stm prog =
A_Compoundstm(A_A8signStm("a",

A_OpExp (A_NumExp(5),A_plus,A_NumBxp (3))),
A_CompoundStm(A_As8ignStm("b",
A_BseqExp(A_PrintStm(A_PairExpList(A_IdExp("a"),

A_LastBxpList(A_OpBxp(A_TdExp("a"),A_minus,
A_NumExp(1))))),

A_OpExp(A_NumExp (10),A_times,A_IdExp("a")))),
A_PrintStm(A_LastExpList(A_IdExp("b")))));

[12]
在目录sTIGER/chap1中可以找到包含树的数据类型声明的文件以及这个样板程序。

编写没有副作用（即更新变量和数据结构的赋值语句）的解释器是理解指称语义（denota-
tional semantic）和属性文法（attribute grammar）的好方法，后两者都是描述程序设计语言做

什么的方法。对编写编译器而言，它也常常是很有用的技术，因为编译器也需要知道程序设计

语言做的是什么。
因此，在实现这些程序时，除了初始化，绝不要给任何变量或结构成员赋予新值。对于局

部变量，要使用带初始化的声明形式（例如，int i=j+3;）;对于每一种结构《struct），要类

似于程序1-1中的A_CompoundStm那样，用一个构造函数来分配它并给它的各个成员赋初值。

（1）写一个函数 int maxargs（A_stm），告知给定语句中任意子表达式内的 print语句的参数
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个数。例如，maxargs（prog）的值是2。
（2）写一个函数 void interp（A_stm），对一个用这种直线式程序语言写的程序进行"解

释"。为了用"函数式程序设计"风格来编写该函数（这种风格不使用赋值语句），要在声明局
部变量的同时对它进行初始化。

关于（1），注意 print语句中可能含有表达式，而这些表达式中也可能还含有其他 print语

句。
关于（2），构造两个互相递归的函数 interpStm 和 interpExp。将一个标识符映射到赋给此

标识符的整数值的"表"，表示成由 id×int 偶对组成的表。

typedef struct table *Table_;
8truct table {string id; int value;Table tail:l;
Table_Table(string id,int value,struct table*tail){
Table t =malloc (sizeof (*t));
t->idid;t->value=value; t->tal1=tall;
return t;-
空表表示为 NULL。于是 interpStm的声明为∶

Table_interpStm(A_gtm 8,Table_t)

它以表t作为参数并生成一张新表t，新表t;与t;基本相同，不同的只是作为该语句的结果，

13] 有些标识符被映射到了不同的整数。
例如，表t;将a映射到3，c 映射到4，用数学符号记为la →3，c →4}，也可以表示成

链表 a3→【Cl4Z。
现在，令表t∶就像表t1，不同的是，c映射到7而不是4。数学上我们可以将它写为

∶=update（i，它，7）
其中函数 update 返回一个新表|a→3，c →7}。

在计算机中，只要我们假设在链表中 c 的第一次出现优先于它较后的任何出现，就可通过
在表头插入一个新元素来实现新表t∶【C7→a|3→【C4。
因此，update 函数很容易实现，而与之相应的 lookup 函数

int 1ookup(Table_t,atring key)

则只要沿链表向前搜索即可。

表达式的解释要比语句的解释复杂一些，因为表达式返回整型值且有副作用。我们希望解

释器本身在模拟直线程序设计语言的赋值语句时不产生任何副作用（但是 print语句将由解释

器的副作用来实现）。实现它的方法是将 interpExp 声明为∶

atruct IntAndTable{int i; Table_t;};
struct IntAndTable interpExp(A_exp e,Table_t)..

用表1解释表达式e的结果是得到一个整型值 i和一个新表1，。当解释一个含有两个子表达式
的表达式（例如 OpExp）时，由第一个子表达式得到的表t，可以继续用于处理第二个子表达式。

推荐阅读

Hanson【1997】描述了用C 语言编写模块化软件的原则。
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[14]

习题
1.1 下面这个简单的程序实现了一种长效的（persistent）函数式二叉搜索树，使得如果 tree2=
insert（x，treel），则当使用 tree2时，treel仍可以继续用于查找。

typedef atruct tree *T_tree;
struct tree{T_tree left; String key;T_tree right;};
T_tree Tree(T_tree 1,String k,T_tree r)(

T_tree t = checked_malloc《sizeof(*t));
t-sleft=l;t->key=k; t->right=r;return t;

T_tree insert(String key,T_tree t){
if (t==NULL)return Tree (NULL,key,NULL)
else if(strCmp (key,t->key)< 0)

return Tree(insert(key,t->left),t->key,t->right);
else if(strcmp(key,t->key)>0)
return Tree(t->left,t->key,insert(key,t->right));

else return Tree(t->left,key,t->right);

a.实现函数 member，若查找到了相应项，返回 TRUE;否则返回 FALSE。
b.扩充这个程序使其不仅能判别成员关系，而且还能将键值映射到其绑定层。

T_tree insert(string key,void *binding,T_tree t);
void  lookup(atring key,T_tree t);

c.这个程序构造的树是不平衡的;用下述插入顺序说明树的形成过程;

(i)ts pip f bst
(ii) a bcd efg h i
"d.研究 Sedgewick【1997】中讨论过的平衡搜索树。并为函数式符号表推荐一种平衡树数

据结构。提示∶为了保持函数式风格，算法应该在插入时而不是在查找时保持树的平

衡，因此，不适合使用类似于自调整树（splay tree）这样的数据结构。 15
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词法的（lex-i-cal）;与语言的单词或词汇有关，但有别于语言的文法和结构。

韦氏词典

为了将一个程序从一种语言翻译成另一种语言，编译器必须首先把程序的各种成分拆开，

并搞清其结构和含义，然后再用另一种方式把这些成分组合起来。编译器的前端执行分析，后
端进行合成。
分析一般分为以下3种。

·词法分析∶将输入分解成一个个独立的词法符号，即"单词符号"（token），简称单词"。
●语法分析;分析程序的短语结构。

·语义分析∶推算程序的含义。

词法分析器以字符流作为输入，生成一系列的名字、关键字和标点符号，同时抛弃单词之

间的空白符和注释。程序中每个地方都有可能出现空白符和注释，如果让语法分析器来处理它

们就会使得语法分析过于复杂，这便是将词法分析从语法分析中分离出去的主要原因。

词法分析并不太复杂，但是我们却使用能力强大的形式化方法和工具来实现它，因为类
似的形式化方法对语法分析研究很有帮助，并且类似的工具还可以应用于编译器以外的其他

领域。16]

2.1 词法单词

词法单词是字符组成的序列，可以将其看作程序设计语言的文法单位。程序设计语言的词

法单词可以归类为有限的几组单词类型。例如，典型程序设计语言的一些单词类型为∶

类型 例子
1ID lastfoo n14 ]

NUM 73 0 00 515 082
REAL 66.1.5 10. 1e67 5.5e-10
if1-

COMMA
NOTEQ =：’LPAREN rRPAREN

IF、VOID、RETURN等由字母字符组成的单词称为保留字（reserved word），在多数语言
中，它们不能作为标识符使用。

①"token"一词在不少书中翻译成"记号"、我们认为比较贴切的翻译应当是"单词符号"。它是程序设计语言中
"具有独立含义的最小词法单位"，在这个意义上与自然语言中的"单词"的词义相同。但是，它们又不完全相

同。因为这里的"token"不仅仅包括"词"。还包括标点符号、操作符、分隔符等。将它翻译成"单词符号"正

是为了体现这一点。但为了简洁起见，我们使用"单词"一词。——译者注



11第2章 词法 分析

非单词的例子是;

注释 /* try again *)
#生nclude<stdio，h>预处理命令
#define NUMS 5,6预处理命令 NUMS宏

空格符、制表符和换行符

在能力较弱而需要宏预处理器的语言中，由预处理器处理源程序的字符流，并生成另外的

字符流，然后由词法分析器读人这个新产生的字符流。这种宏处理过程也可以与词法分析集成

到一起。
对于下面一段程序∶

f1oat matchO (char *s)/*find a zero */
{if(!strncmp(s,"0.0",3))

return 0.

词法分析器将返回下列单词流;

ID(a) RPARENID(match0) LPAREN CHAR STAR IFLOAT 

LBRACE IF LPAREN BANG ID(strncmp) LPAREN ID(s) 17
STRING(0.0) COMMA NUM(3) RPAREN RPARENCOMMA
REAL(0.0) SEM1 RBRACE EOFRETURNI

其中报告了每个单词的单词类型。这些单词中的一些（如标识符和字面量）有语义值与之相连，

因此，词法分析器还给出了除单词类型之外的附加信息。

应当如何描述程序设计语言的词法规则?词法分析器又应当用什么样的语言来编写呢?

我们可以用自然语言来描述一种语言的词法单词。例如，下面是对C或Java中标识符的一

种描述∶
标识符是字母和数字组成的序列，第一个字符必须是字母。下划线""视为字

母。大小写字母不同。如果经过若干单词分析后输入流已到达一个给定的字符，则下
一个单词将由有可能组成一个单词的最长字符串所组成。其中的空格符、制表符、换

行符和注释都将被忽略，除非它们作为独立的一类单词。另外需要有某种空白符①来分

隔相邻的标识符、关键字和常数。

任何合理的程序设计语言都可以用来实现特定的词法分析器。我们将用正则表达式的形式
语言来指明词法单词，用确定的有限自动机来实现词法分析器，并用数学的方法将两者联系起

来。这样将得到一个简单且可读性更好的词法分析器。

2.2 正则表达式

我们说语言（language）是字符串组成的集合，字符串是符号（symbol》的有限序列。符号
本身来自有限字母表（alphabet）。

①注意，"空白符"是空格符、制表符、换行符等的统称、——译者注
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Pascal语言是所有组成合法 Pascal 程序的字符串的集合，素数语言是构成素数的所有十进

制数字字符串的集合，C语言保留字是C程序设计语言中不能作为标识符使用的所有字母数字

字符串组成的集合。这3种语言中，前两种是无限集合，后一种是有限集合。在这3种语言中，

字母表都是ASCII字符集。

以这种方式谈论语言时，我们并没有给其中的字符串赋予任何含义。而只是企图确定每个

字符串是否属于其语言。

18] 为了用有限的描述来指明这类（很可能是无限的）语言，我们将使用正则表达式（regular
expression）表示法。每个正则表达式代表一个字符串集合。
·符号（symbol）;对于语言字母表中的每个符号a，正则表达式a表示仅包含字符串a的

语言。
·可选（alternation）;对于给定的两个正则表达式 M 和N，可选操作符（|）形成一个新

的正则表达 M|N。如果一个字符串属于语言 M或者语言N，则它属于语言 M|N。因
此，a|b组成的语言包含a和b 这两个字符串。

·联结（concatenation）;对于给定的两个正则表达式 M和N，联结操作符（·）形成一个
新的正则表达式 M·N。如果一个字符串是任意两个字符串α和β的联结，且α属于语言

M，β属于语言N，则该字符串属于 M·N组成的语言。因此，正则表达式（a|b）·a定

义了包含两个字符串 aa和 ba 的语言。

·e（epsilon）;正则表达式e表示仅含一个空字符串的语言。因此，（a·b）|表示语言

{"","ab"。
·重复（repetition）∶对于给定的正则表达式 M，它的克林闭包（Kleene closure）是 M*。

如果一个字符串是由 M中的字符串经零至多次联结运算的结果，则该字符串属于 M*。
因此，（（a|b）·a）*表示无穷集合!""，"aa"，，"ba"，"aa"，"baa"，"aaba"，"baba"，

"aaa",⋯.I。
通过使用符号、可选、联结、和克林闭包，我们可以规定与程序设计语言词法单词相对应

的 ASCII字符集。首先，考虑若干例子∶
(0/1)*-0 由2的倍数组成的二进制数。

b*(ab*)"*(alc) 由a和 b组成，但a不连续出现的字符串。

(a|b)"a(alb)* 由 a和b组成，且有连续出现a的字符串。

在书写正则表达式时，我们有时会省略联结操作符或c符号，并假定克林闭包的优先
级高于联结运算，联结运算的优先级高于可选运算，所以 ab|c表示（a·b）|c，而（a|）

表示（ae）。
还有一些更为简洁的缩写形式∶【abed】表示（a|b|c|d），【b-g】表示【bcdefg】，【b-gM-Qkr】表

示【bcdefgMNOPOkr】，M?表示（M」e），M+表示（M。M*）。这些扩充很方便，但它们并没有

扩充正则表达式的描述能力;任何可以用这些简写形式描述的字符串集合都可以用基本操作符

集合来描述。图2-1概括了所有这些操作符。

使用这种语言，我们便可以指明程序设计语言的词法单词（见图 2-2）。对于每一个单词，

我们提供一段 C代码，报告识别的是哪种单词类型。八
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e 一个表示字符本身的原始字符。 空字符串
空字符申的另一种写法

M 1N 可选，在 M和N之间选择
M-N 联结，M之后跟随N

AIN 联结的另一种写法

M* 重复（0次或0次以上）

长” 重复（1次或1次以上）

M? 选择，M的0次或1次出现

字符集[a-xA-7]

句点表示除换行符之外的任意单个字符

引号，引号中的字符串表示文字字符串本身4
图2-1 正则表达式表示符号

{return IF;}if
{return ID;}[a-z](a-20-91*
(return NUM;}[0-9]+
(return REAL;}([0-9]+"."[0-9]*)|([0-9]*"."[0-9]+)
/*什么也不徽气}("--"[a-z]*"\n")|(""|"\n"|"\t")+
(error():)

图2-2 某些单词的正则表达式

图 2-2第5行的描述虽然识别注释或空白，但是不提交给语法分析器，而是忽略它们并重新

开始词法分析。这个分析器识别的注释以两个短横线开始，且只包含字母字符，并以换行符结束。
最后，词法规范应当是完整的，它应当总是能与输入中的某些初始子串相匹配;使用一个

可与任意单个字符相匹配的规则，我们便总能做到这一点（在这种情况下，将打印出"illegal

character"错误信息，然后再继续进行）。
图 2-2中的规则存在着二义性。例如，对于 if8，应当将它看成一个标识符，还是两个单词

if和8?字符串 if 89是以一个标识符开头还是以一个保留字开头?Lex和其他类似的词法分析

器使用了两条消除二义性的重要规则。
·最长匹配;初始输入子申中，取可与任何正则表达式匹配的那个最长的字符串作为下一

个单词。
·规则优先∶对于一个特定的最长初始子串，第一个与之匹配的正则表达式决定了这个子 20
串的单词类型。也就是说，正则表达式规则的书写顺序有意义。

因此，依据最长匹配规则，if8是一个标识符;根据规则优先，if是一个保留字。

2.3 有限自动机

用正则表达式可以很方便地指明词法单词，但我们还需要一种用计算机程序来实现的形式

化方法。可以使用有限自动机达到此目的。有限自动机有一个有限状态集合和一些从一个状态

通向另一个状态的边，每条边上标记有一个符号;其中一个状态是初态，某些状态是终态。
图2-3给出了一些有限自动机的例子。为了方便讨论，我们给每个状态一个编号。每个例

子中的初态都是编号为1的状态。标有多个字符的边是多条平行边的缩写形式;因此，在机器

ID中，实际上有26条边从状态1通向状态 2，每条边用不同的字母标记。
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/a-za一富

(e 0-90-9查一呈一 (.位 ②六言 0-9()

NUMIDIF

（岛)→②-→Q0-9

0-9 a-z
(-] 空格符，等等c

(v) 空格符，等等）
() ()6-9+⑤p0-; 除了六m降

REAL 空自 error
图2-3 词法单词的有限自动机。圆圈表示状态，双圆圈表示终态。初态是进入
边没有来源的状态。标有多个字符的边是多条平行边的缩写21

在确定的有限自动机（DFA）中，不会有从同一状态出发的两条边标记为相同的符号。

DFA 以如下方式接收或拒绝一个字符串∶从初始状态出发，对于输入字符串中的每个字符，自
动机都将沿着一条确定的边到达另一状态，这条边必须是标有输入字符的边。对 n个字符的字

符串进行了n次状态转换后，如果自动机到达了终态，自动机将接收该字符串。若到达的不是
终态，或者找不到与输人字符相匹配的边，那么自动机将拒绝接收这个字符串。由一个自动机

识别的语言是该自动机接收的字符串集合。

例如，显然，在由自动机ID识别的语言中，任何字符串都必须以字母开头。任何单字母都

能通至状态2，因此单字母字符串是可被接收的字符串。从状态2出发，任何字母和数字都将重

新回到状态2，因此一个后跟任意个数字母和数字的字母也将被接收。

事实上，图2-3 所示的自动机接收的语言与图2-2 给出的正则表达式相同。
图2-3中是6个独立的自动机，如何将它们合并为一个可作为词法分析器的自动机呢?我们

将在下一章学习合并它们的形式方法;在这里只给出合并它们后得到的机器，如图2-4所示。

22] 机器中的每个终态都必须标明它所接收的单词类型。在这个自动机中，状态 2是自动机 IF的状
态2和自动机 ID的状态 2的合并;由于状态2是自动机 ID的终态，因此这个合并的状态也必

须是终态。状态3与自动机 IF的状态3 和自动机 ID的状态 2相同，因为这两者都是终态，故

我们使用消除二义性的规则优先原则将状态3的接收单词类型标为IF。之所以使用规则优先原

则是因为我们希望这一单词被识别为保留字，而不是标识符。

这个自动机可用一个转换矩阵来表示。转换矩阵是一个二维数组（一个元素为向量的向
量），数组的下标是状态编号和输入字符。其中有一个停滞状态（状态0），这个状态对于任何输

入字符都返回到自身，我们用它来表示不存在的边。

int edges[[256]={/*⋯0 1 2⋯-·e fg h ij.*/
/* state 0 [0.0...0.0,00..0.0.0,0.0,0-
/* state 1 */ 0,0.⋯7,7.7.⋯94.4,4.4.2,4⋯
/* state 2*/ 0,0.⋯4.4.4⋯04.3.4.4.4,4
/*=tate 3 */ (0.0.4,4,4⋯0.4,4.4,4,4,4-
/* state 4* {0,0.⋯4,4.4⋯04,4,4,4,4,4⋯
/*8tate 5* {0,0,6.6,6·0-0,0,0,0,0,0}
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(0,0,6,6,6.00,0,0.0,0,0.J,/* state 6*/
/* state 7*/ (0,0,7,7,7.+0..0,0,0,0,0,0..)
/* state 8*/ {0,0..·8,8,8-.0⋯·0,0,0,0,0,0-.l,
et cetera

另外还需要有一个"终结"（finalitv）数组，它的作用是将状态编号映射至动作。例如，终态 2

映射到动作ID.等等。

a-6,g-z,0-9
REAL.1D博b O-9erEO0-9,8-E偏 ⑥区() ((-) 0-9 [0-9

a-z)

调、 0-9 0-9
0-9 ③：

当装 PEAL空格符，等等
其他

‘呼 -①O空格符，
剑它一 空白等等 error

密 ●rror 雪；解

图2-4 合并后的有限自动机

识别最长的匹配

很容易看出如何使用转换矩阵来识别一个字符串是否会被接收，但是词法分析器的仔务是

要找到最长的匹配，因为输入中最长的初始子串才是合法的单词。在进行转换的过程中，词法

分析器要一直追踪迄今见到的最长匹配以及这个最长匹配的位置。
追踪最长匹配意味着需要用变量 Last-Final（最近遇到的终态的编号）和 Input-Position-

at-Last-Final来记住自动机最后一次处于终态时的时机。每次进入一个终态时，词法分析器都
要更新这两个变量;当到达停滞状态（无出口转换的非终态状态）时，从这两个变量便能得知
所匹配的单词和它的结束位置。

图2-5 说明了词法分析器识别最长匹配的操作过程。注意，当前输人位置可能相距识别器

最近到达终态时的位置已很远。

23]
2.4 非确定有限自动机

非确定有限自动机（NFA）是一种需要对从一个状态出发的多条标有相同符号的边进行选

择的自动机。它也可能存在标有e（希腊字母）的边，这种边可以在不接收输人字符的情况下进

行状态转换。
下面是一个NFA的例子;

四 晶甚合a

24]aa
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接收当前最后的 当前
动作输入状态终态o - --not-a-com函传”， e -not-a-com控

言 v H置--not-a-com
ml 返回FAF--not-a-como0 if--not-a-com下，
12 i到I-not-a-com人e 找到空白;重新开始I2 i科Ttnot-a-com

回 if下-not-a-com、：
呼 O if Hnot-a-com
O ff Hpot-a-com音 i Hnpt-a-com10略
④ 10 ifng-a-como if|Tnotra-com10e护一 错误;非法单词"-";重新开始if |not-p-come - if 士not-a-como 0 if -Hhot-a-com0申 错误;非法单词"-";重新开始if-+hot-a-com

图 2-5 图2-4中自动机识别的几个单词。符号"|"指出每次调用词法分析器时的输入位置，符号
"上"指出自动机的当前位置，符号"T"指出自动机最近一次处于终态时的位置

在初态时，根据输人字母 a，自动机既可向左转换，也可向右转换。若选择了向左转换，则接收

的是长度为3的倍数的字符串;若选择了向右转换，则接收的是长度为偶数的字符串。因此，

这个NFA识别的语言是长度为2 的倍数或3 的倍数的所有由字母 a组成的字符串的集合。

在第一次转换时，这个自动机必须选择走哪条路。如果存在着任何导致该字符串被接收的

可选择路径，那么自动机就必须接收该字符串。因此，自动机必须进行"猜测"，并且必须总是

做出正确的猜测。

标有e的边可以不使用输入中的字符。下面是接收同样语言的另一个NFA∶

6 a需，属◆
a◆

同样地，这个自动机必须决定选取哪一条e边。若存在一个状态既有一些e边，又有一些标

有符号的边，则自动机可以选择接收一个输入符号（并沿着标有对应符号的边前进），或者选择

沿着e边前进。

2.4.1 将正则表达式转换为NFA

非确定的自动机是一个很有用的概念，因为它很容易将一个（静态的、说明性的）正则表

达式转换成一个（可模拟的、准可执行的）NFA。
转换算法可以将任何一个正则表达式转换为有一个尾巴和一个脑袋的NFA3。它的尾巴即
开始边，简称为尾∶脑袋即末端状态，简称为头。例如，单个符号的正则表达式a转换成的

NFA为∶

①就像一-只蝌蚪。——译者注
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a

由a和b经联结运算而形成的正则表达式 ab对应的 NFA是由两个 NFA 组合而成的，即将

a的头与b的尾连接起来。由此得到的自动机有一个用a标记的尾和一个从b边进入的头。 25
偏 6
一般而言，任何一个正则表达式 M都有一个具有尾和头的NFA∶

M

我们可以归纳地定义正则表达式到 NFA 的转换。一个正则表达式或者是原语（单个符号或

e），或者是由多个较小的表达式组合而成。类似地，NFA或者是基本元素，或者是由多个较小

的NFA组合而成。
图2-6展示了将正则表达式转换至 NFA的规则。我们用图 2-2 中关于单词 IF、ID、NUM

以及 error的一些表达式来举例说明这种转换算法。每个表达式都转换成了一个 NFA，每个
NFA的头是用不同单词类型标记的终态结点，并且每一个表达式的尾汇合成一个新的初始结

点。由此得到的结果（在合并了某些等价的 NFA状态之后）如图2-7 所示。

M+ 构造为M·M"建

程 构造为 M eM?素
重M4 C
（动[abe]M7 1N
，

M.N "abc- 构造为a·b.cN

M" M

图 2-6 正则表达式至 NFA的转换

卟等 o a-g( 6 _ID②)- 8⑥ O-：： ()一式’ 0-9w 通
色一  如

率、 Oe
NUIMo 臀
带任何 ：：：) -③洛吗合error XoGO工也 亨o
、四字符

26]图2-7 由4个正则表达式转换成的一个NFA
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2.4.2 将NFA转换为DFA

如在2.3节看到的，用计算机程序实现确定的有限自动机（DFA）较容易。但实现 NFA则
要困难一些，因为大多数计算机都没有足够好的可以进行"猜测"的硬件。

通过一次同时尝试所有可能的路径，可以避免这种猜测。我们用字符串 in 来模拟图 2-7的
NFA。首先从状态 1开始。现在，替代猜测应采用哪个c转换，我们只是说此时NFA 可能选择

它们中的任何一个，因此，它是状态{1，4，9，14}当中的任何一个，即我们需要计算{1的e闭包。

显然，不接收输入中的第一个字符，就不可能到达其他状态。
现在要根据字符i来进行转换。从状态1可以到达状态 2，从状态4可到达状态5，从状态

9则无处可去，而从状态14则可以到达状态15，由此得到状态集合{2.5，15}。但是，我们还必
须计算e闭包∶从状态5有一个e转换至状态8，从状态8有一个e转换至状态6。因此这个NFA
一定属于状态集合}2，5，6，8，15}。
对于下一个输人字符n，我们从状态6可到达状态7，但状态 2、5、8和15都无相应的转换。

因此得到状态集合{71，它的e闭包是{6，7，8}。

现在我们已到达字符串 in 的末尾，那么，这个NFA是否已到达了终态呢?在我们得到的
可能状态集合中，状态8是终态，因此 in是一个ID单词。

我们形式化地定义c闭包如下。令 edge（s.c）是从状态s沿着标有c 的一条边可到达的所有

NFA状态的集合。对于状态集合S，closure（S）是从S中的状态出发，无需接收任何字符，即只[27
通过c边便可到达的状态组成的集合。这种经过e边的概念可用数学方式表述，即 closure（S）是满
足如下条件的最小集合T∶

了之污考之
我们可用迭代法来算出 T∶

T+Srepeat T'←-7
T-T'U(Uner.edge(s,e))

until7=7'
这个算法为什么是正确的?因为 T只可能在迭代中扩大，所以最终的 T一定包含S。如果

在一次迭代之后有 T=T'，则 T也一定包含Ueredge（s，c）。因为在NFA中只有有限个不同的

状态，所以算法一定会终止。

现在，当用前面描述的方法来模拟一个 NFA时，假设我们位于由 NFA状态 s、5。、s，组
成的集合d={s，s。;s中。从 d中的状态出发，并吃进输人符号c，将到达 NFA的一个新的

状态集合;我们称这个集合为DFAedge（d，c）;

DFAedge(d,c)= dlosure(edge(s,e))
Gd

利用DFAedge 能够更形式化地写出 NFA模拟算法。如果 NFA的初态是 s，输入字符串中的字
符是c1⋯，c，，则算法为∶

d ←-closure（【s1）
for i -1to k
d ← DFAedge（d，c）
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状态集合运算是代价很高的运算——对进行词法分析的源程序中的每一个字符都做这种运
算几乎是不现实的。但是，预先计算出所有的状态集合却是有可能的。我们可以由 NFA构造一

个DFA，使得NFA的每一个状态集合都对应于DFA的一个状态。因为 NFA的状态个数有限

（n个），所以这个DFA的状态个数也是有限的（至多为2"个）。

28]一旦有了 closure 和 DFAedge 的算法，就很容易构造出 DFA。DFA 的状态 d，就是

closure（sy），这同NFA模拟算法一样。抽象而言，如果d =DFAedge（d，c），则存在着一条从

d到d的标记为c 的边。令艺是字母表。
states[0] - (): states[1] -losure((s1)
p←1;j-0
while j≤p
foreachc e 2
eDFAedge(statest j], e)
ife = states[i] for somei ≤p
then transL,c]-i
else p D+1
stateslp].-e
trans j.c】←-p

j←j+1
这个算法不访问DFA的不可到达状态。这一点特别重要，因为原则上 DFA有 2"个状态，
但实际上一般只能找到约n个状态是从初态可到达的。这一点对避免 DFA解释器的转换表出现

指数级的膨胀很重要，因为这个转换表是编译器的一部分。

只要 states【【d】中有任何状态是其NFA中的终态，状态d就是 DFA的终态。仅仅标志一个

状态为终态是不够的，我们还必须告知它识别的是什么单词，并且states【d】中还可能有多个状
态是这个NFA的终态。在这种情况下，我们用一个适当的单词类型来标识 d，这个适当的单词 29
类型即组成词法规则的正则表达式表中最先出现的那个单词类型。这就是规则优先的实现方法。

构造了DFA之后便可以删除"状态"数组，只保留"转换"数组用于词法分析。

对图2-7的NFA应用这个DFA构造算法得到了图 2-8给出的自动机。
这个自动机还不是最理想的，也就是说，它不是识别相同语言的最小自动机。一般而言，

我们称两个状态s;和s;是等价的，如果开始于s;的机器接收字符串a，则它从状态s;开始也一

定接收σ，反之亦然。图2-8中，标为【5，6，8，15】的状态和标为【6，7，8】的状态等价，标为【10，
11.13，15】的状态与标为【11，12，13】的状态等价。若自动机存在两个等价状态s，和s，则我们可
以使得所有进入 s.的边都指向 s;而删除 sz。

a-e.g-z,0-9ID
玉 x2.5,6,8.15
③,6.7,8)火a-z

主 0-9
_TD 1Da-z (678(568.15a-h， 0-9 )a-z

神 /0-9①49.13 UMNUN0-9‘，
宁10.1,13.15 )0-90-

其他 .erroE

(15)

图2-8 NFA被转化为 DFA
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那么，如何才能找出所有等价的状态呢?若s和 s。同为终态或同为非终态，且对于任意符

号c，trans【s.，c】=trans【s，c】，则显然它们两者等价。容易看出【10.11.13.15】和【11，12.13】

满足这个判别条件。但是这个条件的普遍性还不够充分，考虑下面的自动机∶

酶

()(e)
R/
六 ⑤

其中状态2和4等价，但是 trans【2，a】≠trans【4，a】。

在构造出一个DFA后，用一个算法来找出它的等价状态，并将之最小化是很有好处的;见

习题2.6。

2.5 Lex∶词法分析器的生成器

构造 DFA是一种机械性的工作，很容易由计算机来实现，因此一种有意义的做法是，用词

法分析器的自动生成器来将正则表达式转换为DFA。

Lex就是这样的一个词法分析器的生成器，它由词法规范生成一个 C程序。对于要进行分

析的程序设计语言中的每一种单词类型，该规范包含一个正则表达式和一个动作。这个动作将30
单词类型（可能和其他信息一起）传给编译器的下一处理阶段。

Lex的输出是一个C程序，即一个词法分析器。该分析器使用2.3 节介绍的算法来解释

DFA，并根据每一种匹配执行一段动作代码，这段动作代码是用于返回单词类型的C语句。
图2-2描述的单词类型在Lex中的规范如程序 2-1所示。

程序2-1 图2-2描述的单词的 Lex规范

毫（
/*( Delarations:*
#include"tokene.h" /*deinitions ofIF,ID,NUM... *
#include "errormsg.h"
union{int ival;string sval; double fval;}yylval;
int charPos-l;
#def ine ADJ (EM_tokPos=charPos,charPoB+=yyleng)
t}
八*Lex Definitions∶*
digits 10-9]+
初学
产* Regular Expressions and Actions∶ y
if {ADJ; return IE;}
[a-z] [a-z0-9]* {ADJ;yylval.sval=String(yytext);

return ID:}

(aigits) [AD;yylval.ival=atof(yytext);
return NUM;)

[ADJ;《(aigits}"."[0-9]*)(I0-9]*."(digits}M
yylval.fval-atof (yytext);
return RBAL;}

("--* [a-z]*n\n=")1(" "|"\n"I"Xt")+ (ADJ;}
(ADJ;EM_error("illegal character");}

该规范中的第一部分，即位于"吲"和"时"之间的部分，包含有若干由此文件其余部分

C代码使用的 include 和声明。
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这个规范的第二部分包含正则表达式的简写形式和状态说明。例如，在这一部分中的说明

digits【0-9】+允许用名字|digits代表正则表达式中非空的数字序列。

第三部分包含正则表达式和动作。这些动作是一段原始的C代码。每一个动作必须返回一

31个int类型的值。指出匹配的是哪一种单词。
动作代码中可以使用几个特殊的变量。由正则表达式匹配的字符串是 yytext，所匹配的字

符串的长度是 yyleng。

在这个特定的例子中，我们一直用变量 charPos 追踪着每一个单词的位置，此位置相对文

件开始并以字符为单位。通过对宏 ADJ 的调用，错误信息模块errormsg.h中的变量 EM_tokPos
将持续不断地告知这个位置。语法分析器将使用这个信息报告语法错误。

这个例子中包含的文件 tokens.h定义了 IE、ID、NUM等整常数;这是一些由动作代码返回的

值，它们指明被匹配的是何种类型的单词。
有一些单词关联有语义值。例如，ID的语义值是组成标识符的字符串，NUM的语义值是
一个整数，而 IF则没有语义值（因为每一个IF都有别于其他单词）。这些值经全局变量 yylval
传达给语法分析器，ylval是一个表示不同语义值的联合。Lex返回的单词类型告知语法分析
器这个联合中的哪一个成员是有效成员。

开始状态
正则表达式是静态的和说明性的，自动机是动态的和命令式的;也就是说，你不必用一个

算法来模拟就能看到正则表达式的成分和结构，但是理解自动机常常需要你在自己的头脑中来

"执行"它。因此，正则表达式一般更适合于用来指明程序设计语言单词的词法结构。

有时候一步一步地模拟自动机的状态转换过程也是一种合适的做法。Lex有一种将状态和

正则表达式混合到一起的机制。你可以声明一组初态，每个正则表达式的前面可以有一组对它

而言是合法的初态作为其前缀。动作代码可以明显地改变初态。这相当于我们有这样的一种有
限自动机，其边标记的不是符号而是正则表达式。下面的例子给出了一种只由简单标识符、单
词 if 和以"●"和"*）"作为界定符的注释所组成的语言。

(*
[a-z]+( (cOMENTINTIAL

*)“”
[32]

尽管有可能写出与整个注释相匹配的单个正则表达式，但是随着注释变得越来越复杂，特

别是在允许注释嵌套的情况下，这种正则表达式也会越来越复杂，甚至变得不可能，

与这个机器对应的 Lex 的规范为∶

rhe usual preaumble...
tstart INITIAL CONMENT**

《ADd;return IF;]<INITIAL>if
{ADT; yylval.sval=String(ytext);return ID;)<INITIAL>[a-z)+

<INITIAL>"(** [ADJ:BEGIN COMMENT;}
{ADJ;EM_error ("illegal character");}<INITIAls.
[ADJ;BEGrN INITIAL;)eCOMMENT>"*)"
[ADJ;}COMMENT>.
(BBGIN INITIAL;yyless(1);}
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其中 INITIAL是"任何注释之外"的状态。最后一个规则是一种调整，其用途是使得Lex
进入此状态。任何不以《STATE>为前缀的正则表达式在所有状态中都能工作，这种特征很少

有用处。
利用一个全局变量，并在语义动作中适当增减此全局变量的值，这个例子便很容易扩充成

可处理嵌套的注释。

程序设计∶词法分析

用Lex 写出一个Tiger语言的词法分析器。附录中描述了Tiger 的词法单词。

本章未对词法分析器应当如何初始化以及它应当如何与编译器的其他部分通信作出说明。
你可以从Lex使用手册中得到这些内容，而在$TIGER/chap2 目录中有一个最基本的介绍文件可

帮助你入门。
你应当在连同tiger.lex 文件一起提交的文档中描述清楚以下问题。

●·你是怎样处理注释的。

●你是怎样处理字符串的。

·错误处理。
·文件结束处理。
·你的词法分析器的其他令人感兴趣的特征。33]
在STIGER/chap2中有如下一些可用的支持文件。

· tokens.h，词法单词常数以及yylval的定义。
·errormsg.h、errormsgc，报错信息模块，用于产生含文件名和行号的报错信息。

·driver.c，一个运行你的词法分析器来分析输人文件的测试平台。

·tiger.lex，tiger.1ex 文件的初始代码。
· makefile，编译所有文件的makefile 文件。

在阅读附录（Tiger 语言参考手册）时，要特别注意以标识符（Identifier）、注释

（Comment）、整型字面量（Integer literal）和字符串字面量（String literal）作为标题的

段落。
Tiger 语言的保留字是∶while、for、to、break、let、in、end、function、var、type、

array、if、then、else、do、of、nil。
Tiger 语言使用的符号是∶

了。。一,;;()[][} .+-* :=，

对于字符串字面量，你的词法分析器返回的字符串值应当包含所有已转换到其含义的

转义字符。
没有负整型字面量。对于带负号的整型字面量，例如-32，要返回两个单词。

目录§TIGER/testcases 中含有几个简单的Tiger 程序实例。

开始时，首先创建一个目录，并复制$TIGER/chap2中的内容到此目录。用Tiger 语言编写

一个小程序保存于文件test.tig中。然后，键入make;它将运行Lex读人tiger.lex并产生lex.

yy.c，然后将 lex.yy.c与其他C文件一起进行编译。
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最后 lextest test.tig将利用一个测试台对该文件进行词法分析。

推荐阅读

Lex 是第一个基于正则表达式的词法分析器的生成器【Lesk1975】，它现在仍被广泛

使用。
将还未对其边进行过c转换检查的状态保存在一个队列或栈中，可以更高效地计算e闭包

【Aho et al.1986】。正则表达式可以直接转换成 DFA而不需经过 NFA【McNaughton and Yamada

1960;Aho et al.1986]。

DFA转换表可能非常大，而且很稀疏。若用一个二维矩阵（状态×符号）来表示这张表， 34
则会需要太多的存储空间。在实际中，这个表是经过压缩的。这样做减少了存储空间需求，但

却增加了寻找下一状态需要的时间【Aho et al.1986】。
词法分析器，无论是自动生成的还是手工书写的，都必须有效地处理其输人。当然，输入

可以放在缓冲区中，从而一次可以获取成批的字符，然后词法分析器可以每次处理缓冲区中的

一个字符。每次读取字符时，词法分析器都必须检查是否已到达缓冲区的末尾。通过在缓冲区

末尾放置一个敏感标记（sentinel），即一个不属于任何单词的字符，词法分析器就有可能只对

每个单词进行一次检查，而不是对每个字符都进行检查【Aho et al.1986】。Gray【1988】使用的

一种设计可以只需每行检查一次，而不是每个单词检查一次，但它不能适合那种包含行结束字

符的单词。Bumbulis和 Cowan【1993】的方法只需对 DFA中的每一次循环检查一次;当 DFA中

存在很长的路径时，这可减少检查的次数（相对每个字符一次）。

自动生成的词法分析器常常受到速度太慢的批评。从原理上而言，有限自动机的操作
非常简单，因而应该是高效的，但是通过转换表进行解释增加了开销。Gray【1988】指出，
直接将 DFA转换为可执行代码（将状态作为 case 语句来实现），其速度可以和手工编写的

词法分析器一样快。例如，Flex（fast lexical analyzer generator）【Paxson 1995】的速度就比

Lex要快许多。

习题

2.1 写出下面每一种单词的正则表达式。

a.字母表|a，b，c}上满足后面条件的字符串;首次出现的 a 位于首次出现的 b

之前。
b.字母表{a，b，c}上由偶数个a 组成的字符串。

c.是4的倍数的二进制数。

d.大于101001 的二进制数。

e.字母表{a，b，c|上不包含连续子串 baa 的字符串。

f.C语言中非负整常数组成的语言，其中以0开头的数是八进制常数，其他数是十进 35
制常数。
g.使得方程 a"+b"=c"存在着整数解的二进制整数n。
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2.2 对于下列描述，试解释为什么不存在对应的正则表达式，
a.由a和b组成的字符串，其中 a的个数要多于b。

b.由 a 和b组成的回文字符串（顺读与倒读相同）。

c.语法上正确的C程序。

2.3 用自然语言描述下述有限状态自动机识别的语言。

o\ 色一警 马 (9)e) 了 。、，
即 。0a.

6 (E ()O
直一重 2

一
a
el(一（Ot. 。( e)
1 O

2.4 将下面两个正则表达式转换为非确定的有限自动机。

a.(inthenjetse)
b.a(bla*e)x)*|×*

2.5 将下面的 NFA转换为确定的有限自动机。

a-
⑥ (f

t a， 唯
⑤O, ③[36 (6)了司 b6 委？

)5②+④+④

⑥2①+0-({(9(vc. 和
①一@-B、(1o).
c
)-,⑤=·⑥=·①(④) (18)

2.6 在下面这个自动机中找出两个等价的状态，并合并它们产生一个识别相同语言且较小的

自动机。重复这个过程直到没有等价状态为止。
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0 ，- ()(e) ，，(wn) ?一马
A0O

实际上，最小化有限自动机的通用算法是以相反的思路来工作的。它首先要找出的

是所有不等价的状态偶对。若X是终结符而 Y不是，或者（通过迭代）X一X'且 Y→y'

但 X'和 Y'不等价，则状态 X 和 Y不等价。用这种迭代方式寻找新的不等价状态偶对且

由于没有更多的不等价状态而停止后，如果 X、Y仍不是不等价偶对，则它们就是等价

状态。参见 Hopcroft和 Ulman【1979】中的定理3.10。
*2.7 任何接收至少一个字符串的 DFA都能转换为一个正则表达式。将习题 2.3c 的 DFA转

换为正则表达式。提示∶首先假装状态1是初态。然后，编写一个通到状态 2并返回到

状态1的正则表达式和一个类似的通到状态0并返回到状态1的正则表达式。或者查看

Hopcroft 和 UIlman【1979】一书中定理 2.4关于此算法的论述。 37
*2.8 假设Lex使用下面这个DFA来寻找输入文件中的单词∶

0-9
a一z a-毫 ()重 0-9十 (〕) 0-9.0-9

0-9
令。
(6)

0-9
a. Lex 在匹配一个单词之前，必须在该单词之后再检测多少个字符?
b.设你对问题a的答案为k，写出一个至少包含两个单词的输入文件，使得Lex的第

一次调用在返回第一个单词前需要检测该单词末尾之后的k个字符。若对问题a的

答案为0，则写出一个包含至少两个单词的输入文件，并指出每个单词的结束点。

2.9 一个基于DFA的解释型词法分析器使用以下两张表。

·edges 以状态和输人符号为索引，产生一个状态号。

·final 以状态为索引，返回0或一个动作号。

从下面这个词法规范开始∶

(action 1);(aba)+
(action 2);(a(b*)a)

(a|b) (action 3);

为一个词法分析器生成 edges和 final 表。

然后给出该词法分析器分析字符串 abaabbaba 的每一步。注意，一定要给出此词法

分析器重要的内部变量的值。该词法分析器将被反复调用以获得后继的单词。

"2.10 词法分析器 Lex有一个超前查看操作符"/"，它使得正则表达式 abc/def 只有在 abc之
后跟有 def 时，才能匹配 abc（但是 def并不是所匹配字符串的一部分，而是下一个或

几个单词的一部分）。Aho等人【1986】描述了一种实现超前查看的错误算法，并且 Lex
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【Lesk 1975】中也使用了这种算法（对于（alab）/ ba，当输入为 aba时，该算法不能进行
正确的识别。它在应当匹配 a的地方匹配了 ab）。Flex【Paxson 1995】使用了一种更好的

机制，这种机制对于（alab）/ ba 能正确工作，但对 zx*/xy·却不能（但能打印出警告
信息）。38]
请设计出一种更好的超前查看机制。
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语法（syn-tax）;组合单词以形成词组、从句或句子的方法。
韦氏词典

Lex中用一个符号替代某个正则表达式的缩写机制非常方便，这使我们想到用下而的方法

来表示一个正则表达式∶

digirs=[0-9]+
sum =(digits"+")*digits

这两个正则表达式定义了形如 28＋ 301＋9的求和表达式。
但是，考虑下面的定义∶

digits=[0-9]+
sum = expr"+"expr
expr ="("sum")"|digits

它们定义的是如下形式的表达式∶

(109+23)
61
(1+(250+3))

其中的所有括号都是配对的。可是有限自动机却不能识别出这种括号配对的情况（因为一个状

态数为N的自动机无法记忆嵌套深度大于N的括号），因此，sum 和expr 显然不能是正则表
达式。
那么，词法分析器 Lex 怎样实现类似于 digits这种缩写形式的正则表达式呢?答案是，在

将正则表达式翻译成有限自动机之前，简单地用digits有部的式子（【0-9】＋）替代正则表达式 39]
中出现的所有digits。

但这种方法对于前面给出的那种 sum-expr 语言却行不通。我们虽然可以首先将 expr中的
sum 替换掉，得到∶

expr ="("expr"+"expr")"|digits

但是若再用 expr 右部的表达式替换 expr 自身，则得到

expr="("("("expr","expr")"| digits)","egpr")"| digits

右部现在仍然同以前一样出现有 expr，且事实上，expr 的出现次数不但没有减少反而还增加

了!
因此，仅仅这种形式的缩写表示并不能增强正则表达式的语言描述能力（它并没有定义额

外的语言）），除非这种缩写形式是递归的（或者是相互递归的，如 sum 和expr 的情形）。

由这种递归而获得的额外的表示能力正好是语法分析需要的。另外，一旦有了递归的缩写
形式，则除了在表达式的顶层之外，可以不再需要可选操作。因为定义

expr = ab(c |d)e
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可通过一个辅助定义重写为∶

amx = c I d
expr = a bantx e

事实上，可以完全不使用可选符号而写出同一个符号的多个可接受的扩展;

空不目
aaxK = d
expr =abauxe
克林闭包也不再是必需的，我们可以将

expr = (a be)*

重写为
expr = (a bc)expr
erpr =e40
至此我们得到了一种非常简单的表示法，称为上下文无关文法（context-free grammar）。
正如正则表达式以一种静态的、说明的方式来定义词法结构一样，文法以说明的方式来定 义语

法结构。但是我们需要比有限自动机更强大的方法来分析文法所描述的语言。

事实上，文法也可用来描述词法单词的结构;但对于此目的，使用正则表达式要更为适合，

也更为简练。

3.1 上下文无关文法

与前面类似，我们认为语言是由字符串组成的集合，每个字符串是由有限字母表中的符号

组成的有限序列。对于语法分析而言，字符串是源程序，符号是词法单词，字母表是词法分析

器返回的单词类型集合。

一个上下文无关文法描述一种语言。文法有如下形式的产生式（production）集合∶

3ymnbol → symbol symbhol..symbol

其中，产生式的右部有0或更多个符号。每一个符号或者是终结符（terminal）——来自该语言
字符串字母表中的单词，或者是非终结符（nonterminal）—出现在某个产生式的左部。单词

决不会出现在产生式的左部。最后，有一个区别对待的非终结符，称为文法的开始符号（start

symbo)。
文法3-1是一个直线式程序的文法例子。它的开始符号是S（当未明确给出开始符号时，约

定第一个产生式左部的非终结符为开始符号）。此例中的终结符为 

d print num ,+():=;
[41]
非终结符是S、E和L。属于这个文法语言的一个句子为;

ld := num; id :=id+(fd := num + num,fa)

与它对应的源程序（在词法分析之前的）可以是;

a :=7;
b := c+(d :=5+6,d)
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单词（终结符）的类型为id、num、;=等。名字（a、b、c、d）和数字（7、5、6）是与其中一些

单词关联的语义值（semantic value）。

文法3-1 直线式程序的语法

4 E→ id1 S→S;S 8 L→E5 E→num2 S→d-E 9 L→L,E6E→E＋E
3 S→print(L) 7 E→(5,E)

3.1.1 推导

为了证明这个句子属于该文法的语言，我们可以进行推导（derivation）;从开始符号出发，对
其右部的每一个非终结符，都用此非终结符对应的产生式中的任一个右部来替换，如推导 3-1

所示。
推导3-1

el
S;S
S;d:E
id:E;id:=E
id:=num;id:=E
id∶= num;id∶=E十E
id := num;id :=E+(S,E)
id:=num;id:=id +(S,E)
id := num;id :=id+(id:=E,E)
id ∶=num;id∶=id+（id∶=E+ E，互）
id := num;id:=id +(id:=E+E,id)
id∶=num; id ∶=id 十（id ∶= num 十E，id）

id := num; id :=id +(id := num + num,id)

同一个句子可以存在多种不同的推导。最左推导（leftmost derivation）是一种总是扩展最
左边非终结符的推导;在最右推导（rightmost derivation）中，下一个要扩展的非终结符总是最

右边的非终结符。 [42]
推导 3-1既不是最左推导，也不是最右推导，因为这个句子的最左推导应当以下述推导开

始∶

心S;Sid:E;5
id:= num;S
id:=nurm;id:E
id := num; d:=E+E

3.1.2 语法分析树

语法分析树（parse tree，也简称为语法树或分析树）是将一个推导中的各个符号连接到从
它推导出来的符号而形成的，如图3-1所示。两种不同的推导可以有相同的语法树。
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础
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num num

图3-1 语法分析树

3.1.3 二义性文法

如果一个文法能够推导出具有两棵不同语法树的句子，则该文法有二义性（ambiguous）。

文法3-1是有二义性的，因为句子 id∶=id+id+ id有两棵语法分析树（图3-2）。

置ti

下图中 由由 = = F
Na-星m- +十E

存1田-：昆油 一 ,①

e 食
图 3-2 文法3-1的同一个句子的两棵语法分析树

文法3-2也是有二义性的。图3-3给出了句子1-2-3的两棵语法分析树，图3-4则给出了

1+2·3的两棵语法树。显然，如果我们用这些语法分析树来解释这两个表达式的含义，1-43]
2-3的两棵语法分析树则有两种不同的含义，分别为（1一2）-3=—4和1—（2—3）=2。同

样，（1+2）×3也不同于1＋（2×3）。而且编译器正是利用语法分析树来推导语义的。

文法3-2
E→ i
E→ num
E→E·E
E→E/E
E→E+E
E→E -E
E→(E)

; 费
硒 meE

m 管Vm./迎-s 1一e 一-
作

图3-3 文法3-2的句子1-2-3的两棵语法分析树
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图3-4 文法3-2的句子1+2'3的两棵语法分析树

因此，二义性文法会给编译带来问题，通常我们希望文法是无二义性的。幸运的是，二义

性文法常常可以转换为无二义性的文法。

让我们来找出文法3-2 的另一种文法，它接收的语言与文法3-2相同，但却是无二义性的。

首先，假定·比+具有更紧密的约束，或换言之，·具有较高的优先级。其次，假定每一种操

作符都是左结合的，于是我们得到（1-2）-3而不是1-（2-3）。通过引入一个新的非终结符得
到文法3-3，我们就可达到此目的。

文法3-3
F→idT→T*F6→E+T
F→ numT→T/FE→E-T
F→(E)T→FE→T

文法3-3中，符号E、T和F分别代表表达式（expression）、项（term）和因子（factor）。
习惯上，因子是可以相乘的语法实体，项是可以相加的语法实体。

这个文法接收的句子集合与原二义性文法接收的相同，但是现在每一个句子都只有一棵语

法分析树。文法3-3决不会产生图3-5所示的两棵语法分析树（见习题3.17）。

U?X
争

令 ＋

图3-5 文法3-3决不会产生的两棵语法分析树

如果我们想让·是右结合的，则可将产生式改写为T→F·T。

我们一般通过文法转换来消除文法的二义性。但是一些语言（即字符串集合）只有有二义

性的文法，而没有无二义性的文法。这种语言作为程序设计语言会有问题，因为语法上的二义

性会导致程序编写和理解上的问题。 45]

3.1.4 文件结束符

语法分析器读入的不仅仅是+、-、num 这样的终结符，而且会读入文件结束标志。我们用

S符号来表示文件结束。

设S是一文法的开始符号。为了指明$必须出现在一个完整的S词组之后，需要引入一个
新的开始符号 S'以及一个新的产生式S'→SS。

在文法3-3中，E是开始符号，修改后的文法为文法3-4。
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文法3-4
$→ES

F→dT→7T·F
F→ numT→T1FE→E+T
F→(E)T→PE→E-T

E→7

3.2 预测分析

有一些文法使用一种称为递归下降（recursive descent）的简单算法就很容易进行分析。这
种算法的实质是将每一个文法产生式转变成递归函数中的一个子句。为了举例说明这种算法，

我们来为文法 3-5写一个递归下降语法分析器。

文法3-5
L→endS→if E then S else S L→;SLS→ begin SL

S→ print E E→ num = num

这个语言的递归下降语法分析器对每个非终结符有一个函数，非终结符的每个产生式对应

一个子句。46]
enum token {IP,THEN,ELSB,BBGIN,END,PRINT,SEMI,NUM,EQ);
extern enum token getToken (void);

enum token tok;
void advance (){tok-getToken ();}
void eat(enum token t){if(tok==t) advance();else error();}

void S(void){switch (tok)
case IF: eat(IF》;E((); eat(THEN);S();内

eat(ELSE);S();break;
case BEGIN: eat(BEGIN);S();L();break;
cage PRINT: eat (PRINT);E();break;

error();default;:
1)

voia L(void){switch (tok)[
eat(END》;break;case END:

case SEMI:eat(SEMI);S();L();break;
error();default:

二
void E(void){ eat(NUM); eat(EO); eat(NUM);}

若恰当地定义了error和 getToken，这个程序就能很好地对文法3-5进行分析。

这种简单方法的成功给了我们一种鼓励，让我们再用它来尝试文法3-4∶

E(); eat(EOF):}voia s(void)3
){switch (tok){void E(void)
case ?:E(); eat(PLUS);T(); break;
case ?:E(); eat (MINUS):T();break;
case ?:T():break;
default: error():
11



第3章 语 法分析33

void T(void){switch (tok)(
case ?:T(); eat(TIMES);F();break:
case ?:T();eat(DIV);P();break;
case ?:F();break;
default: error();
)

这时我们遇到了一个冲突∶函数E不知道该使用哪个子句。考虑单词串（1*2-3）＋4和（1·
2-3）。初次调用E时，对于前者，应使用产生式 E→E+T;而对于后者，则应该使用E→T。

47]递归下降分析也称为预测（predictive）分析，只适合于每个子表达式的第一个终结符号能

够为产生式的选择提供足够信息的文法。为了便于理解，我们将形式化 FIRST集合的概念，然

后用一个简单的算法导出无冲突的递归下降语法分析器。

就像从正则表达式可以构造出词法分析器一样，也存在语法分析器的生成器之类的工具，

可以用来构造预测分析器。但是如果我们打算使用工具的话，可能同时需要用到基于更强大的

LR（1）分析算法的工具，3.3 节将讲述LR（1）分析算法。
有时使用语法分析器生成工具并不方便，或者说不可能。预测分析器的优点就在于其算法

简单，我们可以用它手工构造分析器，而无需自动构造工具。

3.2.1 FIRST集合和 FOLLOW集合

给定一个由终结符和非终结符组成的字符串 y，FIRST（y）是可以从γ推导出的任意字符串
中开头终结符组成的集合。例如，令y=T·F。任何可从γ推导出的由终结符组成的字符串都

必定以 id、num或（开始。因此有

FIRST(T·F)=|id,nu,(

如果两个不同的产生式X→γ和 X→Y具有相同的左部符号（X），并且它们的右部有重

叠的 FIRST集合，则这个文法不能用预测分析法来分析。因为如果存在某个终结符I，它既在

FIRST（y;）中，又在FIRST（y，）中，则当输入单词为I时，递归下降分析器中与X对应的函数

将不知道该怎样做。
FIRST集合的计算似乎很简单。若y=XYZ，则好像只要忽略 Y和Z，只需计算FIRST

（X）就可以了。但是考虑文法3-6就可以看出情况并非如此。因为 Y可能产生空串，所以 X也

可能产生空串，于是我们发现 FIRST（XYZ）一定包含 FIRST（Z）。因此，在计算FIRST集合
时，我们必须跟踪能产生空串的符号;这种符号称为可空（nullable）符号。同时还必须跟踪有

可能跟随在可空符号之后的其他符号。

文法3-6
X→ YZ2→d Y→
X→ay→eZ→XYz

[48]对于一个特定的文法，当给定由终结符和非终结符组成的字符串y时，下述结论成立。

·若 X可以导出空串，那么 nullable（X）为真。
·FIRST（7）是可从γ推导出的字符串的开头终结符的集合。

·FOLLOW（X）是可直接跟随于 X之后的终结符集合。也就是说，如果存在着任一推导包
含Xt，则1E FOLLOW（X）。当推导包含XYZt，其中Y和Z都推导出c时，也有t∈

FOLLOW(X)。



34 第一部分 编译基本原理

可将 FIRST、FOLLOW和 nullable 精确地定义为满足如下属性的最小集合∶

对于每个终结符Z，FIRST【Z】=|Z}.

for 每个产生式 X→Y Y，⋯Y。

for每个i从1到k，每个j从i+1到k，
f所有Y，都是可为空的
then nullable[ X]= true
iY⋯Y-都是可为空的

then FIRST[X] =FIRST[X]UFIRST[Y,]
if Y-⋯Y，都是可为空的
then FOLLOW[ Y]-FOLLOW[Y,]UFOLLOw[X]
if Y。-⋯Y;都是可为空的
then FOLLOw[Y,]=FOLLOw[ Y,]UFIRST[Y,]

计算 FIRST、FOLLOW 和 nullable 的算法 3-1遵循的正是上述事实。我们只需要简单地用

一个赋值语句替代每一个方程并进行迭代，就可以计算出每个字符串的 FIRST、FOLLOW 和

nullable。
算法3-1 FIRST、FOLLOW 和 nullable 的迭代计算

计算 FIRST、FOLLOW和 nullable 的算法。

将所有的 FIRST和 FOLLOW初始化为空集合，将所有的nullable初始化为false。

for 每一个终结符Z
FIRST[z]-|z!

repeat
for每个产生式X→YY，⋯Y.
for每个i从1到k，每个宁从i+1到k，

i所有 Y;都是可空的

then nullable [X]-- true
if Y.⋯Y-都是可空的

then FIRST 【X】--FIRST 【X】 U FIRST 【Y门】
if Y-⋯Y。都是可空的
then FOLLOw [Yi] FOLLow [Y] U FOLLOw [X]
if Y-⋯Y-都是可空的
then FOLLOw [Y]*-FOLLOw [Y] U FIRST [Yj]

until FIRST、FOLLOW 和 nullable 在此轮迭代中没有改变

当然，按正确的顺序考察产生式会有助于提高这个算法的效率，具体见 17.4节。此外，这
3个关系式不必同时计算，可单独计算 nullable，然后计算FIRST，最后计算 FOLLOW。

关于集合的一组方程变成了计算这些集合的算法，这并不是第一次遇到;在 2.4.2节计算e

闭包的算法中我们也遇到了这种情形。这也不会是最后一次;这种迭代到不动点的技术也适用

于编译器后端优化使用的数据流分析。
我们来将这一算法应用于文法3-6。一开始，我们有

_nulable FIRST FOLLOW× 号
望 号互 no
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在第一次迭代中，我们发现aEFIRST【X】，Y是可为空的，c∈FIRST【Y】，d∈FIRST【Z】， [49]
d ∈ FOLLOW【X】，c ∈ FOLLOW【X】，d ∈ FOLLOW【Y】。因此有

FOLOwnullable FIRST IX =nO ed”。”育一 -yes-N nOo
在第二次迭代中，我们发现X是可为空的，cEFIRST【X】，la.c|二FIRST【Z】，la，c，
d}SFOLLOW【X】，la，c，d|≤FOLLOW【Y】，因此有

FOLLOWnulabele FRST 1

×二N yes aedac。yes acdno acd
第三次迭代没有发现新的信息，于是算法终止。
也可将FIRST关系推广到符号串∶

若1nllable【 X】FIRST(Xy)= FIRST[X]

若 nllable【X】FIRST(Xy)= FIRST[X]UFIRST(y) [50]
并且类似地，如果γ中的每个符号都是可为空的，则称符号串γ是可为空的。

3.2.2 构造预测分析器

考虑一个递归下降分析器。非终结符 X的分析函数对X的每个产生式都有一个子句，因

此，该函数必须根据下一个输入单词 T来选择其中的一个子句。如果能够为每一个（X，T）选择

出正确的产生式，就能够写出这个递归下降分析器。我们需要的所有信息可以用一张关于产生
式的二维表来表示，此表以文法的非终结符 X 和终结符T作为索引。这张表称为预测分析表

(predictive parsing table)。
为了构造这张表，对每个TE FIRST（y），在表的第 X行第 T列，填入产生式 X→y。此外，
如果γ是可为空的，则对每个T∈FOLLOW（X），在表的第X行第 T列，也填人该产生式。
图3-6给出了文法3-6的预测分析表。但是其中有些项中的产生式不止一个!出现这种多

重定义的项意味着不能对文法3-6 进行预测分析。

8 。人◆X→a X→Y× X→Yx→Y
Y→P Y→Y→ Y→c
z→dz Z→XYZ Z→XYZ Z→ XYZ

图3-6 文法3-6的预测分析表

如果我们仔细地检查这一文法，就能发现它具有二义性。句子d有多个语法树，包括∶

Z仰
在

；晶
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二义性文法总是会导致预测分析表有多重定义的项。如果我们想要将文法 3-6的语言作为
程序设计语言，则需要为它找到一个无二义性的文法。

51 若文法的预测分析表不含多重定义的项，则称其为 LL（1）文法。LL（1）代表从左至右分析、
最左推导和超前查看一个符号（Left-to-right parse，Leftmost-derivation，1-symbol lookahead）。显

然，递归下降（预测）分析器从左至右扫描一遍输入符号（有些分析算法不这样做，但它们一

般对编译器没有什么帮助）。预测分析器在将非终结符扩展成它们的产生式的右部符号（即递归

下降分析器调用非终结符对应的函数）所遵循的顺序恰好就是最左推导扩展非终结符所采用的

顺序。而且，递归下降分析器完成其工作只需查看下一个输人单词，从不需要超前查看一个以

上的单词。
我们也可以推广FIRST集合的概念来描述一个单词串的前k个单词，并构造一个LL（k）分

析表，表的行是非终结符，列是k个终结符的每一种序列。这种方法虽然很少采用（因为这种
表实在是太大了），但有时在手工编写递归下降分析器时，会遇到需要超前查看一个以上单词的

情况。
可用LL（2）分析表分析的文法称为LL（2）文法，类似地，有LL（3）文法，等等。所有LL（1）

文法都属于LL（2）文法，依此类推。对于任何k，不存在任何有二义性的文法是LL（k））文法。

3.2.3 消除左递归

假设我们要为文法3-4构造一个预测分析器。下面两个产生式

E→E+7
E8→T
肯定会导致在 LL（1）分析表中有双重定义的登记项，因为任何属于 FIRST（T）的单词同时也属

于 FIRST（E+T）。问题发生的原因是E 作为E的产生式的第一个右部符号出现，这种情况称
为左递归（left recursion）。具有左递归的文法不是 LL（1）文法。

为了消除左递归，我们将利用右递归来重写产生式。为此需要引人一个新的非终结符 E'，

并将产生式重写为∶

E →7E'
E→+7E"
E'→
这3个产生式推导出的（关于 T和＋的）字符串集合与原来那两个产生式推导出的字符串集合

52 相同，但是它没有左递归。
一般地，对于产生式X→Xy，X→a，其中a不以X开始，我们知道可由它们推导出形如

ay·的字符串，即一个a其后跟随0或更多个γ的字符串。因此我们可以利用右递归来重写正则
表达式∶

）-1脚）
X一

X→0

对文法3-4应用这种转换，可以得到文法3-7。

为构造预测分析器，我们首先要计算 nullable、FIRST和 FOLLOW集合（见表3-1）。文法
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3-7的预测分析器如表3-2所示。

文法 3-7
S →ES

T→FT
F→idE→TE T"→*FT F→ num
F→(E)T'→/FT'E"→+7E"

E"→-个E T→
E→

表3-1 文法3-3的nullable、FIRST和 FOLLOW

FOLLOwFIRSTnuflable

的如面k
id num司
)s(id numno
)yes +-

(id num )+-$奇
胃 )+-S：Jes， )*/+-$(id numno

表3-2 文法3-7的预测分析表。其中省略了 num、/和-对应的列，因为它们和表中的其他项是类似的

+ 一d 偏· 、)

明马a卜K
S→E5→ES
E→TE'E→TE"*

E'→+TE' E'→E"→
7→FT" 7→FT' T→T→T→FT'T'→

，矿 F_→ ld F→(E)

3.2.4 提取左因子

我们已经了解了左递归对预测分析的影响，并知道可以消除它。当一个非终结符的两个产 53
生式以相同的符号开始时也会发生类似的问题，例如;

S→ if Ethen S else S
S→if E then S

在这种情况下，可以对文法提取左因子，即取出它们非公共的尾部（else S和e），并用一
个新的非终结符 X来代替它们∶

S→if E then S X
X'→
X→else S
由此得到的产生式对预测分析器不会造成问题。尽管文法仍然具有二义性——分析表中包含多

重定义的项，但是我们可以使用"else S"的动作解决二义性问题。

3.2.5 错误恢复

有了预测分析表，便很容易写出递归下降分析器。下面就是文法3-7 的分析器的一段代码

表示∶
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vofd T(void)(switch(tok){
case ID;
case NUM:
case LPAREN:F();Tprime();break;
default:eror!
亡

void Tprime(void)(awitch(tok){
break;case PLUS:
eat 《TIMES);P();Tprime();break;case TIMES:
break;case EOF:

cage RPAREN;break;
default: error!
)[54

在 LL（1）分析表的第 T行、x列的项若为空，表明分析函数T（）不希望见到单词x——若

出现单词x，则意味着出现了一种语法错误。那么应如何来处理这种错误呢?我们可以仅仅发

出一个异常，然后便退出分析，但这样做对用户不够友好。较好的处理方式是，输出一条错误

信息，然后尝试恢复错误，并继续后继处理，从而使得在同一编译过程中能发现其他的语法错

误。
当输人的单词不是语言中的句子时便会出现语法错误。错误恢复就是通过删除、替代或插

入单词，来寻找一个与那个单词串相似的句子。

例如，对T的错误恢复处理是插入一个 num单词。它不必对实际的输人进行调整，而只是

假装存在 num，输出错误信息，然后正常返回即可。

void T(void)(switch (tok)[
case ID:
case NUM;
cage LPAREN: P ();Tprime ();break;
default:printf("expected id,num,or left-paren");
亡

通过插人单词来进行错误恢复是一种有点危险的做法，因为如果这种插人会进一步导致其

他错误的话，这一过程就有可能陷入死循环。用删除单词进行错误恢复则相对要安全些，因为

循环最终会由于遇到文件结束而终止。

一种通过删除单词而实现的简单的错误恢复方法是;跳过若干单词直至到达一个属干

FOLLOW集合的单词为止。例如，关于 T'的错误恢复可以是这样的;

int Tprime_fol1ow []={PLOS, RPAREN,EOF,-1};

switch (tok){void Tprime(void){
break;case PLUS;
eat(TIME8);P();Tprime();break;case TIMES: 

case RPAREN:break;
break:case EOP:
printf("expected +,*,right-paren,default:
or end-of-file");

akipto(Tprimefollow);

己
递归下降分析器的错误恢复必须具有调整机制（有时要通过尝试-出错-再尝试的过程），以

55 避免由于一个不适当的单词而导致大量错误修复信息。
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3.3 LR 分析

LL（k）分析技术的一个弱点是，它在仅仅看到右部的前k个单词时就必须预测要使用的是

哪一个产生式。另一种更有效的分析方法是LR（k）分析，它可以将这种判断推迟至已看到与正

在考虑的这个产生式的整个右部对应的输入单词以后（多于k 个单词）。

LR（k）代表从左至右分析、最右推导、超前查看k 个单词（Left-to-right parse，Rightmost-
derivation，k-token lookahead）。使用最右推导似乎有点奇怪，我们会想，它们如何与从左至
右的分析过程保持一致呢?图3-7举例说明了用文法3-1（增加了一个新的产生式 S'→SS）对
下面这个程序进行的LR分析∶

a :*7:
b:=c+(d :=5＋6,d)

动作栈 输入
移进

的的的 的 的
， d:=5+6,da=7b:=c +(

移进一至 7ib= C 4 1;5 46,神晶 警管
移进id :=6 7;b;=C + := 5＋6 社
归约E→ num一时叶，由i id, :=6 num10 。
归约S→id∶=E id :=6E11 ib i= C +
移进152 ;b; C +
移进152:3 b:= c +

移进了S2; ida
移进1523 id4:=6 C本

归约E→ id

 等  9 豪整蜜露露整金
1S23 id :=6 idzo
1S23y ld4 :=6 E d:m5

d=541S23y idg:=6Eu+16
d;=51 S23y idg ∶=6E11十16（8
叫，弱。1S2∶yidg;=Eu十16（a id ,

152iid:=Eu +16(8idq:=6 ，一
归约E→ nom152; idq:=6Eu +16(g id :"6 numi0
移进1S23yidq主=6 EI1+16（gid4∶=6Eu
移进S23id:=6EI1+16(sid4:=EI1+16 r
归约E→ num的o1S,:ida:=Ei1+16(s id4:=6E+16 numi0

叫，重 归约E→E+E1S23 id:=6EI1 +6(8id4:=6E1+16E17

心 归约S→d∶E1S2i3 id4:=6Ei+16(s id:=6E ，。
节 移进，iS23y idu:=E11+16(g Si2
移进型 ，1S23 id4:= E11+1(8S12·18
归约E→id，1S23 ida:=6EI1+16( Sn2·18 i20

的 移进1S2;y id :6E11 +I6(g S12·18 E21
的 归约E→（S.E）S3 id:=EI1 +16(gS1,18 E21)2
害一 归约E→E+E1S23 id;t=6E11+16 E17
的 归约S→id∶=E1523 d :=6 E1
害： 归约S→S;S一予“卖 。皇 接收15

图3-77 一个句子的移进-归约分析。栈列的数字下标是DFA的状态编号，见表3-3

该分析器有一个栈和一个输入，输入中的前k个单词为超前查看的单词。根据栈的内容和

超前查看的单词，分析器执行移进和归约两种动作。

·移进∶将第一个输入单词压人栈顶。

·归约;选择一个文法规则 X→ABC，依次从栈顶弹出 C、B、A，然后将 X压入栈。

开始时栈为空，分析器位于输入的开始。移进文件终结符S的动作称为接收（accepting），

它导致分析过程成功结束。
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图3-7 列出了在每一个动作之后的栈和输入，也指明了所执行的是什么动作。将栈和输人

合并起来形成的一行总是构成一个最右推导。事实上，图3-7自下而上地给出了对输入字符串

的最右推导过程。

3.3.1 LR分析引擎

LR分析器如何知道何时该移进、何时该归约呢?通过确定的有限自动机!这种 DFA不是

作用于输人（因为有限自动机太弱而不适合上下文无关文法），而是作用于栈。DFA的边是用

可以出现在栈中的符号（终结符和非终结符）来标记的。表3-3是文法3-1的转换表。

表3-3 文法 3-1的LR分析表

s L富一 EWid _printnum =、×
；产言。

3734 g
而密
g57s4 56
乡”言。 rtn

”看一 s10 gIT图 8
”宁 9
，害皿 s7s4 g12”雪 g15g149: 6n5t56、3

2二丝丝主公9上28
nn 516②

剧 s18 r3r3 r3
s19 s13188s10 58;20 817r6s1616 r6r
58 g21stos20s1O 58s20 g23

”窗团公囚
rr4 r4r4r4
922

己 r7r“ 污rr9 s16

这个转换表中的元素标有下面4种类型的动作;[56]
sn 移进到状态 n;
gn 转换到状态n;
rk 用规则k 归约;
a 接收;
错误（用表中的空项来表示）。

为了使用该表进行分析，要将移进和转换动作看作 DFA的边，并查看栈的内容。例如，若

栈为id=E，则DFA将从状态1依次转换到4、6和11。若下一个输入单词是一个分号，状态

11的";"所在列则指出将根据规则 2进行归约，因为文法的第二个规则是S→id∶=E。于是栈57
顶的3个单词被弹出，同时S被压入栈顶。

在状态11中对于"+"的动作是移进，因此，如果下一个单词是+，它将被从输人中移出
并压入栈中。
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对于每一个单词，分析器不是重新扫描栈，而是记住每一个栈元素所到达的状态。因此，
分析算法如下∶ [58
查看栈顶状态和输人符号，从而得到对应的动作;

如果动作是

移进（n）;前进至下一个单词，将n压入栈。
归约（k）;从栈顶依次弹出单词，弹出单词的次数与规则k的右部符号个数相同;

令X是规则k的左部符号;
在栈顶现在所处的状态下，查看 X得到动作"转换到 n";

将n压人栈顶。

接收∶停止分析，报告成功。

错误∶停止分析，报告失败。

3.3.2 LR（0）分析器生成器

LR（k）分析器利用栈中的内容和输入中的前k个单词来确定下一步采取什么动作。表3-3
说明了使用一个超前查看符号的情况。k=2时，这个表的每一列是两个单词组成的序列，依此

类推。在实际中，编译器并不使用k>1的表，在一定程度上是因为这个表十分巨大，但更主要

的是因为程序设计语言可以用 LR（1）文法来描述。

LR（0）文法是一种只需查看栈就可进行分析的文法，它的移进/归约判断不需要任何超前查

看。尽管这一类文法太弱以至于不是很有用，但构造 LR（0）分析表的算法对于构造LR（1）分析
器算法来说是一个很好的开始。

我们使用文法3-8来举例说明LR（0）分析器的生成过程，看看这个文法的分析器是如何

工作的。一开始，分析器的栈为空，输入是S的完整句子并以$结束，即规则S'的右部都

将出现在输入中。我们用S'→.SS来表示这一点，其中圆点"."指出了分析器的当前

位置。
文法 3-8

0 S'→SS 3L→S
1 S→(L) 4 L→L,S2 S→t

在这个状态下，输人以S开始意味着它可能以产生式S 的任何一个右部开始。我们用下面
的表示来指出这种状态∶

y'→ss
S→
s→.(L)

称它为状态1。文法规则与指出其右部位置的圆点组合在一起称为项（item，具体为LR（0）项）。

一个状态就是由若干个项组成的集合。 59
移进动作（shift action）。在状态1，考虑当移进一个x时会发生什么变化。我们知道此时
栈顶为x，并通过将产生式S→.x中的圆点移到x之后来指出这一事实。规则S'→.SS和 S→
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.（L）与这个动作无关，因此忽略它们。于是我们停在状态2.

[5→x

或者，在状态1也可考虑移进一个左括号，将圆点移到第3项中左括号的右边，得到 S→

（.L）。此时我们知道栈顶一定为左括号，并且输入中开头的应当是可从L推导出来的某个单词

串，且其后跟随一个右括号。那么，什么样的单词可以作为输入中的开头单词呢?通过将 L的

所有产生式都包含在项集合中，便可以得出答案。但是现在，在这些L的项中，有一个项的圆

点正好位于S之前，因此我们还需要包含所有S的产生式∶

8→(E)
L→.L.S
L→5
s→.(L)
S→x
转换动作（goto action）。在状态1，考虑分析已经过了由非终结符S导出的某些单词串之
后的效果。这发生在移进一个x或左括号，并随之用一个S产生式执行了归约时。那个产生式

的所有右部符号都将被弹出，并且分析器将在状态1对S执行转换动作。这个效果可以通过将

状态1的第一项中的圆点移到S 之后来模拟，从而得到状态4∶

8-→5.s
归约动作（reduce action）。在状态2我们发现圆点位于一个项的末尾，这意味着栈顶一定对应

着产生式（S→x）的完整的右部，并准备进行归约。在这种状态下，分析器可能会执行一个归约动作。

我们在这些状态执行的基本操作是Closure（I）和 Goto（1，X），其中1是一个项集合，X是

一个文法符号（非终结符或终结符）。当在一个非终结符的左侧有圆点时，Closure 将更多的项添
加到项集合中;Goto将圆点移到所有项中的符号X之后。[60]

Goto(7.X)=Closure(1)=
设置 J为空集合repeat
forI中的任意项A→a.Xβfor I中的任意项A→+a.Xβ

for任意产生式X→Y 将A→aX.β加入到J中

1+- 1ULX>,l return Closure ()

until1没有改变

return /

下面是LR（0）分析器的构造算法。首先，给文法增加一个辅助的开始产生式 S'→SS。令
T是迄今看到的状态集合，E是迄今已找到的（移进或转换）边集合。

初始化T为IClosure（S'→.S S1）】

初始化E 为空

repat
ror T中的每一个状态1
for1中的每一项A→a.Xβ

let J是Goto（1，X）
T-TUj
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E-EUu113川
until E 和T在本轮选代没有改变

但是对于符号S，我们不计算 Goto（1，S），而是选择了accept 动作。
图3-8 以文法3-8为例说明了该分析器的分析过程。

XX
['→.Ss L>L.SS→x. 喜[S→.(L)S→.(L) [L→L.s.X▲ (s→.x s→.x→[s→(L)

L→.s
L→.L,sv。 ]s→.(L) [s→(L.)s→.x L→t.s
语s'→s. 。

s→(L),L→S.
图3-8 文法3-8的LR（0）状态

我们现在可以计算LR（0）的归约动作集合R∶

R+1
for T中的每一个状态/
for 1中的每一项A→a。

R←RU（，A→a）
并能够为该文法构造一个分析表（表3-4）。对于每一条边1今，若 X 为终结符，则在表位置
（I，X）中放置动作移进 J（J）;若X为非终结符，则将转换J（gJ）放在位置（1，X）中。对于包含
项S'→S.$的每个状态1，我们在位置（1，S）中放置动作接收（a）。最后，对于包含项 A→7.
（尾部有圆点的产生式 n）的状态，对每一个单词Y，放置动作归约 n（（rn）于（1，Y）中。

表3-4 文法 3-8的 LR（0）分析表

s喜.，一 L

动亿平可区司- em守n r
gn 仍石g723昌

部日日另二公日由品“ 日石，r2’图 响违 89o0 r4r4豆4

因为LR（0）不需要超前查看，所以原则上每个状态只需要一个动作∶一个状态要么是移进，
要么是归约，但不会两者兼有。实际中，由于我们还需要知道要移至哪个状态，所以此表以状61
态号作为行的标题，以文法符号作为列的标题。

3.3.3 SLR分析器的生成

让我们来尝试构造文法3-9的 LR（0）分析表。它的 LR（0）状态和分析表如图 3-9所示。
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文法3-9
0 S→ES 2 E→T

37T→x1E→T+ E
区富+× T

- Nm 世
g g335.E 目一s →E.$S→,E$ 日型区晒日 宝记E →.T+E g3g6工E→.T n r3E→T.+E| 9己T→.x  eE→T. 人人慢

工下黑’ E→T+.E三一
净 |E→.T+E

│T→x. 同|E→.T
E→T+E.T→.X

图 3-9 文法 3-9的 LR（0）状态和语法分析表

在状态3，对于符号+，有一个多重定义的项∶分析器必须移进到状态4，同时又必须用产

62] 生式2进行归约。这是一个冲突，它表明该文法不是LR（0）——它不能用LR（0）分析器分析。
因此我们需要一种能力更强的分析算法。

构造比 LR（0）更好的分析器的一种简单方法称为 SLR，，即 Simple LR 的简称。SLR分析器

的构造几乎与LR（0）的相同，但是它只在 FOLLOW集合指定的地方放置归约动作。

下面是在 SLR表中放置归约动作的算法∶

R-
for T中的每一个状态I
for 1中的每一个项A→a。

for FOLLOW（A）中的每一个单词X
R-RU1(1,X.A→a)|

动作（I，X;A→a）指出，在状态I，对于超前查看符号 X，分析器将用规则 A→a进行归约。

因此，对于文法 3-9.尽管我们使用相同的状态图（图3-9），但如图3-10所示，在 SLR表

中放置的归约动作却要少些。

t 互义 $ )

- em寸n
65 g3g2

目区s4
65 2386r3r3

中矿
图3-10 文法3-9的SLR分析表

SLR文法类是其SLR分析表不含冲突（多重表项）的那些文法。文法3-9 即属于这一类，

很多常用的程序设计语言的文法也属于这一类。到
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3.3.4 LR（1）项和 LR（1）分析表

比 SLR 更强大的是 LR（1）分析算法。大多数用上下文无关文法描述其语法的程序设计语言

都有一个LR（1）文法。

构造LR（1）分析表的算法与构造LR（0）分析表的算法相似，但是项的概念要更复杂些。

一个LR（1）项由一个文法产生式、一个右部位置（用圆点表示）和一个超前查看的符号组成。
其思想是，项（A→α.β，x）指出∶序列a在栈顶，且输入中开头的是可以从βx导出的符号串。

LR（1）状态是由 LR（1）的项组成的集合，并且存在着合并该超前查看符号的LR（1）的

Closure和 Goto 操作∶

Closure(1)= Goto(1.X)=
-11repeat
for I中的任意项（A→a.Xβ，2）for 1.中的任意项（A→a。XB，z）

将（A→aX.8.z）加入到J中for任意产生式 X→y
return Closure( J)for任意oE FIRST（座）

1+IUI(X→7,o)I
util /没有改变
retarn/
开始状态是项（S'→.S$，?）的闭包，其中超前查看符号?具体是什么无关紧要，因为文件结

束标志绝对不会被移进。

归约动作用下面这个算法来选择;

R+I
for T中的每一个状态I

for 1中的每一个项（A-→a。，z）
R*RUI(1,2,A→a))! 64

动作（1，z，A→a）指出，在状态I看到超前查看符号z时，分析器将用规则 A→a进行归约。
文法3-10不是SLR（见习题3.9），但它属于LR（1）文法，图3-11给出了该文法的LR（1）
状态。此图中有几个项有相同的产生式，但其超前查看符号不同（如下面左图所示）;我已将它

们简化为下面右图所示∶

S→:S5 5→,S&
的[S→.V=E S→.V= E’ S→.E[S→,E

的： E-.V|E →.V

言 ，V→.X气；。消
的 →.*E $.=V→.*E

ly→.x
V→.·E 列

文法3-10 一个捕获C语言中的表达式、变量和指针间接访问运算（★）组成的句子的文法

3 E→ V0S'→S$
4 V→x1S→V= E
5 V→· E2 S→E
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，es'→ s.s S →V.=E S→ V=.E、=w w1E →v. E →.V物

的的V→.x
害 ， V→.·ES→E.

？重售喜孤
S'→.S$
S→.V=E Ews→E E→V. S→V=E.E→.V

S=[之！当消。2→.X e 唱wwV→.*E E_≥
害V→x. X一  -.V

S= V→.x.EV ->二 型A V→.*E$,= $=E →V.
$= 更E子时S,= e吧曾。光站 ]143. V →·EV→ 相E.

图3-11 文法3-10的LR（1）状态

表3-5a是从这个状态图导出的LR（1）分析表。只要在产生式的末尾有圆点（如图3-11的状

态3.在产生式 E→V的末尾有圆点），在LR（1）表中与状态号对应的行和与项的超前查看符号
对应的列的位置，就存在着那个产生式的一个归约动作（在这个例子中，超前查看符号是$）。

只要圆点位于终结符或非终结符的左边，在 LR（1）分析表中就存在相应的移进或转换动作，正

如 LR（0）表的情形一样。

表 3-5 文法 3-10的 LR（1）分析表和 LALR（1）分析表

v\ .ys雪 E× v：=： 文警 人
吲

-Nm.世v Cr r; -em寸的  
察gg 568 8gS6 &

四!菖斗o E54s4
9 g7s13 g9st 经g7 豪n r g10 g7g10 g12 s8 s6s6s8

由一 r3r3
醇一 n4r4r4

”旦 no二公 合

？间门区日“
1o亭 n5e立r3 g14s513 87匹

(a)LR(1) (b)LALR(1)

3.3.5 LALR（1）分析表

LR（1）分析表有很多状态，因此会非常大。然而，通过合并那种除超前查看符号集合外其

余部分都相同的两个状态，可得到一个较小的表。由此得到的分析器称为LALR（1）分析器，即
超前查看 LR（1）（Look-Ahead LR（1））。

例如，文法3-10的LR（1）分析器中（图 3-11），如果忽略超前查看的符号集合，状态6和状
态13 的项是一样的。同样，除了超前查看符号外，状态7和状态12也是相同的，状态8和状态

11，以及状态 10 和状态14也都如此。合并这些状态偶对则得到表3-5b所示的LALR（1）分析表。
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65]对于某些文法，LALR（1）表含有归约-归约冲突，而在LR（1）表中却没有这种冲突。不过，
实际中这种不同的影响很小，重要的是和LR（1）表相比，LALR（1）分析表的状态要少得多，因

此它需要的存储空间要少于LR（1）表。

3.3.6 各类文法的层次

如果一个文法的LALR（1）分析表不含冲突，则称该文法是LALR（1）文法。所有SLR文法都

是LALR（1）文法，但是LALR（1）不一定是 SLR文法。图3-12给出了几种文法类之间的关系。

无二义性文法 二义性文法

LR(k)LLa)
LR(1)/umo
LALRD)
_SLR

(uzo) LR(0)

图 3-12 各类文法的层次

所有合理的程序设计语言都有一个LALR（1）文法，并且存在着许多对 LALR（1）文法有效
的语法分析器的生成器工具。由于这一原因，LALR（1）文法已变成程序设计语言和自动语法分

67]析器的生成器的标准。

3.3.7 二义性文法的LR分析

许多程序设计语言具有这样的文法规则∶

S→ ifEthen S else S
S→ifE then S
S→ other
这种文法许可这样的程序∶

if a then if b then s1 else 82

这个程序可有两种解释方式∶

(1)if a then( if b then g1 else s2 }

(2)if a then {if b then 81)else s2

在大多数程序设计语言中，else 必须与最近的 then匹配，所以方式（1）的解释是正确的。这种

文法的LR分析表将会有一个移进-归约冲突∶
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elscS→ ifE then S.
(any)S→ if E then S.else S

移进对应于解释（1），归约对应于解释（2）。
这种二义性可通过引人两个辅助非终结符 M（用于相匹配的语句）和U（用于不相匹配的

语句）来消除∶

S→M
S →U
M → if E then M else M
M→ other
U →ifEthen S
U→ if E then M else U
除了重写文法外，我们也可以保持文法不变并容忍移进-归约冲突。在构造分析表中，因为

我们偏向于选择方式（1）的解释，因此这种冲突应该通过移进来解决。

通过在选择移进或归约时适当偏袒于某一种选择来解决移进-归约冲突，常常使我们有可能

使用二义性文法。但最好谨慎地使用这种技术，并且只在很明确的情况下才使用（比如这里描

述的悬挂 else 和3.4.2 节将描述的算符优先）。大部分的移进-归约冲突和几乎所有的归约-归约68]
冲突都不应该通过在分析表中使用某种欺骗性的技巧来解决，它们都是病态文法的征兆，应通

过消除二义性来解决。

3.4 使用分析器的生成器

构造LR（1）或LALR（1）分析表简单得足以用计算机来自动完成。而且，手工构造它非常枯
燥无趣，以至于很少有真实程序设计语言的LR 语法分析器不使用语法分析器的生成工具。

Yacc（Yet another compiler-compiler）是一个典型的、使用广泛的语法分析器的生成器;Bison

和 occs则是它的两种较新的实现。

Yacc 规范（specification）分为三部分，三部分之间用分隔∶

parser declarations
章弯
grammar rdes*t
prograns
parser declarations 部分是由终结符、非终结符等组成的表。programs部分是原始的 C代码，它
们可由嵌入在前面两个部分中的语义动作来使用。

grammer rules部分由如下形式的产生式组成;
exp : exp PLUs exp { senantic action)

其中 exp是非终结符，该非终结符产生由 exp+exp 组成的右部，而 PLUS是一个终结符（单词）。
semantic action 是用原始C代码编写的，并在语法分析器使用这个规则进行归约时被执行。69
考虑文法3-11，在Yacc中它的表示如文法3-12 所示。Yacc 手册给出了文法规范中各种

命令的完整解释。在文法3-12 的文法中，终结符号是 ID、WHIIE等;非终结符是 prog、stm、
stmlist;文法的开始符号是 prog。
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文法3-11

1 P→L
2 S→d:;=id 7 L→S3 S→ while id do S 8 L→L;S4 S →begin Lend
5 S→ ifid then S
6 S → if id then S else S

文法3-12

*
int yylex{void):
void yerror(char *s){ EM_error(EM_tokPos,"Vs",e);l
力ttoken ID WHILE BEGIN END DO IP THEN ELSB SEMI ABSIGN
tstart progtt
prog:atmlist
atm:ID ASSIGN ID
WHILE ID DO atm
BEGIN atmligt END
IP ID THEN stm
IP ID THEN gtm ELSE stm

脉tmligt∶atm
| stmlist SENI stm

3.4.1 冲突

Yacc 能指出移进-归约冲突和归约-归约冲突。移进-归约冲突是在移进和归约之间进行

的一种选择;归约-归约冲突是使用两条不同规则进行归约的一种选择。默认情况下，Yacc

选择移进来解决移进-归约冲突，选择使用在文法中先出现的规则来解决归约一归约冲突。
对于文法3-11，Yacc 报告它有一个移进-归约冲突。任何冲突都指出这个分析可能不是文法

设计者所预期的，因此应当引起重视。通过阅读 Yacc生成的详细的描述文件可以查看冲突，图

3-13展示了这个文件。
简单地查看一下状态17便可看出这个冲突是由常见的悬挂else 问题引起的。因为Yacc解

决移进-归约冲突的默认做法是移进，而这个移进的结果正好与所希望的使 else 与最近的 then
匹配相符合，因此这个冲突不会有损害。 70]
当移进-归约冲突对应的是一种很明确的情形时，文法中可接受这种冲突。但是多数移
进-归约冲突和所有的归约-归约冲突都会带来严重的问题，因此应通过重写文法来消除它们.。
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state 0 state7: state 14:prog:stmlist stmlist;stmlist SEMI.stm stm:BEGIN stmlist END.ID shif 6
ID shift6 reduce by rule 3WHILE shif 5 WHLE shif 5BEGIN shif 4 stae 15:BEGIN shift 4TF shin3 stm:WHILED DO.stmIF shif 3prog goto 21 ID shif 6stm goto 12stm goto 2 WHILE shif 5ernorstmlist goto I BEGIN shift 4state 8;error TFshif 3stm:IFID.THEN stmstate l: stm goto 18stm;IF ID,THENstm ELSE stmprog: stmlist. cTrorTHEN shift 13stmlist:stmlist.SEMI stm ste 16:erorSEM shin7 stm:IDASSIGN ID.reduce by rule 0 state 9: reduce hy rule lstm:BEGIN stmlist.ENDstate 2:

state 17: shif/reduce confictstmlist: stmlist.SEMI stmstmlist :stm。
(shift ELSE, reduce 4)END shif 14reduce by rule 6 stm:IF ID THEN stm。SEMI shif 7 stm:IF ID THEN stm,ELSE stmstate 3: erorstm:F.IDTHEN stm ELSE shif 19stare IO:stm;F.IDTHEN stm ELSE stm reduce by rule 4stm;WHILEID,DO stmID shin state 18:DO shif 15error stm;WHLE ID DOstm.erorste 4: reduc by rule 2st II:stm:BFGIN.stmlist END stm:ID ASSIGN.ID state 19;bD shf 6 stm:IF IDTHEN stm ELSE.stmID shif 16WHILE shift 5 ID shift6erorBEGIN shift 4 WHLE shift 5IFshif3 ste 12: BEGIN shif 4stm goto 2 stmlist:stmlist SEMI stm。 F shift 3reduce by rule 7smlist goto9 stm goto 20emor state 13: errorstate 5: stm:F ID THEN.stm state 20:stm:WHILF.ID DO sm stm:F ID THEN.stm ELSE stm stm;IF ID THEN stm ELSE stm。ID shift 6) shift 10ID reduce by rule 5eror WHuLE shif 5

ste 21:BEGIN shift 4state 6: IF shif 3 EOF aceptstm:ID.ASSIGN ID stm goto 17ASSIGNshif 11 erroreITor
至等71

图3-13 文法3-11的LR状态

3.4.2 优先级指导
对于任何k，不存在属于LR（k）文法的二义性文法∶因为—个二义性文法的LR（k）分析

表总是会存在冲突。然而，如果能找到解决冲突的方法，则二义性的文法仍然是可以使

用的。
例如，文法3-2是—个高度二义性的文法。在用该文法来描述程序设计语言时，我们希望

以这样一种方式来分析它∶·和/的优先级高于十和一的优先级，并且所有操作符都从左至右结

合。通过将它重写为无二义性的文法3-3 可以达到这一要求。

但是，我们可以不必引入新符号T和F以及和它们相关的归约式E→T和T→F，而是先为
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文法3-2构造一个LR（1）分析表，如表 3-6所示。此表含有许多冲突，例如，在状态 13，对于

超前符号十，在移进到状态8和用规则3 进行归约之间就存在一个冲突。在状态 13的两个项

是∶ 72]

E→E *E、 卡
(any)E→ E.+E

这个状态的当前栈顶是⋯E·E。移进将导致栈顶变为⋯E·E＋，最终变为⋯E·E+E并用规则

E十E归约为E。归约将导致栈变为⋯E，之后再移进＋。由移进和归约分别得到的两棵语法分

析树如下所示∶

(E

L率的

m a E， 、合
归约移进

表3-6 文法3-2的LR分析表

咖s-!.主 ，id num ，-em s452 33 87江工工 n rl远 西 型西西n 记。一 s3e 盈 esv 6
、看 司nnn污 ?N 国s14s12s10毫s2 3 s4 营”国一 es10r5s8,5 s12,r5 sl4.rs。 斜s阳门 弯

它rs12,r6s10.r6s8,6 s14.r6 管。飞”区图“ s g1383 s14.3s12,r3s10.r3 r3r
g15密s2, 室叶吊 s12,r4s10.r438r4 r4r4s14,r4

如果我们希望·的优先级高于＋，则应选择归约而不是移进。因此在表的登记项（13，十））中

填入r3而抛弃s8。
相反地，在状态9对于超前查看符号·，我们应当移进而不是归约，因此我们通过在表的登

记项（9，*）中填人s12来解决这个冲突。

至于状态9对于超前查看符号十，其情形为∶

E→E+E、 +
(anmy)E→E、+E

移进会导致操作符是右结合的;而归约则使得它是左结合的。我们希望左结合，因此用r5填充

(9,+)。
考虑表达式 a-b一c。在多数程序设计语言中，这都是左结合的，就好像它们是写成（a一
b）一c一样。但我们这里假设这个表达式天生就是有冲突的，因此需要强制程序员明显地使用
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括号，要么写成（a—b）一c，要么写成a—（b一c）。于是我们称这个减法操作符是非结合的，

所以在（11，-）处填人 error项。
这些决定得到了一个已解决了所有冲突的分析表（表3-7）。

表3-7 表3-6在消除冲突后得到的表· 一本

雪 5 s12 s14r5
s12 s14心”困 r3 r3r3 3i 之在

Yacc 有一种指明解决这类移进-归约冲突的优先级指导命令，如下形式的一系列声明

nonas9oc EQ NEQ
1eft PLUS MINUS
tleft TIMES DIV
right EXP

73]
指出;+和-是左结合的且具有相同的优先级;·和/是左结合的且它们的优先级高于+;是右

结合的且具有最高优先级;=和=是非结合的，它们的优先级低于+。

当遇到如下的移进-归约冲突时

+E→E*E.
(any)E→E.＋E

在移进一个单词和用一个规则进行归约之间存在着选择。单词和规则两者之间应当给谁较高的
优先级呢?例子中关于优先级的声明（?ft 等）给予单词以优先，而规则的优先级则由该规

则右部最后出现的那个单词的优先级给出。因此，这里的选择是在一个有·优先级的规则和一个
有+优先级的单词之间进行的。因为规则的优先级较高，所以这个冲突通过选择归约动作而得

到了解决。
当规则和单词的优先级相等时，用?ft指明的优先级偏向于归约，ight 指明的偏向于

移进，而由 nonassoc 指明的则导致一个错误动作。

替代使用"规则具有其最后一个单词的优先级"的默认约定，我们可以用rec指导命令给

规则指定一种明确的优先级。这种方法常用于解决"一元负运算"问题。在大多数程序设计语言
中，一元负运算的优先级要高于任何一个二元操作符的优先级，所以一6·8被分析成（一6）*8，而

不是一（6·8）。文法3-13给出了一个例子。

词法分析器决不会返回单词 UMINUS;单词 UMINUS仅仅是优先级（?ft）声明链中的
一个占位符。指导命令rec UMINUS给了规则exp;MINUS exp 以最高的优先级，因此，用这一规
则进行归约的优先级要高于任何操作符的移进操作，包括减号操作符。74
优先级规则虽有助于解决冲突，但不应滥用。若在解释优先规则时遇到麻烦，那么最好重

写文法来消除二义性。
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文法 3-13
t[ derlarationsof yylexand yyerror 1}
ttoken INT PLUS MINUS TIMEs UMINOS
start exp
tleft PLOS MINUS
4left TIMES
鲁left UMINUS

1+
exp INT
exp PLUS exp
exp MINUS exp
exp TIMES exp
MTINUS exp tprec UMINOs

3.4.3 语法和语义

考虑一个具有形如 x十y的算术表达式和形如xy=z或aE（b=c）的布尔表达式的程序设
计语言。这个语言中，有算术变量和布尔变量之分，算术运算的优先级高于布尔运算，且布尔
表达式不能与算术表达式相加。文法3-14给出了这个语言的一种文法。

文法 3-14
t{ declaranions of yylexand yyerror t}
ttoken ID ASSIGN PLUS MINUS AND EOUAL
start stm
11eft OR
tleft AND
号left PLUS
号售

etm:ID ASSIGN ae
| ID ASsIGN be

:be OR bebe
be AND be
ae EOUAL ae
ID

:ae PLUS aeae
[ID

但如图3-14所示，这个文法存在一个移进-归约冲突。我们应怎样重写这个文法来消除冲突

呢?
这里的问题是，当语法分析器看到一个像a这样的标识符时。它无法知道它是一个算术变量

还是一个布尔变量，这两者在语法上是相同的。解决的方法是将分析推迟到编译器的"语义"处

理阶段;因为这种问题不能用上下文无关文法自然地来处理。一种更为恰当的文法是∶

S→ d :=E
E→d
E→E& E
E→E=E
E→E+E
现在，表达式a＋5&b在语法上是合法的，较后的编译阶段则必须拒绝它并输出一个语义错

误信息。 够
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state 0: state 9:state S;reduce/reduce confict
be;ae EQUALaestm:.ID ASSIGN ae between rule 6 and
ae:ae.PLUS acrule 4 on EOFstm:.ID ASSIGN be

己心记： PLUS shin 7ID shif 1 ae:ID. reduce by rule 3goto l14sStm g
PLUSs reduce by rule6eror state I0AND reduce by rule 4state l: a:ID.EQUAL reduce by rule6stm:ID.ASSIGN a reduce by rule 6EOF reduce by rule 4stm:ID.ASSIGN be state II:errorASSIGNshif 2 ac:ae,PLUS acestate 6;error a:ae PLUS a.be:ae EQUALaestate 2: reduce by rule 5IDshin 10stm:IDASSIGN。ae state I2:aegoto 9stm:ID ASSIGN.be

be:ae,EQUALaeerorIDshift 5 ae:ae.PLUSaestate 7:begoto 4 PLUS sthif7ae:ae PLUS.aegoto 3如 EQUAL shin 6IDshif 10eror
博 erorgoto I1state 3: eror state 13:stm:ID ASSIGN ae.

be:be.AND bestate 8:beae.EOUALa be:be AND be.a:ae,PLUS ae be:be AND.be
reduce by rule2ID shit 5PLUS shit 7

state I4:goto 13EQUAL shif6 be
goto 12reduce by rule0 ae EOF acepterrorstame 4: eror

stm:ID ASSIGN be,
be:be.AND be
AND sthift 8
reduce by rule 1

图3-14 文法3-14的LR状态

3.5 错误恢复

LR（k）分析表包含移进、归约、接收和错误动作。3.3.2节曾指出，LR分析器在遇到一个

错误动作时将停止分析并报告失败。但这种做法对程序员不是很友好，因为程序员希望分析器

报告程序中所有的错误，而不仅仅是第一个错误。

3.5.1 用error符号恢复

局部错误恢复机制是通过调整分析栈和错误查出点的输入以允许分析能够继续进行来实现

的。有一种局部恢复机制使用了一个专门的符号 error 来控制对错误恢复的处理，Yacc 语法分

析器的生成器的多种版本都使用了这种机制。出现在文法规则中的特殊符号error可以匹配一串

出错的输人单词。
例如，在Tiger的 Yacc 文法中，我们可有如下的产生式∶76
ep→IDexp → exp+ exp
ee→(eps )
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exps→exp
exps→eps;exp

我们可以非形式地指明，当分析器在表达式的中间遇到语法错误时，应该跳到下一个分号

或右括号【它们称为同步单词（synchronizing token）】，然后再继续分析。通过增加如下两个错 77
误恢复产生式，便可以实现这一点∶

exp→(errr )
exps → error ;ep
分析器生成器Yacc 将怎样处理这个 error 符号呢?在该分析器生成器中，error 被看成一个

终结符，并且在分析表中关于它的动作是移进，就好像它是一个普通单词一样。

当LR分析器到达一个错误状态时，它将采取如下一些动作。
（1）（必要的话）依次弹出栈顶符号直至到达这样一个状态∶该状态关于 cerror 单词的动作

是移进。
（2）移进 error 单词。

（3）（必要时）依次跳过输入符号直至到达这样一个超前查看单词∶该单词在当前状态有一

个非错误的动作。
（4）重新开始正常的分析。

上面给出的两个error 产生式中，我们适当地给出了位于error 符号之后的那个同步单词，此例

中是右括号和分号。因此，步骤3的"非错误动作"总是移进。假若使用的产生式是 exp→error 而
不是上述的产生式，则"非错误动作"就会是归约，而且（在SLR或LALR分析器中）在归约动作

之后若不读入新输入符号，原来的（错误的）超前查看符号则很可能会再次导致其他的错误。因此，
应当只在没有更好选择的情况下才使用无单词跟随 error 之后的文法规则。

警告。Yacc 的文法规则可以附带有语义动作（semantic action），每当归约一个规则时，规则

附带的语义动作便被执行。第4章解释了语义动作的用法。但是从栈中弹出状态会导致表面上看

起来似乎是"不可能的"语义动作，尤其是在这些动作含有副作用的情况下。考虑下面这段文法∶

9tatements exp SEMICOLONgtatement;
statements error SEMICOLON
/* empty*/

exp increment exp decrement3: 1

ID
(neat=nheet+1;: }increment:LPAREN
(nest=neat-1;)decrement:RPAREN [78]

"显然"，无论何时遇到一个分号时，nest的值都将是0，因为根据该表达式的文法，nest
的值以对称的方式进行增减。但是，如果在左括号分析过后的某处发现了语法错误，则从栈中

弹出的那些状态是"未完成的"状态，从而导致 nest 的值不会为0。解决这种问题的最好方法
是如第4章介绍的那样，使用无副作用的语义动作来构造抽象语法树。

3.5.2 全局错误修复

如果从错误中恢复的最好的方法是在输入流出错点之前插人或删除单词，情况会怎样呢?

考虑下面的Tiger程序∶

lettype a;* intArray [ 10 ] of 0 in ...
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当超前查看符号是∶=时，局部错误修复技术会发现一个语法错误。基于 error 产生式的错误
恢复可能会删除从 type 到0的词组，并根据 in 单词重新寻找相应的匹配。某些局部修复技术能

够在删除一些单词的同时插入另一些单词;但即使这种局部修复技术用=棒代∶=，它也不是很

好，并且还会在单词【处遇到另一个语法错误。实际上，此处程序员的错误是误用 type替代了
var，但此错误被检测到的时机比它实际发生的时机晚了两个单词。

全局错误修复（global error repair）寻找的是可将源程序中的单词串变成语法上正确的单词串

需要的最小插入和删除集合，即使这些插入和删除的地点不是LL或LR分析器首先报告错误的地

点。在前面这个例子中，全局错误修复将做一个单词的替换，即用var替换 type 而实现修复。

Burke-Fisher错误修复。下面将介绍一种功能有限但却有用的全局错误修复形式，它在分析
器报告错误点之前的 K个单词的每一点，尝试用每一种可能的单个单词来进行插入、删除或替

换。因此，当 K=15时，若分析器在扫描到输入的第100 个单词时遇到了语法错误，则它将对

第 85 至第 100 之间的单词尝试每一种可能的修复。

能使分析器尽可能远地通过原始错误报告点的更正被认为是最好的错误修复。因此，在第

98 个单词处用单个单词 var 替代 type，如果能够使分析器继续执行到第 104 个单词处而不出现79]
错误，这就是一次成功的修复。通常，若一次修复能使分析器超过错误点继续前进 R=4个单

词，它就是一种"足够好的"修复。

这种技术的好处是完全无需修改LL（k）或 LR（k）（或LALR等）文法（因没有 error 产生

式），也不需修改分析表，需要修改的只是对分析表进行解释的分析器。

分析器必须回退 K个单词后才能重新开始分析，为了做到这一点，它需要记住K个单词之

前分析栈的状态。因此，算法要管理两个分析栈——当前栈和老栈，同时还要管理由 K 个单词

组成的一个队列;每当移进一个新单词并将这个新单词压入到当前栈时，也将它加人到队列尾，

同时取出队列排头的单词并压入到老栈中。对于每一个压入到老栈或当前栈的移进，也执行适

当的归约动作。图3-15 说明了这两个栈和队列。

当蔺核 (:+15Eu;=6
者拽numio d盲”=6

部d 一，
= c ＋ d) $d t= 5+ 6 ,b 一》
6个单词的队列

图3-15 使用错误修复队列的 Bruke-Fisher 分析。图3-15给出了

根据表3-3 对这个字符串进行的完整分析

现在假设在当前单词检测到了一个语法错误。对于在队列任何位置的每一种可能的单词插

入、删除或替换，Burke-Fisher错误修复器都将在队列（的一个副本）内进行，然后，尝试从老

栈进行修复。修改是否成功取决于从当前单词能继续分析多少个单词。通常情况下，如果继续

分析了3～4个新单词，就认为是一个十分成功的修复。
在有N种单词的语言中，对于可记住 K个单词的窗口，存在有 K+K∶N十K·N种可能

80] 的删除、插入和替换。尝试进行这么多的修复其代价并不是很大，尤其是考虑到这仅仅发生在
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发现了语法错误之时，而不会发生在正常的分析处理期间。

语义动作。在寻找最佳错误修复过程中，分析器需要反复尝试移进和归约动作，并作废它
们。通常，分析器的生成器在进行每一个归约的同时也执行程序员指定的一些语义动作，但是，
因为这些动作可能具有某种改变程序状态的副作用，程序员并不希望这些动作被反复执行和作

废。因此，Burke-Fisher分析器在当前栈进行归约时并不执行这些语义动作，而是等到在老栈执
行相同的归约动作时才真正执行它们。

这意味着词法分析器将从原本应当执行语义动作的地点超前 K+R个单词。如果这些语义

动作对词法分析的行为有影响（如编译C的typedef 时就是这种情况），则会使 Burke-Fisher方
法遇到问题。但对于处理具有纯粹上下文无关文法语言的语法而言，推迟语义动作不会导致上

述问题。
插入的单词的语义值。当用插人进行错误修复时，分析器需要为每个插人的单词提供一个
语义值，使得语义动作的执行能够像这些单词原本就来自词法分析器一样。标点符号不需要语

义值，但是，当必须插入像数字或标识符这样的单词时，它们的值由何而来?使用 Burke-Fisher

错误校正机制的 ML-Yacc分析器的生成器提供了一个号value指导命令，允许程序员指明插入
每一种单词时应当使用什么值∶

$value ID ("bogus")
tvalue INT(1)
tvalue STRING (*")

程序员指定的替代。有些常见的错误不能通过插人或删除单个单词来修复，而且有时单个

特定单词的插人或替代是十分常见的，因而需要将它们作为首选的尝试。因此，在 ML-Yacc 文

法规范中，程序员可用?ange指导命令来给出关于首选尝试的建议，这种建议指出在执行默
认的"删除或插人每一种可能的单词"修复之前需首先尝试的错误更正。

tchange ASsIGN ->EQEO->ASSIGN 
->IN INT ENDSEMICOLON ELSE ->ELSB

81
程序员在这里指出，用户常写作";else"的地方，其含义应当是"else"，等等。

插入 in0end是一种特别重要的更正，称为作用域关闭器（scope closer）。程序中常会有多
余的左括号或右括号，或者多余的左方括号或右方括号，等等。在Tiger中，另一种嵌套结构是

let ⋯ in ⋯ end。若程序员忘记关闭一个由左括号打开的作用域，则单个单词插人探测方法会

自动地在适当位置关闭这个作用域。但要关闭let 的作用域需要插人3个单词，因此不能自动

完成，除非如上面?ange指导命令例举的一样，编译器的编写者已给出了建议;"不改变任何

内容而自动插入in 0 end。"

程序设计∶语法分析

用Yacc 实现一个 Tiger 语言的语法分析器。附录描述了Tiger的语法和其他内容。

你应当提交文件 tiger.grm和 README。
在 STIGER/chap3中可找到的支持文件有如下几个，

·makefile，工程创建文件。

·errormsg.【ch】，存放出错信息的数据结构，有助于产生带有文件名和行号的报错信息。
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·lex.yy.c，词法分析器。我没有提供 tiger.lex的源文件，但是提供了它的Lex的输出，

如果你的词法分析器还不能工作，你可以使用它。
· parsetest.c，一个驱动程序，它运行你的分析器来分析输人文件。
·tiger.grm，需由你进一步完善的一个程序框架。

你将不再需要 tokens.h，作为替代，与单词相关的头文件是y.tab.h，它是 Yacc 根据你的
文法的单词规范自动生成的。

你的文法中的移进-归约冲突应尽可能地少，并且应当没有归约-归约冲突。此外，文档中

应当列出每一个移进-归约冲突（若有的话），并解释它为什么是无害的。

我的文法有一个移进-归约冲突，它与下面两个文法之间的冲突有关。
variable [ expression ]
type-id [expression ] of expression

事实上，为了处理这个冲突，不得不增加了一个似乎是究余的文法规则。是否存在可以实现它

[82] 而没有移进-归约冲突的方法?
当使用优先级指导命令（?ft、号nonassoc、ight）是直截了当的时，使用它们。
在这个练习中，不要给你的文法附加任何语义动作。

可选题∶给你的文法增加一个error 产生式，并举例说明你的分析器有时能从语法错误中

恢复。

推荐阅读

Conway【1963】在介绍一个预测（递归下降）分析器的同时，描述了FIRST集合和提取左因

子的概念。LL（k）分析理论是由 Lewis 和 Stearns【1968】形式化的。
LR（k）语法分析方法是由 Knuth【1965】开发的;DeRemer【1971】开发了SLR和 LALR技

术;Yacc【Johnson 1975】（正如该论文的标题所示，它并不是第一个分析器的生成器或"编译

器的编译器"））的开发成功和流传使得LALR（1）语法分方析方法得到了普及。

图3-12概括了各类文法之间关于子集关系的许多定律。Heilbrunner【1981】给出了其中一些

定律的证明，包括LL（k）CLR（k）和LL（1）CLALR（1）（见习题3.14）。Backhouse【1979】给出

了关于LL和 LR分析法理论的很好介绍。

Aho 等人【1975】说明了利用优先指导命令解决其中的二义性，使得确定的LL或LR语法分
析引擎能够处理二义性文法。

Burke 和 Fisher【1987】发明了通过管理一个 K 个单词的队列和两个分析栈来实现错误修复

的策略。

习题
3.1 将下面每一个正则表达式转换为上下文无关文法。

a.((xy*x)|(yx*y))?
b.((0l1)+"."(0|1)*)I((0l1)*"."(0l1)+)

*3.2 为使用分号和下列单词的英文句子写一个文法;
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time,azrow,banana,f1ies,like,a,an,the,fruit 83
要保证包含每一个单词的所有词性（名词、动词，等等）。然后通过展示句子

"time flies like an arrow;fruit flies like a banana."的多于一棵的分析树，证明该文法

是二义性的。
3.3 分别为下面的每一种语言写出一个无二义性的文法。提示∶检验文法是无二义性的一种

方法是用 Yacce运行它而不会得到有冲突的结果。

a.字母表{a，b}上的回文（即无论顺读、倒读都相同的字符串）。

b.与正则表达式 a*b*相匹配且 a多于b的字符串。

c.配对的圆括号和方括号，例如（【【】（（）【（）】【】）】）。
"d.配对的圆括号和方括号，但其中闭方括号也关闭未配对的开圆括号（一直到前一个

开方括号），例如【（【】（〈〉【（【】）】。提示∶首先，写出圆括号配对和方括号配对的

语言，并允许有额外的开圆括号;然后保证这个开圆括号必须出现在方括号内。

e.关键字public final static synchronized transient 组成的所有子集和排列（无重
复）。（然后评论在一个真正的编译器中怎样才能最好地处理这种情形。）
f. Pascal或 ML中的语句块，其中的分号分割语句∶

( statement;( statement; 6tatement); gtatement >

g.C语言中的语句块，其中的分号结束语句∶

expression;{ expreseion; expresefon;} expreaeion;}

3.4 写一个文法，它接收与文法3-1相同的语言，但适合于用LL（1）分析。也就是说，要消
除文法3-1的二义性、左递归，并提取左因子（必要的话）。

3.5 找出下面文法的 nullable、FIRST和FOLLOW集合，然后构造 LL（1）分析表。

0 S→Ss 5 X→BSE
6 X→(S]1 S→ 7 X→ wORD2 s→ Xs 8 X→ begin
9 X→end3 B→\begin(wORD) 10 X→\WORD

4 E →\end{WORD )
[84]

3.6 a.计算下面文法的 nullable、FIRST和FOLLOW集合∶

S→u BDz
B→Bv
B→m
D→ EF
E→y
E→
F→x
F→

b.构造LL（1）分析表。

c.给出证据说明该文法不是 LL（1）文法。
d.尽可能少地修改该文法使它成为一个接收相同语言的LL（1）文法。

*3.7 a.对下面这个文法提取左因子∶;
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3 P→i:R0S→GS
4 R→1G→P

2G→PG 5R→ idR
b.证明由a得到的是LL（2）文法。可以通过计算含两个符号的符号串的 FIRST等集合

来证明，但一种更简单的方法是构造一个LL（1）分析表，然后使人信服地证明任何冲

突都可通过超前查看一个以上的符号来解决。

c.说明怎样改变 tok变量和 advance 函数使之适应具有两个超前查看符号的递归下降分

析器。
d.用文法类层次（图3-12）说明由 a得到的已提取左因子的文法是LR（2）文法。

e.试证明，没有任何与该文法（已提取左因子的）对应的字符串有两棵语法分析树。

3.8 构造一个含有左递归的小型文法，并用它来说明左递归不会对 LR分析造成问题。然后

给出一个小例子，对右递归文法和左递归文法的LR分析栈的生长变化进行比较。
3.9 画出文法3-10 的LR（0）状态图，构造 SLR分析表并指出冲突。

3.10 画出习题3.7文法的LR（1）状态图（没有提取左因子的），并构造 LR（1）分析表。要清

楚地指出其中的所有冲突。

85 3.11 构造下面这个文法的LR（0）状态，然后确定该文法是否为 SLR文法。
3 P→0 S→BS 4 P→(E)

1 B→ldP 5 E→B2 B→Id(E] 6E→B,E
3.12 a.构造下面这个文法的LR（0）DFA∶

0 S→Es
1 E→id
2 E→id(E)
3 E→E＋ id

b.它是 LR（0）文法吗?给出证据。

c.它是 SLR文法吗?给出证据。
d.它是 LR（1）文法吗?给出证据。

3.13 说明下面这个文法是LALR（1），但不是 SLR∶∶

3 X→dc0S→ XS
4 X→bda1 X→M a
5 M→d2 X→bMc

3.14 说明下面这个文法是LL（1），但不是LALR（1）;

5 X→F11 S→(X
2 S→E] 6 E→A

7 F→A3S→F)
8 A→4 X→E)

*3.15 将下面这个文法输入给 Yacc;从它的输出描述文件来构造该文法的 LALR（1）分析表，

此表在存在冲突的地方有多重登记项。对于每一个冲突，说明为了使得不同种类的表达

式具有常规意义下的优先级。应选择移进还是归约。然后给出用这种方式解决冲突的
Yacc 风格的优先级指导命令。
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0 S→ES

I E→while E doE
2 E→id=E
3 E→E+E
4 E→ 86]

*3.16 解释如何通过使用优先级指导命令，或通过转换文法，或者结合两种方法，来解决下面
这个文法中的冲突。如果愿意的话，在你的研究中用Yacc作为工具。

3 B→+
4 B→-1 E→ld
5 B→×2E→EBE
6 B→/

*3.17 证明文法3-3不能生成图3-5所示的分析树。提示∶在"?X"的位置可能出现什么样的
非终结符?而这对于告诉我们什么可能出现在"?Y"的位置又有什么帮助? 87]
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抽象的（ab-stract）∶从所有具体实例中提取出来的。

韦氏词典

编译器的工作不仅是识别一个句子是否是属于某一个文法的语言，它还必须对那个句子做更

多的事情。语法分析器中的语义动作（semantic action）能够对所分析的短语做一些有用的事情。
在递归下降语法分析器中，语义动作代码分散在实现语法分析的控制流中。在用 Yacc 说明

的语法分析器中，语义动作是一段附带在文法产生式中的C程序代码。

4.1 语义动作

每个终结符和非终结符都可关联一个语义值类型。例如，在使用文法3-13 定义的一个简单

计算器中，与exp 和 INT关联的类型可能是 int;而其他单词则不需携带值。当然，与单词关联

的类型必须与词法分析器随同这个单词一起返回的类型相匹配。

对于规则 A→BCD，语义动作返回的值的类型必须是与非终结符 A 关联的类型。但它可
以由所匹配的终结符和非终结符 B、C、D的相关值来建立这个返回值。

4.1.1 递归下降

在递归下降语法分析器中，语义行为是语法分析函数所返回的值，或者是这些函数产生的

副作用，或者两者兼而有之。对于每个终结符和非终结符，我们给它关联一种语义值类型（来[88]
自于实现该编译器的语言），其中语义值所表示的是由那个符号导出的短语。
程序4-1是文法3-7的递归下降语法分析器。它指出了单词 ID和 NUM分别必须携带 string

类型和 int类型的值。我们假定存在一张将标识符映射至整数的查找表。与E、T、F等关联的
类型是 int，它们的语义动作很容易实现。

但对于像 T'这样人为引人的符号（为消除左递归而引入的），其语义动作则要稍为棘手一
点。原来的产生式是T→T·F，它的语义动作原本是∶

(int a,b; a=T(); eat (TIMES): int b=F(); return a*b;}

但将文法改写后，产生式T'→·FT'中的"。"没有了左操作数。解决这个问题的一种方法

是，将这个左操作数作为参数由T传递给T'，如程序 4-1所示。

4.1.2 Yacc 生成的分析器

语法分析器的Yacc 规范由一组文法规则组成，每个规则标注有一个语义动作，此语义动作

是一条 C语句。Yacc 生成的语法分析器每当用一条规则进行归约时，便执行对应的语义动作

代码。[90]
程序4-2 以文法3-13为例说明了其方法。语义动作可用Si来司用第i个右部符号的语义
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值。它为左部非终结符产生的值则可赋给SS。union声明说明了各种可能携带的语义值的类

型;每一个终结符和非终结符通过<variant>注释指明它该使用由~ion 声明的联合中的哪一
种形式。
在更为真实的例子中，可能会存在着若干非终结符，且每个非终结符各自有不同的

类型。
Yacc 生成的语法分析器并行地维护着一个状态栈和一个语义值栈，并由此实现对语义值的

操作。语义值栈中的内容与原来简单分析栈中的符号一一对应。语法分析器在执行一个归约时

必须执行用C语言写的语义动作;它通过引用栈顶k个元素之一（对于具有k个右部符号的规

91则而言）来满足对一个右部语义值的每一个引用。当语法分析器从符号栈弹出顶部的k个元素

并压入一个非终结符号时，它也同时从语义值栈弹出k个值，并压入通过执行语义动作的C代
码而得到的值。

程序4-1 文法3-7的递归下降解释器

enum token{EOP,ID,NUM,PLUS,MINUS,...};
union tokenval (string id; int num; ⋯ };

enum token tok;
union tokenval toxval;

Int lookup(String id){：：
int P_follow[]={PLUS,TIMES,RPAREN,EOP,-1 };
int F(void){switch(tok)[

[int f=lookup(tokval.id); advance();return i;}case ID;
{int i=tokval.num; advance();return i;)case MNUM:

case LPAREN:eat(LPAREN);{int i = E();
eatOrSkipTo(RPAREN,F_follow);
return i;

case EOF:
default: printf("expected ID,NUM,or left-paren");

skipto(F follow);
return 0:

己
int T tollow[] ={ PLUS,RPAREN,EOF,-1};
int T(void)[gwitch (tok){

case ID:case NUM: case LPAREN:return Tprime《F());
default:printf("expected ID,NUM,or left-paren");

akipto(T_follow);
return 0;二

int Tprime(int a) {switch(tok){
case TIMES; eat(TIMES);return Tprime(a*F());
case PLUS:case RPAREN: case EOF:return a;
default:。。“

void eatorSkipTo(int expected,int *stop){
if (tok==expected)eat (expected);
else{printf(..};skipto(atop);}
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程序4-2 文法3-13的Yacc版本

t[ delarations of yylex and yyerror t}
tunion(int num; string id;}
ttoken <num> INT
ttoken <id> ID
ttype <num> exp
鲁start exP

left PLUS MINUS
tleft TIMES
left UMINUS
+t

[ss= §1;}INTexp，
(ss= s1 +3:Jexp PLUS exp
(ss ■s1- s3:}exp MINUS exp
(ss= s1* s3:}exp TIMES exp

tprec UMINUs {Ss=- s2;)MINUS exp

图4-1说明了用程序4-2 对一个字符串进行 LR分析的过程。栈中存放的是状态和语义值
（在这个例子中，语义值都是整数）。当归约一条诸如 E→E＋E的规则时（此规则带有一个如

exp1+ exp2的语义动作），语义栈顶的三个元素分别是 exp1、空（由＋携带的无意义语义值的占
位符）和exp2。

输入 动作栈
移进1+2*3$

归约+23$INT
e 移进+2*3sexp一 移进2*3 $exp ＋
2 3 s 归约一
INTexp ＋ e 移进*3 s利exp exp
叫 移进3 $expexp 本 ：

出 e[- 归约s“ NTexpexp ：e' 了 归约oexpCXp exp+
础- o 归约利 expexp。

接收$exp

图4-1 用一个语义栈进行语法分析

4.1.3 语义动作的解释器

程序4-2说明了怎样根据产生式右部的语义值来计算出非终结符的语义值。这个例子中的

语义动作没有任何可能改变全局状态的副作用，因此右部符号的求值顺序对结果没有影响。
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但是，LR分析器是按一种确定的和可预见的顺序，即自底向上、从左至右遍历语法树的顺
序来执行归约和与之关联的语义的。换言之，分析器按后序调历这棵（虚拟的）语法树。因此，

可以编写带有全局副作用的语义动作，并且能够预知这些副作用发生的顺序。

程序4-3给出了关于我们那个直线式程序语言的一个解释器。它使用了一个与符号表有关
的全局变量（产品质量的解释器应当使用比链表更好的数据结构;见.5.1节）。

程序4-3 命令式风格的解释器

力
typedef atruct table *Table_i
{atring id;int value; Tabletai1);Table.(

Table_Table(8tring id,int value, struct table *tall);(see page 13)
Tabletable=NULL;
int lookup(Table_table,string id)(
assert(tablel=NUIL);
if(id==table.id)return table.value;

else return lookup(table.tail,id);

void update(Table*tabptr,string id,int value)[
*tabptr=Table(id,value,*tabptr);

%}
tunion (int num; atring id;}

ttoken <num> INT
4token <id>ID
ttoken ASSIGN PRINT LPAREN RPAREN
type <num> exp
tright SEMICOLON
left PLUS MINUS
t]eft TIMBS DIV
tstart prog
t
prog: stm
stm:stm SEMICOLON stm

{update(&table,ID,s3);}gtm:ID ASSIGN exp
{printf("\n");}stm;PRINT LPAREN exps RPAREN

(printf("td",$1);)exps8; exp
exps: exps COMMA exP (printf("td",s3);}

($S-s1;}exp:INT
{Ss=lookup(table,s1);}exp:ID
(ss-s1+53;}exp: exp PLUS exp
{ss-s1-s3;}exp:exp MINUS exp
$s=s1*$3:}exp: exp TIMES exp
{ss=si/s3:]exp:exp DIV exp
{ss=s3:]exp: gstm COMMA exp
{ss-92:}exp:LPAREN exp RPAREN

4.2 抽象语法分析树

编写一个完全用 Yacc语法分析器的语义动作短语来实现的编译器是有可能的，但这种编译

器很难阅读和维护，并且这种方法限制了编译器只能完全按语法分析的顺序来处理程序。
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为了有利于模块化，最好将语法问题（语法分析）与语义问题（类型检查和翻译成机器代

码）分开处理。达到此目的的一种方法是由语法分析器生成语法分析树（parse tree），即一种数

据结构，编译器在较后阶段可对其进行遍历。技术上，每一个输人单词对应着语法树中的一个

叶子结点，分析期间被归约的每一个语法规则对应着树中的一个内部结点。92]
这样的一棵语法分析树称为具体分析树（concrete parse tree），它表示源语言的具体语法

（concrete syntax）。这种树不便于直接使用。标点符号单词中有许多是冗余的，并且不传送信

息——这些冗余的标点符号只在输入字符串中起作用，而一旦建立了语法树，树结构本身便可

更方便地传递构造中的信息。

此外，语法树的结构对文法的依赖程度太高!第3章中曾讨论过的各种文法转换，如提取

因子、消除左递归、消除二义性等，由于技术上的原因会需要引入新的非终结符和文法产生式。

这些细节都应当限制在语法分析阶段，而且不应对语义分析造成干扰。

抽象语法（abstract syntax）起到了在语法分析器和编译器（或其他程序分析工具，如依赖

关系分析器）的较后阶段之间建立一个清晰接口的作用。抽象语法树传递源程序的短语结构，

其中已解决了所有语法分析问题，但不带有任何语义解释。

早期的许多编译器不使用抽象语法数据结构，因为那时的计算机没有足够的存储器可存放

一个完整编译单元的语法树。现代计算机很少存在这种问题。许多现代程序设计语言（ML、

Modula-3、Java）允许提前引用同一模块中稍后才定义的标识符，使用抽象语法树使得编译这类

语言更为容易。不过 Pascal 和C还需笨拙地提前给出声明，因为在 20 世纪 70年代，其设计者

希望由此避免在当时的机器上进行额外的一遍编译。

文法 4-1给出的是一个直线式程序语言的抽象语法。这个文法是完全无法分析的∶文法具93]
有二义性，因为没有指明操作符的优先级，并且缺少许多起分隔作用的标点符号。

文法 4-1 直线式程序的抽象语法

L→S→S:s
L→LES→id:E

S→printL
B→+E→ ia

E→num B→-
B→×E→EB E
B→/E→S,E

但是，文法4-1并不是打算用于语法分析的。语法分析器使用具体语法（程序4-4）来建立

该抽象语法的语法树。语义分析阶段使用的是这个抽象语法树;它不会受这个文法的二义性的

困扰，因为它已经有了一棵语法树!

编译器需要将抽象语法树表示成数据结构，并对它进行操作。这些数据结构是根据 1.3节

概述的原则用C语言来组织的;每个非终结符有一个 typedef，每个产生式对应联合中的一个成

员，等等。程序1-1给出了文法4-1的数据结构声明。

Yacc（或递归下降）语法分析器对具体语法进行分析，并构造出抽象语法树。这一过程如

程序44所示。
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程序4-4 直线式程序的抽象语法构造器

*(
#include "abeyn.h"
t
tunion(int num; atring id;A_stm stm;A_exp exp;A_expList expList;)

ttoken <num> INT
ttoken <id ID
ttoken ASSIGN PRINT LPARBN RPAREN
type <stm> stm prog
1type <exp> exp
ttype <expList> exps
tleft SEMICOLON
left PLUS MINUS
tleft TIME8 DIV
tstart prog
百t

(9ss1;7}prog: stm
{ss=A_CompoundStm{$1,93);}8tm: stm SEMICOLON etm

stm :ID ASSIGN exp (s$=A_AssignStm($1,$3);}
(Ss-A_PrintStm($3)1}stm ;PRINT LPAREN expa RPAREN

exp8: eXp (ss=A_ExpList($1,NULL);}
(sS=A_ExpList($1,$3);}exps;exp COMMA exps

exp:INT {sS=A_NumExp($1);}
(ss-A_IdExp($1);)exp :ID
{SS=A_OpBxp($1,A_plus,$3);}exp:exp PLUS exp
{ss=A_opExp ($1,A_minus,S3);}exp : exp MINUS exp
{SS-A_OpExp（$1，A_艺imes，$3）;}exp;exp TIMES exp
{$S=A_OpExp($1,A_div,S3);}exp:exp DIV exp
{SS=A_E8eqExp(91,$3);}exp:stm COMMA exp
{ss-s2:}exp;LPAREN exp RPAREN

4.2.1 位置

在只有一遍的编译器中，词法分析、语法分析和语义分析（类型检查）都是同时进行的。

如果出现了一个必须向用户报告的类型错误，词法分析器的当前位置就理所应当是最接近错误

源的位置。在这种编译器中，词法分析器保存有一个表示"当前位置"的全局变量，错误处理

程序将随同每个错误消息一起输出这个变量的值。

使用抽象语法树数据结构的编译器不必在一遍中完成所有的语法分析和语义分析。它在许
多方面简化了处理过程，但却稍微增加了产生语义错误信息的难度。在语义分析开始前，词法

分析器就已到达了文件尾。因此，如果在遍历抽象语法树期间检测到了一个语义错误，则不能
用词法分析器的当前位置（文件结尾）来报告错误。因此，应当记住抽象语法树的每个结点在

源文件中对应的位置，以防该结点发生语义错误。

为了记住准确的位置，抽象语法数据结构上到处都必须带有 pos域。pos 域指明了导出抽象
语法树的字符在源程序中的位置。这样，类型检查器就能产生有用的报错信息。

词法分析器必须向语法分析器报告每个单词在源文件的开始位置和结束位置。理想的做法 94，95是，自动生成的语法分析器应当同语义值栈一起维护着一个位置栈，以便语义动作可以用每一

个单词和词组在源文件的开始位置和结束位置报告出错信息。Bison 语法分析器的生成器能够做
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到这一点，但Yacc不能。当使用Yacc 时，一种解决方法是定义一个非终结符号pos，它的语
义值是源程序位置（行号，或行号和行内的位置）。这样，当我们在exp PLUS exp 已分析过的语

义动作中想要访问 PLUS 的位置时，用下面的代码可做到这一点∶96]

1( extern A_OpExp(A_exp,A_binop,A exp,position);t}
$union{int num; string id;poaition po5;..};
4tYpe <pos> pos

[ss EM_tokPo8;)POS :
exp:exp PLUS pos exP(ss=A_OpExp($1,A_p1us,84,63);}

但是，这种技巧可能会有危险。对于pos 位于 PLUS 之后的情形，它可以工作;但是当 pos

在产生式中的位置过于靠前时，它则不能工作∶

exp:po8 exp PLUS exp { ss= A_OpBxp(§2,A_plus,$4,s1);)

这是因为LR（1）分析器在看到 PLJS 之前必须归约pos→6。这会导致一个移进-归约或归约-归约冲

湍。

4.2.2 Tiger的抽象语法

图4-2给出了Tiger的抽象语法。仔细学习过附录之后，对此抽象语法中每一个构造器的含

义应当会有清楚的理解，这里给出的几点解释只是为了便于讲述。
图4-2给出的只有构造函数，而没有相应的 typedef 和 struct。A_var 的定义实际上可以写

为
/*absymh 
typedef atruct A_var_*A_var;
struct A_var_
(enum{A_simpleVar,A_fieldVar,A_subscriptVar)kind;
A_po8 po8;
union {S_symbol simple;
struct {A_var var;
S_symbol sym;}field;

struct{A_var var;
A_exp exp;}aubscript;

白”
):

这里遵循了1.3节规定的原则。

Tiger 程序
(a :5:a+1)

转换成抽象语法为97
A_SecqExp(2.
A.ExpList(A.AssignExp(4.,A SimpleVar(2,S Symbol("a"),A_IntExp(7.5)),
AExpList((A_OpExp(I1,AplusOp,A.VarExp(A SimpleVar(10,,

S Symbol("a")), A_InExp(12,1)),

NULD))
这是一个含有两个表达式的序列表达式，序列中的两个表达式分别是赋值表达式和操作符

表达式，它们之间用分号分隔。这两个表达式中有一个变量表达式和两个整常数表达式。
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夹杂在其中的关于位置的表示是用源代码的字符计数来表示的。我为 AssignExp 选择的相
连位置是操作符∶=的位置，为OpExp 选择的是操作符＋的位置，等等。这种选择是个人的喜好，
它表达了我对它们以什么形式出现在语义错误信息中的一种设计。
现在考虑∶
1et var a:5
function f():int= g(a)
function g(i:int)=f()

in f《)
end
Tiger 语言将相邻的函数声明看成是〈可能会）相互递归的。抽象语法的构造器 FunctionDec 以

一个函数声明表，而不是一个函数，作为其参数。这个表的用意是要表示最长的连续函数声明
序列。这样，由同一个FunctionDec声明的函数都是可相互递归的。因此，由上面这个程序①转
换的抽象语法为∶

A.LeIExp(
A DeeList(A.VarDec(S_Symbol("a"),NUL,A.IntExp(5)),
A_DecList(A FunctionDec(

A_FundccList(A_Fundec(
S_Symbol("f"),NUL.S Symbol("int")。
A.CallExp(S.Symbol("g")⋯),
A_FundecList(A_Fundec(
S_Symbol("g"),
AFielList(S_Symbol("T),S Symbol"int"),NULL),
NULL
A CalIExp(S_Symbol("f"),)),
NUL).

之己子
A_CallExp(S.Symbol("f"), NULL))

为了清楚起见省略了关于位置的表示。 99]
构造器 TypeDec 也因同样的原因以类型声明表作为参数;考虑如下声明;

type tree={key:int,children: treeliet}
type treellat ={head: tree,tail: treellst}

它们将转换成一种类型，而不是两种∶

A.TypeDec(
ANamctyList(ANamety(S.Symbol("tree"),
A_RecordTy(
AFicldList(A_Field(S.Symbol("key"),S Symbol("int"),
AFieldList(A Field(S_Symbol("children"),

S_Symbol("treelist")),

NUL))
ANametyLis(ANamcTy(S_Symbol("treeliet")。
A_RccordTy(
AFieldLis(AFicld(S Symbol("head"),S.Symhol("tree").
A FieldList(A.Ficld(S.Symbol("tai").SSymbol("treelist").
之己
NULL))

①这个Tiger程序是非法的。因为声明 g是无返间值的，但它的函数体却返同值f（）。——译者注
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没有关于表达式区和|的抽象语法;else2将转换成i elthen e2 else 0，而 e1|e2则将

转换成好像写为 if el then 1 else e2一样。

/产*ahsvn.自*
A_var A_SimpleVar(A_pos pos,S_symbol sym);
A_var A_FieldVar(A_poe pos,A_var var,S_symbol sym);
A_var A_SubscriptVar(A_pos pO8,A_var var,A_exp exp);

A exp A_VarExp(A_pog po8,A_var var)
A exp A NIExp (A_pos pos);
A exp AIntExp (A pos po8,int i);

A exp A StringFExp (A_poe pos,string a);
A_exp A_CallExp(A_poa poB,S_aymbo1 func,A expLiat args);
A exp A OpFxp(A pos po8,A oper oper,A exp left,A exp right)j
A exp A RecordExp(A_pos pos,S__eymbol typ,A_efieldList fields);
A exp A SeqExp (A pos pos,AexpList seq);
A exp A_AssignExp(A_pos pos,A_var var,A_exp exp);
A_exp A_ITxp(A_poB pos,A_exp test,A_exp then,A exp elsee);
A_exp A_WhileFxp(A_pos po8,A_exp test,A_exp body);
A_exp A_BreakExp(A_pos pos);
Aexp A_ForFxp(A_pos pos,S_symbol var,A_exp 1o,A_exp hi,A_exp body);
A_exp A_LetFxp(A_pos po8,A_decList decs,A_exp body);
A_exp A_ArrayExp(A_pos pos,S_eymbol typ,A_exp size,A_exp init);

A_dec A_FunctionDec (A_pog pos,A_fundecList function);
A_dec A_VarDee(A_pos pos,8_symbol var,S_symbol typ,A exp init);
A dec A TypeDec(A pos poe,A_nametyList type);

A_ty A_Namely(A_poB po8,S_symbol name);
A_ty A Recordly(A_ pos pos,A_fieldList record);
A_ty A_ArrayTy(A_pos pos,S_symbol array);

A_field A_Field(A_pos po,S_symbol name,S_symbol typ);
A_fieldList A_FieldIist(Afield head,A_fieldList tail);
A expList A Explist(A exp head,A expList tall);
A_fundec A_Fundee(A_pos pos,S_symbol name,A fieldLAat params,

S_ aymbo1 result,A_exp body);
A fundecList A_FundeeList (A_fundec head,A_fundecLAst tail);
A_dectist A_DeeList (A_dec head,A_decList tail);
A namety A_Namety (8_aymbol name,A_ty ty);
A.nametyLiat A NametyLIst(A namety head,A nametyList tail);
A_efield A_Elteld(S_symbol name,A_exp exp);
A_efieldList A_Efieldl ist(A_efield head,A_efieldList tail);

typede enum{A_plusOp,A_minusOp,A_timesOp,A_divideOp,
A_eqop,A_neqOp,A_ltOp,A_1eop,A_gtop,A_geOp}A_oper;

图4-2 Tiger 语言的抽象语法。这里只给出了构造函数，结构的各个域
与构造函数的各个参数名一一对应

类似地，在抽象语法中，一元负（一i）应当表示为减（0-i）严。此外，当一个LetExp 的

函数体有多个语句时，我们必须使用 seqExp。空语句用 A seqExp（NUL）来表示。

通过&、和一元负运算的这种表示。我们使得抽象语法数据类型较小。并日语义分析阶段要

处理的情况也较少。但另一方面，它增加了类型检测程序给出与源代码相关的错误信息的难度。

① 在产品质量的编译器中这种做法可能是不合适的。对于相同大小的任意整数i，大部分给定大小的负数的二进制
补码整数不能表示为0-i。在浮点数中，当x=0时。0-x不同于一x。我们在Tiger 编译器中将忽略这种问题。
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词法分析器返回的 ID单词携带 string类型的值，而抽象语法要求标识符具有 symbol值。

函数S_symbol（在 symbol.h中定义）可将字符串转换为符号，函数S_name 则可将符号转换为字

100]符串。第5.章将讨论符号的表示。

编译器的语义分析阶段需要知道哪些局部变量会在被嵌套的函数内使用。varDec 或 field
类型的escape 成员用于记录这种信息。在构造函数的参数中没有提及这个escape 域，但它总是

被初始化为TRUE，这是一个保守的近似值。field类型既用于形式参数，也用于记录域;escape
对形式参数有意义，但对记录成员则可忽略它。
在抽象语法中包含escape 域是一种"出租式"的应付方法，因为"逃逸"是一种全局

的、非句法的属性。如果让 escape 位于 Absyn 之外会导致需要另外的数据结构来描述逃逸

属性。

程序设计∶抽象语法

在你的语法分析器中添加语义动作来产生 Tiger 语言的抽象语法。

你应当提交文件 tiger.grm。
在 $TIGER/chap4 中包含下列支持文件。

·absyn.h，Tiger的抽象语法声明。
· absyn.c，构造函数的实现代码。
· prabsyn.【ch】，一个小巧的抽象语法树输出程序，以便你能看到语法分析结果。
·errormsg. 【ch】，同前一章。
·lex.yy.c，仅当你自己的词法分析器仍不能工作时才使用它。
· symbol. 【ch】，将字符串转换为符号的模块。
·makefile，同前一章。

·parse.【ch】，一个驱动程序，它运行你的分析器来分析一个输入文件。
·tiger.grm，语法规范程序框架。

推荐阅读

许多编译器和程序 4-1一样，将递归下降分析代码与语义动作混合在一起进行;Gries

【1971】、Fraser 和 Hanson【1995】给出了采用这种方法的早期编译器和现代编译器的例子。由机
器生成的在产生式上附带有语义动作的语法分析器是在 20世纪 60 年代试验成功的【Feldman
and Gries 1968】;Yacc【Johnson 1975】是第一个允许使用传统的通用程序设计语言来编写语义动

作代码的语法分析器的生成器。 101]
抽象语法的表示应归功于 McCarthy【1963】，他设计了Lisp【McCarthy et al.1962】的抽象语

法。设计者原本打算在创造出一种具有人们易于阅读的标点符号（而不是用很多令人恼火而可
笑的括号，即Lots of Irritating Silly Parentheses）的具体语法之后，再用抽象语法来编写程序

的，但不久程序员就习惯了直接使用这种抽象语法来程序设计。

① 这里的英文单词为hack，即出租或削减。它在这句话中表示的意思是，为了简单对付起见，在抽象语法中多开
辟一个域用于表示变量的逃逸属性，但是此属性并不属于抽象语法的属性。——译者注
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对程序设计语言语义的理论探索以及对在编译器的编译器中表达语义概念的探索引出了指

称语义学（denotational semantics）【Stoy 1977】。指称语义学家也提倡将具体语法从语义中分离，
即，用抽象语法作为语法和语义之间的清晰接口——因为在一个完整的程序设计语言中，语法

上的混乱会妨碍对语义分析的理解。

习题
4.1 编写一个表示正则表达式抽象语法的类型声明和构造函数。

102] 4.2 将程序4-3实现为一个递归下降语法分析器，并在分析函数中嵌入语义动作。
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语义的（se-man-tic）;与语言表达的含义相关的。

韦氏词典

编译器的语义分析（semantic analysis）阶段的任务是∶将变量的定义与它们的各个使用联

系起来，检查每一个表达式是否有正确的类型，并将抽象语法转换成更简单的、适合于生成机

器代码的表示。

5.1 符号表

语义分析阶段的一个主要工作是符号表的管理。符号表（symbol table）也称为环境（envi-
ronment），其作用是将标识符映射到它们的类型和存储位置。在处理类型、变量和函数的声明

时，这些标识符便与其在符号表中的"含义"相绑定。每当发现标识符的使用（即非声明性出
现）时，便在符号表中查看它们的含义。

程序中的每一个局部变量都有一个作用域（scope），该变量在此作用域中是可见的。例如，

在 Tiger表达式let D in E end中，所有在 D中声明的变量、类型和函数在直到 E结束为止的
范围内都是可见的。当语义分析到达每一个作用域的结束时，所有局部于此作用域的标识符都

将被抛弃。
环境是由一些绑定（binding）构成的集合，所谓绑定指的是标识符与其含义之间的一种映

射关系，用箭头→ 来表示。例如，环境a，包含绑定{g→string，a→int|;这表示标识符a是
整型变量，g是字符串变量。
考虑下面这个用Tiger语言编写的简单例子∶ 103

-em.寸v
function f(a:int,b:int,c:int)=

(print_int (a+c);
let var j= a+b
var a := "hello"
in print(a);print_int(j)

春 end;
亡 print_int (b)
昌

假设编译这段程序时其环境为a。第1行关于形式参数的声明使我们得到了表a，=a＋ {a→int，
b→int，c→int}，即在a。中加人了a、b和c的新绑定。在a中可查到第2行使用的那两个标
识符的含义。第3行创建了表σ=a+ {→ int|;第4行则创建了表a，=a十 |a→stringl。
当被"加"到一起的两个环境含有同一个符号的不同绑定时，例如在a∶和 |a→ stringl

分别将a映射为 int 和 string的情况下，两个表的"＋"操作是怎样的呢?为了使得作用域规
则按照我们期望的真实程序设计语言的方式工作，需要让{aH→stringl优先。因此对于两个表
X和Y，我们假定 X+Y不等于Y+X，并且右边表中的绑定将覆盖左边表中相同符号的绑定。
当到达第6行时，我们将抛弃a，而回到a;，并在a中查看第7行出现的标识符b。最后，在
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第8行我们将抛弃a而回到o。。

应该怎样实现上述过程?在实际中有两种选择。一种是函数式风格（functional style），在
这种方式中，当创建a，和a时，保持a;原来的状态不变。这样，当再次需要a，时，σ就是已经
就绪的了。
另一种是命令式风格（imperative style），在这种方式下，我们修改σ直到它成为σ。这种
破坏性的更新会"毁坏"σ1;即，在a.存在期间，我们不能查看a中的符号。但是，当我们完
成了a;中的处理时，可以撤销对a;的更新从而使 a，返回原来的状态。于是，存在着一个单一的

全局环境a（它在不同的时间变成d。、σ1、a∶、a、、a1、a.）和一个"撤销栈"（此栈含有可用来

撤销破坏性更新所需要的足够信息）。每当添加一个符号到环境的同时，也将该符号加人撤销栈

中;在作用域的结束点（例如，在第6或第8行），这些符号将从撤销栈中弹出，并且它们的最

近一次绑定也将从a中删除（从而恢复到它们的前一次绑定）。

无论被编译的语言或用于实现编译器的语言是"函数式的""命令式的"，还是"面向对象
的"，都可以采用函数式的或命令式的环境管理方式。104
5.1.1 多个符号表

在有些语言中，可以同时存在若干种活跃的环境∶程序中每一个模块、类或者记录都有它
自己的符号表σ。

在对图5-1进行分析时，令o。是含有一些预定义函数的基本环境，并令

a= {a→ im]
a2= (E→o
a3 =[b →int.a → int)
o4=[N→ay]
as= {d→ imt)

06= (D→as)
a7 =σ2+04+06

在 ML语言的情况下（图5-1la），编译N 时查看标识符使用的环境是a。+o;，编译 D的环
境是σ。十a＋a。，分析的结果是{M→a，丨。
Java语言（图5-1b）允许向前引用（N中出现表达式D.d是合法的），因此 E、N和 D的

编译环境都是a;;对于这个程序而言，其结果仍然是{M →a;。

package M;structure M= struct
cla88 Estructure B struct
9tatic int a=5;val a*5;

end
class N(structure N = struct
static int b=10;val b = 10

val a=E.a4b statlc int a=B.a +b;
end

class D{structure D= struct
static int d=B.a＋N.a;val d =E.a+N,a

24end
end

（b）Java的例子（a） ML的例子

图5-1 同时存在的若干活跃环境
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5.1.2 高效的命令式风格符号表

大型程序可能含有数千个不同的标识符，因此符号表的组织必须要能够进行高效的查找。 105]
命令式风格的环境通常采用散列表来实现，散列表的效率很高。操作σ=a+|a→r}是通

过以 a作为键值将r插入散列表来实现的。一个简单的带有外部散列链的教列表就能够很好地
工作，并且很容易实现对作用域的删除操作（当a 的作用域结束时，我们需要删除 {a→;}以
恢复o。
程序5-1实现了一个简单的散列表。第i条散列链（bucket）"是由所有这样的元素组成的

106一张链表，它们的键值的散列值与 SI2E 求模后等于i。

程序5-1 带有外部散列链的散列表

etruct bucket (string key; void *binding; etruct bucket *next;;

tdefine SIzE 109

atruct bucket*table [SIZE];

unsigned int hash(char *s0)
(unsigned int h-0; char *3;
for(9=90;*s;9++)
h=h*65599 ＋*8;

return h;

struct bucket ·Bucket(string key,void *binding,struct bucket *next){
struct bucket *b = checked malloc(sizeof(*b));
b->key=key; b->binding-binding; b->next=next;
return b;

void inBert (string key,void *binding)[
int index = hash (key) SIZE;
table[index]= Bucket(key,binding,table[index]);

void *1ookup(Btring key){
int index = hash(key)t SIZE;
struct bucket*b;
for(b=table[index]; b: b-b->next)
if(0==strcmp (b->key, key))return b->binding;

return NULL;

void pop(string key)(
int index = hash（key》靠 SIZE;

table[index]- table[index]-next:

①我们这型将 bucket 译为"散列髓"，采用的是传统的术语，因为它是由具有相同散列值的元素组成的一张链表，

有不少书将它直译为"散列桶"。--译者注
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考虑当σ已经包含a→r;时，操作d'=a十 |a →x|的情况。函数 insert将a →r，保留
在散列链中，并将 a H→r，插入散列链的前部。于是在 a的作用域结束处执行pop（a）之后，便
恢复了a。当然，只有当绑定的插入和弹出都按栈的方式操作时，pop操作才能正确工作。
在产品质量的编译器中实现这种符号表还应当在若干方面有所改进，见习题5.1。

5.1.3 高效的函数式符号表

在函数式风格的实现中，我们希望以这样一种方式来计算d'=a+{a →r}，即希望在d'活
跃的情况下仍然能够看到a中的标识符。因此，我们不是将一个绑定加入到已存在的表中来

"改变"这个表，而是通过计算现有的这个表与一个新的绑定的"和"来创建一个新表。这类似
于在计算7+8时，不是将8加到7之上得到的结果覆盖原有的7，而是创建一个新的值15——

从而7仍然可用于其他的计算。

但是，对于非破坏性更新，散列表的效率不高。图5-2a给出的是一个实现了映射 m，的

散列表。我们可以快速而高效地将 mouse 记录添加到表的第5个位置，这只要将 mouse 记
录指向第5个链表原来的表头，并使第5个位置指向该 mouse 记录即可。但这样一来，映

射 m 将不复存在;我们已破坏了它而使它变成了 m。。另一种可选的方法是复制散列数组，

但仍然共享所有老的散列链，如图5-2b所示。不过这种方法十分低效;散列表的散列数组

可能会相当大，与元素的个数成正比，因此，对每一个新增添到表中的登记项都复制此数
组是不现实的。

2bat 4Ccarmel]， mouse

dog.小

(b)(a)
图 5-2 散列表

通过使用二叉搜索树，我们可以高效地实现对这种搜索树的"函数式的"添加。例如，考[107
虑图5-3的搜索树，它表示了如下映射∶

m1 = {bat →1, camel →2, dog → 3)

我们可以如图 5-3b那样增加一个绑定 mouse →4，在不破坏映射 m 的情况下创建一个新的映

射 m;。如果想要在树的第d层添加一个新的结点，则必须创建 d个新结点——但不必复制整
棵树。因此创建一棵新树（这棵树与原来的树共享一部分结构）的效率与查找一个元素相同;

对于一棵有 n个结点的平衡树，时间在 log（n）之内。这是使用长效数据结构（persistent data

structure）的一个例子;有一种能保持二叉树平衡的长效红黑树，可以保证访向一个结点的时间
不会超过 log（n）（见习题1.1c 和13.7.1节）。
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dog3dog 3

bat mouse]

Ccamel]2

(b)(a)
图5-3 二叉搜索树

5.1.4 Tiger编译器的符号

程序5-1中的散列表操作需要查看被散列的字符串s中的每一个字符，然后将s与第i个散
列链中的字符串逐一进行比较。为了避免不必要的字符串比较，我们可以将每一个字符串转变

成一个 symbol对象，使得任意一个给定字符串的所有不同出现都被转换成同一个符号对象。

Symbol模块实现这种符号，它有下以几个重要特点。

10·比较两个符号相等的运算非常快（仅仅是指针或者整数比较）。

·提取一个整型散列键值的操作非常快（当我们想要散列表将一个符号映射到其他某种对象时
会需要这种操作）。我们将使用Symbol本身的指针（即符号本身的地址）作为整型散列键值。

·比较两个字符串的"大于"运算（按任意顺序）非常快（当我们想要构造二叉搜索树时
会需要这种操作）。
即使想要构造的是一个映射符号到绑定的函数式风格的环境，我们也可以使用破坏-更新式

散列表来映射字符串到符号;这种做法可以保证使"abc"的第二次出现与它的第一次出现都映

射到相同的符号。程序5-2给出了 Symbol模块的接口。

程序5-2 Symbol 模块的接口

/产*s mbol.h *
typedef atruct S_aymbol__*S_aymbol;
8_symbol S_Symbol(string);
string S_name (S_8ymbol);

typedef struct TAB_table__*S_table;
S_table S_empty(void);

void S_enter(S_table t,S_symbol sym,void *value);
void *S_look<S_table t,S_eymbol aym);
void S_beginScope(S_table t);
void S_endScope (S_table t);

symbol.c 中是用表S_Table来实现环境的，此表将S_Symbol对象映射至绑定。在这个编译
器中，我们希望有不同的 binding 表示不同的用途——类型绑定用于类型;值绑定用于变量和

函数。因此，我们让绑定的类型是void·，尽管在任何给定的表中，要么所有的绑定都应当是类

型绑定，要么所有的绑定都应当是值绑定，等等。
为了实现S_Symbol（程序5-3），我们使用了与程序5-1 非常相似的散列方法。
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程序5-3 符号表（symbol，c）的实现

#include <etdio.h>
#include <string.h>
#include "uti1.h"
#include "gymbol.h"

struct S_eymbol_{string name;S_symbol next;};

static S_symbol mksymbol(string name,s_symbol next)
S symbol s=checked malloc(sizeof〈*g));

8->name=name; 8->next=next;
return s;

#detine SIZE 109
static S_symbol hashtable[SIZE];

static unsigned int haah(char*s0){⋯..asin Program 5.2}

S_symbo1 s_Symbol (string name) {
int index=hash (name)SIZE;

S symbol syms = hashtable[index],gym;
for(sym=Byms;sym; aym-sym->next)
if(0==strcmp(sym->name, name))return sym;
gym = mksymbol(name,syms);

hashtable [index]=sym;
return sym;

string S_name (S_8ymbol aym)[
return 8ym->name;

S_table S_empty(vold){return TAB_empty();)
void s_enter(S_table t,S_symbol aym,void *value){TAB_enter(t,Bym,value);}
void *S_look(S_table t,S_symbol aym)(return TAB_look(t,sym);}

etatic struct S_symbol_markeym ={"<mark>",0};
void S_beginscope(S_table t)(S_enter(t,&marksym,NULL);)
void S endscope(S_table t)[

S_aymbol B;
do s=TAB_pop();whfle(8 1= &marksym);

对于用C语言编写的 Tiger 编译器，我们选择使用破坏-更新式的环境。symbol模块的函数

S_empty（）创建一个新的S_Table。
为了处理破坏性更新的"撤销"要求，接口函数 S_beginScope 记住表的当前状态;而

S_endScope使表恢复到它位于最近一次执行且还未结束的 beginScope 时的状态。

命令式的表是用散列表来实现的。当插人绑定 x→b时（S_enter（table，x，b）），x被散列109
到索引i，并且在第i 条散列链的链首放置一个Binder 对象x→b。如果这个表已经包含了一个

绑定 x→b'，该绑定将仍保留在散列链中且被x→b所隐藏。这一点很重要，因为它将支持撤

销操作的实现（beginScope 和 endScope）。

键值 x并不是字符串，而是 S symbol指针本身。模块 table 实现通用的指针散列表

（TAB_table），此表映射一个键值类型（void*）到一个绑定类型（也为void·）。程序5-4给出了
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table.h接口。因为到处使用 void·很容易导致程序错误，symbol模块将用S_empty、S_enter等
函数封装这些操作，其中键值的类型是S_symbol，而不是 void·。

程序5-4 接口 table.h

/ iable,h-8eneric hash table 

typedef struct TAB_table_*TAB_table;

/* Make a new table *TAB_table TAB_empty(void) ;

void TAB enter(TAB table t,void *key,void *value);

A Enter key→ value ino table t,shadowing any prevous binding for key.*
void*TAB_look(TAB_table t,void *key); /*Look u key in t *

void ·TAB_pop(TAB_table t);
/ Nvyp the mst recent binding and return its key This may eypose another binding for the sanme key *

此外，还必须有一个辅助栈，它给出符号被"压入"到符号表时的次序。当将x→b加人
到符号表时，x便被压入栈中。beginScope 操作要压人一个特殊的标记至栈。于是，为了实现

endScope，要从栈中弹出符号直至遇到最顶上的一个标记并包括该标记。每当弹出一个符号的

同时，也从它的散列链中删除为首的绑定。

用一个全局变量 top指出最近绑定到表中的符号，便可以将这个辅助栈与 Binder整合在一
起。于是，"压栈"操作可通过复制 top 到 Binder 的 prevtop 域来实现。这样，绑定的对象便通

过"栈"串在一起。 1m
5.1.5 函数式风格的符号表

如果想在 Tiger编译器中使用函数式的符号表，S_Table 的接口可以如下所示;

typedef struct TAB_table__*S_table;
S_table S empty(vold);
S_table S_enter(S_table t,S_symbol sym, void *value);
void *S_look(S_table t,S_aymbol gym);

函数S enter 将返回一个新的表而不修改原来的表。我们不再需要 beginScope 和 endScope，因
为在使用新表的同时仍然还保留着旧表。

5.2 Tiger编译器的绑定

符号表中应填入什么内容?或者说绑定的是什么?Tiger有两个独立的名字空间，一个是类
型的名字空间，另一个是函数和变量的名字空间。与类型标识符关联的是Ty ty。如程序 5-5 所

示，Types模块描述了表示各种类型的结构。
Tiger中的基本类型是 int 和 string∶每一种类型或者是基本类型，或者是由其他类型（基

本类型、记录，或数组）通过记录或数组构造出来的类型。

记录类型携带有附加信息∶各个域的名字和类型。

数组与记录类似;Ty_array构造器携带有数组元素的类型。
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程序5-5 模块 Types

Mrypesh*
typedef struct Ty_ty_Ty_ty;
typedef struct Ty_tyList__·Ty_tyList;
typedet struct Ty_field_*ry_field;
typedef struct Ty_fieldIist_*Ty_fieldList;
struct Ty_ty_(enum {Ty_record,Ty_nil,Ty_int,Ty_string,

Ty_array,Ty_name,Ty_void)kind;
union {Ty_fieldList record:
Ty_ty array;
struct(s_symbol sym;Ty_ty ty;}name;
u;

工
Ty_ty TyNil(void);
Ty_ty TyInt(void);
Ty_ty Ty_String(void);
Ty_ty Ty_void(void);

Ty_ty Ty Record(Ty_fieldList fields);
Ty ty Ty Array(Tyty ty);
Ty_ty Ty_Name(S_symbol aym,Ty_ty ty);

struct Ty_tyliat(Ty ty head; TytyLiat tall;);
Ty_tyList Ty_TyLiet(Ty_ty head,Ty_tyList tai1);

struct Ty_field_(S_symbol name;Ty_ty ty;};
Ty_field Ty_Pield(S_symbol name,Ty_ty ty)

struct Ty_fieldList{Ty_field head;Ty fieldList tail;};
Ty_fieldbist Ty_Pieldlist(Ty_field head,Ty fieldLiot tail);

对于数组和记录类型，T array和 T record对象还携带有另一个隐含的信息，即对象本身的

地址。这意味着Tiger语言中的每一个"记录类型表达式"都会创建一个新的（且不同的）记录

类型，即使它们的各个域都相同。在我们这个编译器中用==来比较两个记录类型是否相同。

如果我们编译的是另外的某种语言，有可能会把下面的程序段视为合法的程序∶

{x:int,y:int}let type a *
type b=(x: int,y:int)
var 1:a =·..
var j:b:=..
in i :-j
end12]
这个程序在 Tiger中是非法的，但是如果语言支持结构上等价的两个类型可交换，这个程序就是

合法的。为了在这种语言的编译器中测试类型的等价性，我们需要递归地逐一检查每个域的类型。

113 不过，下面的Tiger程序是合法的，因为类型 c 与类型a相同∶
let type a=(x: int,y:int}
tYpe c= a
var 1:a :■..
var ] :C一，：。：
in i:=j
end
导致一个新的不同类型被创建出来的并不是类型声明，而是类型表达式|x;int，y;int}。
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在Tiger中，表达式 nil属于任何记录类型。我们设计了一个特殊的"Ty_Nil"类型来处理
这种例外的情形。另外，有的表达式没有返回值，因此我们设计了一个类型Ty_Void。

在处理相互递归的类型时，对于那种只知道其名字但还未见到其定义的类型，需要有一个

占位符。我们可以创造一个Ty Name（sym.NULL）作为类型名 sym 的占位符，稍后再用 sym 应有的

类型来填充 Ty_Name 对象的 ty域。

环境
Symbol模块中的类型 table提供从符号到其绑定的映射。这样，我们将有一个类型环境

（type enviroment）和一个值环境（value enviroment）。下面的 Tiger 程序说明了只有一个环境
是不够的。
1et type a =int
Var a:a;= 5
Var b;a := a

in b+a
end
符号a在预期类型标识符的语法上下文中表示类型"a"，在预期变量的语法上下文中表示变量"a"。

对于类型标识符，我们需要记住的只是它代表的类型。因此，类型环境是符号至 Ty ty的

映射，即它是一张表S_table，此表的 S_lookup 函数总是返回Ty_ty指针。如图5-4所示，Env
模块包含有一个base_tenv，即"基本的"或"预定义的"类型环境，它映射符号 int 到 Ty_
Int，映射 string 到Ty_String。

typedef struct E_enventry_*E_enventry;

struct E_enventry_(enum {B_varEntry,B_funEntry}kind;
union (atruct{Ty_ty ty:} var;
atruct {Ty tyList formals;Tyty result;} fun;

Au;
):

E_enventry E_VarEntry(Ty_ty ty);
E_enventry E_PunEntry(Ty_tyList formals,Ty_ty result);

S_table E_base_tenv(void);/*Ty_Iy emvironment *
; /*E_erventiry emvironment *S_table E_bae_venv(void);

图5-4 env.h∶类型检查使用的环境

对于每一个值标识符，我们需要知道它是一个变量还是一个函数;如果是变量，它的类型

是什么;如果是函数，它的参数和返回值类型是什么，等等。类型 enventry如图5-4 所示，用114
于保存所有这些信息;而值环境则是从符号到环境登记项的映射。

值环境将变量映射到一个告知其类型的登记项 VarEntry。当我们查看一个函数时，将得到

一个含有下述信息的登记项 FunEntry∶
·formals 各个形式参数的类型;

·result 该函数返回的结果的类型（或Void）。

对于类型检查，需要的只是 formals和 result;我们稍后将在中间语言表示中增加转换所需

要的其他的域。
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base_venv环境含有若干预定义的函数 flush、ord、chr、size等的绑定，这些函数的描述

见附录。
类型检查阶段需要同时使用类型环境和值环境。

每当遇到类型、变量和函数的声明时，类型检查器就会扩大这两个环境;在表达式处理期

间（类型检查、中间代码生成）遇到的每一个标识符都需要查阅这两个环境。

5.3 表达式的类型检查

Semant模块（semant.h、senmantc）执行抽象语法的语义分析——包括类型检查。此模块包

含4个语法树上的递归函数∶

struct expty transVar(S table venv,S table tenv,A var v);
struct expty transExp(S_table venv,S_table tenv,A_exp a);
voia transDec(S table venv,s table tenv,A dec d);

S_table tenv,A_ty a);Ty_ty: transTy(
[115
类型检查器是抽象语法树上的一个递归函数。我给它取名为 transExp 是因为稍后还将扩充这个

函数，使得它不仅进行类型检查，而且能将表达式转换为中间代码。transExp 的三个参数分别
是值环境 venv、类型环境 tenv 和表达式。其返回值是 expty，含有转换后的表达式和该表达式

的Tiger语言类型∶

struct expty{Tr_exp exp:Ty_ty ty;};

8truct expty expTy(Tr_exp exp,Ty_ty ty)[
struct expty e; e.exp=exp; e.ty=tyI return e?，

其中，Tr_exp是已转换为中间代码的表达式，ty是该表达式的类型。
为了避免在这里讨论中间代码，我们定义一个虚的Translate模块∶

typedef void *Tr_exp;

并对所有这种类型的值都使用NUL。在第 7章，我们将充实Tr_exp类型。

现在我们来考虑一个非常简单的加法表达式e;+e。。在 Tiger 中，这两个操作数都必须是
整型（类型检查器必须对此进行检查），并且结果是整型（类型检查器将返回这种类型）。
在多数语言中，加法操作符是重载的;即操作符+既是整数加法，也是实数加法。如果两

个操作数都是整数，其结果也是整数;如果两个操作数都是实数，其结果也是实数。并且，在

多数语言中，如果两个操作数中有一个是整数，而另一个是实数，则整数将隐含地转换为实数，
且结果为实数。当然，编译器必须使得这种转换在它生成的中间代码中明显地表现出来。

116 对于 Tiger的非重载的类型，其类型检查很容易实现;
struct expty transExp(S_table venv,S_table tenv,A_exp a)(
switch (a->kind)(

case A_opExp:(
A oper oper= a->u,op.oper;
struct expty left =transExp(venv,tenv,a->u.op.1eft);
struct expty right=transBxp (venv, tenv,a->u.op.right);
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if (oper==A_plugOp)(
if (left.ty->kind!-=Ty int)
EM error(a->u.op.left->po8,"integer required");
if (right.ty->kind!=Ty_int)
EM_error (a->u.op.right->po8,"integer required");
return expTy (NULL,Ty_Int ());

assert (0):/* should have reurmned from some clause of the switch *y

尽管我们还没有写出对其他种类表达式（以及非＋操作符）的处理，但这段代码已能很好地工

作了。也正因为如此，当对 left和right进行递归调用时，有可能会得到一个断言错误。你可
以自己来完善其他情形的处理（见5.4.4 节）。

变量、下标和域的类型检查

函数 transVar 对 A_var表达式的递归处理与 transExp 对 A_exp 的处理相同。

struct expty transVar(S_table venv,S_table tenv,A_var v ){
switch(v->kind){
case A 8impleVar:{
E_enventry x= 8_look (veny,v->u.simple);
if(x&。x->kind==E varEntry)
return expTy(NULL,actual ty(x->u.var.ty));
else{EM_error(v->po8,"undefined variable s",

S name(v->u.simple));
return expTy(NULL,Ty_Int());}

case A_fieldVar:~
transVar 中，针对 SimpleVar的类型检查从句说明了如何使用环境来查看一个变量的绑定。如 17]
果标识符出现在环境中，并且与VarEntry（不是 FunEntry）相绑定，则它的类型是VarEntry给

出的类型（图5-4）。

有时 VarEntry中的类型可能是一个"Name 类型"（即 Ty_Name类型，见程序 5-5），而由
transExp 返回的所有类型都应当是"实在的"类型（即由其名字已追溯到了它们最终的定义），

因此一种较好的做法是让一个函数（函数名或许为 actual_ty）跳过所有的 Name类型。该函数
的结果是一个非 Name类型的Ty ty，尽管当这个类型是一个记录或数组时，其成员会含有 Name

类型。
对于函数调用，需要在环境中查看函数的标识符来得到其登记项 FunEntry，此登记项含有

一张参数类型表。函数调用表达式中的实参类型必须与参数类型表给出的类型相匹配。FunEn-
try也给出函数的结果类型，它将作为整个函数调用的类型。

每一种表达式有它自己的类型检查规则，对于我未讲述过的其他所有情形，其规则都可通

过查阅附录（Tiger 语言参考手册）推导出来。
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5.4 声明的类型检查

环境的创建和扩大是由程序中的声明导致的。在 Tiger 中，声明只出现在 let表达式中。在

用 transDec 翻译声明的过程中，很容易对 let进行类型检查∶

struct expty transExp(S_table venv,S_table tenv,A_exp a){
gwitch(a->kind){

case A_letExp:{
struct expty exp;
A.decList d;
S_beginscope (venv);
S_beginscope (tenv);
for(d= a->u.let.decs; d; d=d->tall)
transDec(venv,tenv, d->head);

exp =transBxp(venvV, tenV,a->u.let.body);
S_endScope(tenv)1
8 endscope(venv);

return exp;-
118
其中，transExp 首先调用 beginScope（）记住两个环境（venv、tenv）的当前"状态";然后用新的
声明调用transDec来扩大环境（venv、tenv）;接下来翻译函数体表达式;最后调用 endScope（）
将这两个环境恢复到它们原来的状态。

5.4.1 变量声明

从原理上讲，声明的处理相当简单;声明用一个新的绑定扩大环境，而扩大了的环境则用

于后继的声明和表达式的处理。

唯一有问题的是（相互）递归的类型声明和递归的函数声明。因此，我们先从非递归声明

的特殊情形开始。

例如，处理一个没有类型约束的变量声明，比如说 var x;= exp，是相当简单的。

void transDec(S_table venv, S_table tenv,A_dec d){
gwitch(d->k1nd)
case A._varDec;{
struct expty e= transExp (venv,tenV,d->u.var.init);
S_enter(venv,d->u.var.var,E_VarEntry(e.ty));

还有什么情形能比这更简单?实际上，如果出现了d->typ，如在下面的声明中;

var x:ype-id :■ ep

就会需要检查这个类型约束和进行初始化的表达式是否兼容。另外，类型为 Ty Nil 的初始化表

达式还必须受Ty_Record类型的约束。
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5.4.2 类型声明

非递归类型声明的处理也不太难∶

void transDec(S_table venv,S_table tenv,A_dee d){

case A_typeDec:[
S_enter(tenV,d->u.type->head->name,
transTy (d->u.type->head->ty));r 19

函数 transTy将抽象语法中的类型表达式（A ty）转换为要放人环境中去的转换后的类型描述

（Ty_ty）。这种转换是在结构A_ty上递归进行的，它将A_recordTy转换成 Ty_Record，等等。在

转换过程中，transTy 只需查看它在类型环境 tenv 中找到的每一个符号。
上面给出的这段程序的通用性不是很好，因为它只处理长度为1的类型声明列表，即单个

相互递归类型声明的列表。请读者推广这段代码使之适应任意长度的类型声明列表。

5.4.3 函数声明

函数声明要稍微繁琐点∶

void transDec(S table venv,S table tenv,A dec d){
switch (d->kind){

case A_functionDec:{
A fundec f = d->u.function->head;
Ty_ty resultTy = S_look(tenv,f->result);
Ty_tyLlst formalTys= makePormalTyList〈tenv,f->params);
8 enter(venv,f->name,E PunEntry(formalTya,resultTy));
8_beginscope(venv);
{A_fieldList 1;Ty_tyList t;
for(l=f->params,tfommalTys;1;l=1-stai1,t=t->tall)

S_enter(venv,1->head->name,E_VarEntry(t->head));

transExp (venv,tenv, d->u.function->body);
S_endScope (venv);
break;

这是一种已剥离得非常彻底的实现∶它只处理单个函数的情况，不处理递归函数，只处理有返
回结果的函数《是函数，不是过程），不处理诸如未声明的类型标识符之类的程序错误，等等;

并且，它不检查函数体表达式的类型是否与声明的结果类型相匹配。

那么，它做了些什么?考虑下面的Tiger 声明∶

function f(a: ta,b: tb):rt= hndy 120
transDec 首先在类型环境中查找结果类型标识符r，然后调用局部函数 makeFormalTyList，此

函数遍历形式参数表，并返回由它们的类型组成的一张表（通过查看tenv 中每一个参数的类型

id）。现在 transDec 有足够的信息来构造这个函数的FunEntry并将它送人值环境（venv）中。
接下来，形式参数（作为VarEntry）被送入值环境中;而这个环境则被（transExp 函数）

用来处理画数体。最后，endScope（）从值环境中删除那些形式参数（但不删除 FunEntry）;由此
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得到的环境则用来处理那些允许调用函数 f的表达式。

5.4.4 递归声明

上面的实现不能用于递归类型和递归函数的声明，因为在这两种声明中会遇到未定义的类

型或函数的标识符（对于递归记录类型，未定义的类型出现在 transTy中，而对于递归函数，

未定义的函数出现在 transExp（body）中）。
对于一组相互递归的对象（类型或函数）t.⋯，1.，其解决方法是首先将所有这些对象的

"头"放入到环境中，得到一个环境e。然后在环境e;下处理所有这些对象的"体"。在处理这

些体的期间，将会需要查找一些最近定义的名字，但是事实上它们已经在环境中——尽管其中
有一些可能只是有头而没有体。

那么，"头"指的是什么?对于如下的类型声明;

type 1ist =(first:int,reet:1ist)

头近似于 type list=。
为了将这个头送入环境 tenv，我们可以使用一个其绑定为空的Ty Name类型∶

S_enter(tenv,name,Ty_Name (name,NUL));

现在，我们可以根据类型声明的"体"，即记录表达式{first∶int，rest∶list ）来调用transTy。
重要的一点是，只要到达任何 Ty_Name类型，transTy 就应停止。例如，如果 transTy像

actual_ty一样企图顺着绑定到标识符 1list的 Ty Name类型一直查找，它找到的（在这个例子
的情况下）就只有 NUL——此时它的类型肯定还未定义完毕。这个 NULL 只能在整个{first∶

int，rest∶list}都被转换之后才能用一个有效的类型来替代。[121
然后，transTy返回的类型可以赋给 Ty Name结构的 ty域。现在我们有了一个完整的类型

环境，在这个环境中，调用 actual_ty不会有问题。
在一组相互递归的类型声明中，每一个递归都必须通过记录或数组声明传递一个类型;下

面这个声明
type a =btype b-d
type c= atype d-=a
含有一个非法的递归 a→b→d→a。类型检查器应当检测出这种非法的递归。

处理相互递归的函数与处理递归类型类似。第一遍收集每一个函数的头的信息（函数名、

形式参数表、返回值类型），但不处理函数体。在这一遍中，需要的是形式参数的类型，而不是

它们的名字（在函数之外见不到它们的名字）。

第二遍处理相互递归声明中的所有函数的函数体，此时使用的环境是已用所有函数头扩大

了的环境。对于每一个函数体，再次处理它的形式参数表，这一次则将参数作为VarEntry加入

到值环境中。

程序设计∶类型检查

为你的编译器写一个类型检查阶段，即一个与下面的头文件相匹配的模块 semant.c;



第5章语义 分析87

/产* semant.h 
void SEM_transProg(A_exp exp);

它对抽象语法树进行类型检查，并生成适当的关于类型不匹配或未声明的标识符的报错信息。

实现本章描述的模块 Env。构造一个模块 Main调用语法分析器来生成A exp，然后对这个表

达式调用 SEM_transProg。
你必须完全按照图 4-2描述的接口使用Absyn，但可以自行决定采纳或者忽略本章给出的关

于 Semant模块内部结构的建议。

你会需要用你写的语法分析器来生成抽象语法树。此外，在$TIGER/chap5中还包含了下面

两个支持文件。 122]
·type，h、type.c，描述了Tiger 语言的数据类型。

以及其他一些与以前相同的文件。必要时要修改第4章练习中的 makefile 文件。

a.实现一个简单的类型检查器和声明处理器，这个声明处理器不处理递归函数或递归数据
类型（不必处理向前引用的函数或类型）。类型检查器不检查每一个 break 语句是否位于
for 语句或 while语句之内。
b.扩充你的简单类型检查器，使之能处理递归的（和相互递归的）函数、（相互）递归的类

型声明，并保证 break 语句的正确嵌套。

习题
5.1 改进程序5-1的散列表实现。

a.当散列链的平均长度大于2时，将散列数组增大一倍（因此，现在 table 是指向动
态分配的数组的指针）。为了将数组增大一倍，在分配一个更大的数组时，要重新散
列原数组中的内容，然后再释放原数组。

b.给 insert和 lookup增加一个参数以允许使用多个表。

c.将table类型的表示隐藏在一个抽象模块中，使得 table的使用者不会直接修改该
数据结构（只有通过 insert、lookup 和 pop 操作才能进行修改）。

***5.2(在很多应用中，我们会想要作用于环境的＋操作符不仅仅是加入一个新的绑定;即不
仅仅是σ'=a+|a →r}，而是d'=a，＋a，其中a和a;是任意的环境（可以是重叠的，

在这种情况下，o.中的绑定优先）。

我们希望有一种能高效实现这种环境"加法"的算法和数据结构。平衡树可以高

效地实现σ+{aH→r}（时间为 log（N），其中N是a的大小），但在a，和a，的大小都是

N时，计算a＋o.却需要∶O（N）。

为了将这个问题抽象化，要解一般的不相交整数集合的并运算问题。此问题的输 123]
人是如下形式的命令集合∶

,= 14 《定义单个元素的集合）

s-17
1= 到Ux; （非破环性的并集）

6es （成员关系测试）

si= *,Us;
s-191
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?s:Ux
7-s
高效的算法可以处理 N条命令组成的输入，并且回答任意成员关系查询的时间不

超过o（N'）∶

"a.实现一个算法，该算法对于典型集合并运算a←-bUc，在b比c 小很多的情况下

仍是高效的【Brown and Tarjan 1979】。

·"b.设计一个即使在最坏情况下也是高效的算法，或证明不可能有这样的算法（参见
Lipton等【1997】关于受限模型下界的论述）。

*5.3 Tiger 语言定义要求，类型定义的每一个递归都必须经过一个记录或数组。但是，如果

124 编译器忘记了检查这类错误，也不会出现特别糟糕的问题。解释这是为什么。
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栈（stack）∶一个有序的积累或堆积。

韦氏词典

在几乎所有的现代程序设计语言中，函数都可以有局部变量，这些局部变量是在函数的入

口创建的。在同—时刻可能存在对该函数的多个调用，每个调用都有它自己的局部变量实例。

在如下Tiger函数中∶

function f(x: int):int=
let Var y :=x+X
in if y < 10
then f(y)
else y-1

end
f 的每次调用都会创建x的一个新实例（并且由 f的调用者初始化）。因为存在递归调用。所以可

同时存在x的很多个实例。类似地，每当进人f的函数体时，都将创建一个y的新实例。

在很多语言中（包括C、Pascal和 Tiger），当函数返回时，局部于该函数的变量便都会消
失。因为一个函数只有在它调用的所有函数都返回以后才能返回，所以我们说函数调用是按后

进先出（LIFO）方式进行的。如果在函数的入口创建局部变量，在函数的出口删除它们，则可

125使用一种LIFO的数据结构（即栈）来存放它们。

高阶函数
但是，在既支持嵌套函数也支持函数值变量的语言中，则可能会需要在一个函数返回后仍
保存其局部变量!考虑程序6-1，用ML编写的那个程序是合法的，但在C语言中，我们当然不

能真的将函数g嵌套在函数f中。

程序6-1 高阶函数的例子

fun f(x)= int (*)() f(int x)(
int g(int y)(return x+y;]let fun g(y)= x+y

in g return g;
end

int(*h)()■f(3):val h=r(3)
val j=f(4) int*j)()= (④);

int z*h(5);val z= h(5)
int w·(7);val w =j(7)
（b）伪C语言编写的程序（a）ML语言编写的程序

当f（3）被执行时，函数厂的活动记录将创建一个新的局部变量x。然后，将 g作为调用

f（x）的结果返回。此时g并没有被调用"，因此也就没有创建局部变量y。

①它只是作为的返回值被返回，之后才可能被调用了的函数调用。——译者注
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但在f返回时便删除变量x 还太早，因为在执行到 h（5）时，还会需要使用x的值x=3"

同时，在调用f（4）时，将创建 x的一个不同实例，并且f的这次调用将用x=4创建g的一个不

同的实例。
这是嵌套函数（其中内层函数可能会使用到外层函数中定义的变量）和作为返回值返回的

函数（即保存在变量中的函数）两种情况组合出现的例子，它们导致函数内的局部弯量需要的

生命期超过函数本身的生命期。

Pascal（和 Tiger）允许函数嵌套，但却不能将函数作为返回值。C则允许将函数作为返回
值，但却不允许函数嵌套。所以这些语言都可用栈来保存局部变量。

ML、Scheme 和其他几种语言可同时允许函数嵌套和将函数作为返回值 【具有这种组合特征
的函数称为高阶函数（higher-order function）】。因此这些语言不能用栈来保存所有的局部变量。

这使得 ML和 Scheme 语言的实现复杂化了——但是，高阶函数增加的表达能力证明了这点代价

是值得的。
[126 本章的余下部分考虑的是可用栈存放局部变量的程序设计语言，而将有关高阶函数的讨论
推迟至第15章。

6.1 栈帧

最简单的栈表示的是一种可支持压入（push）和弹出（pop）操作的数据结构。但与通常的

栈概念不同的是，局部变量是（在函数入口处）成批压人，并（在出口处）成批弹出的。此外，
当局部变量在栈中被创建时，它们总是没有被立刻初始化。最后，当往栈中压人很多变量之后，

还会需要访问压在栈顶之下较深的变量。因此，抽象的压入和弹出模式并不合适。

与此不同，我们将栈看成是一个大型数组，并带有一个特殊寄存器，即栈指针，它指向栈内

的某个存储单元。超出栈指针的所有位置都视为自由存储空间，位于栈指针之前的所有位置都视

为已分配的存储单元。栈通常只在函数的入口处增长，它通过增加足以容纳该函数的所有局部变

量的一片存储空间来扩大栈，并且在函数的出口处收缩，收缩的空间就是人口时扩大的空间。栈

中用来存放一个函数的局部变量、参数、返回地址和其他临时变量的这片区域称为该函数的活动

记录（activation record）或栈帧（stack frame）。由于历史的原因②，运行栈在存储器中总是从高

地址开始并向低地址方向增长。这有点使人糊涂∶栈往下增大，往上收缩，就像一根冰柱。

栈帧布局的设计要考虑到指令集的体系结构特征和被编译的程序设计语言的特征。但是，计
算机的制造者常常规定一种用于其体系结构的"标准"栈帧布局，以便在可能的情况下被所有的

程序设计语言编译器采纳。这种栈帧布局对于某些特定的程序设计语言或编译器可能并不是最方

便的，但是通过使用这种"标准"布局，我们可以得到相当大的好处;用不同程序设计语言编写

的函数可以相互调用。
图6-1 展示了一种典型的栈帧布局。该栈帧有一组由调用者传入的参数（incoming argument）
（技术上，这些传入的参数是前一个栈帧的一部分，但是它们位于相对帧指针的位移是已知的单元

中）。返回地址是由CALL指令产生的，它告诉当前函数结束时应当将控制返回至何处（此处位于

调用函数内）。有些局部变量分配在栈帧内，另一些局部变量则保存在寄存器中。有时候，存放在127]

①因为h此时指向g，它导致函数g被调用，而g需要用到x。——译者注

② 这样做并不完全是历史的原因，实际上有其道理。它可以使得相对于栈指针的偏移总是非负的。——译者注



第6章 活 动 记 录 91

寄存器中的局部变量会需要保护到栈帧中，以便为其他用途提供空闲的寄存器;栈帧内有一部

分区域用于此目的。最后，在当前函数调其他函数时，可以用传出参数（outgoing argument）
空间来传递参数。

个高地址

实参n

前一传入的
搜帧参数

实参2
实参1
静态链帧指针 →

局部变量

返回地址

临时变量
当前
校锁保护的寄存器

实参m

传出的
参数

实参2
实参!
静态链栈指针 →

下一
找帧
。低地址

图6-1 栈帧 己图
6.1.1 帧指针

设函数g（⋯））调用函数f（ag，⋯.a，），我们称g是调用者（caller），f是被调用者（callee）。

在进人函数f时，栈指针指向g传递给f的第一个参数。在f的入口，f简单地使栈指针 SP减

去帧的长度而分配一个新栈帧。
原来的 SP则变成了当前的帧指针（FP）。在某些栈帧布局中，FP是一个单独的寄存器。原

来的 FP则保存到存储器中（栈帧内），并且新的 FP变成了老的SP。当函数f退出时，它要做

的只是复制 FP到SP、并取回保存在存储器中的 FP。当函数f的栈帧大小是可变的，或者当栈

帧在栈内不总是连续的时，这种安排是可取的。但是，如果栈帧的大小是固定不变的，则对于

每一个函数厂，FP与SP 所指的位置总是相差一个已知的常数，因此完全没有必要让 FP占用一
个寄存器——FP是一个其值总是等于SP+栈帧大小的"虚"寄存器。
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那么，当栈帧的大小是常数的时候，为什么还要讨论帧指针?为什么不通过相对 SP的位移

来引用所有局部变量和参数等对象呢?因为栈帧的大小要到编译处理相当晚的时候才能知道，

即要到给临时变量分配的空间大小和用于保护寄存器的空间大小都已确定时。但是，尽早地知

道形式参数与局部变量的位移量是有好处的。因此，，为了方便，我们仍需要讨论帧指针，以便

将较早知道其位移量的形式参数和局部变量放在靠近帧指针处，而将临时变量和要保护的寄存

器放在离帧指针较远的地方，这些对象的位移量要较晚才能知道。

6.1.2 寄存器

现代计算机有大量的寄存器（典型的有32个）。将局部变量、表达式的中间结果和其他值

保存在寄存器中，而不是放在栈帧中，将有助于编译生成的程序快速地运行。算术指令可以直
接访问寄存器。在大多数计算机中，存储器访问需要使用独立的存取指令。即使在算术指令可

以访问存储器的计算机中，访问寄存器的速度也比访问存储器要快。

129 一台计算机《通常）只有一组寄存器，但是却有许多不同的过程和函数需要使用寄存器。
假设函数f在用寄存器r保存了它的一个局部变量的同时调用过程g，而过程 g也需用寄存器r

完成自己的计算。则g在使用r之前必须先将r保护起来（将它保存在栈帧内），并在完成计算
而不再需要它之后将r恢复（从帧中取回被保存的内容）。但是，保护和恢复该寄存器应当是f
的责任，还是g的责任呢?如果必须由调用者（此例中的f）来保护和恢复寄存器 r、我们称r

是调用者保护的（caller-save）寄存器;如果这是被调用者（此例中的 g）的责任，则称r是被

调用者保护的（callee-save）寄存器。

在多数计算机体系结构中，调用者保护的寄存器和被调用者保护的寄存器的概念并不是由

硬件来实现的，而是在机器参考手册中规定的一种约定。例如，在 MIPS计算机中，保留寄存

器 r16～r23用于跨过程调用（属于被调用者保护的寄存器），而其他的所有寄存器则不保留用于

跨过程调用（属于调用者保护的寄存器）。

有时，对寄存器进行这种保护和恢复并不必要。如果f知道某个变量x的值在函数调用以

后将不再需要，就可以把 x放在一个调用者保护的寄存器中，并且在调用过程g时不保护它。

相反，如果 f有一个局部变量i，并且在若干次函数调用之前和之后都需使用，则可以把i放在

某个被调用者保护的寄存器r，中，并且只在厂的入口保护r，一次，在f的出口将r，取回一次。这
样，明智地为局部变量和临时变量选择调用者保护的寄存器或被调用者保护的寄存器，便可以

减少程序执行存取操作的次数。我们将依靠寄存器分配器来为每一个局部变量和临时变量选择

适当种类的寄存器。

6.1.3 参数传递
在大多数调用约定设计于20 世纪70年代的计算机中，函数的参数是通过栈来传递的可。但这

导致了一些不必要的存储器访问。对实际程序的研究表明，很少有函数的参数个数超过4个，并

且极少有超过6个的。因此，现代计算机中的参数传递约定都规定，一个函数的前k个参数（典

型地，k=4或者k=6）放在寄存器r，⋯;rn4-;中传递，剩余的参数则放在存储器中传递。
现在，假设函数f（a ，⋯，a.）（它从ri，⋯，7。接收其参数）调用函数 h（z）。它必须通过寄

①大约在 1960年之前，参数不是通过栈来传递的，而是通过一块静态分配的存储空间来传递的。这种方法阻碍了

递归柔数的使用。
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存器 r，传递参数 z，因此了需要在调h之前将r原有的内容（a，的值）保护到它的栈帧中。但
是，这里却存在着原本假定通过将参数传递在寄存器中可以避免的存储器访问!那么怎样使用

130寄存器才能节省时间呢?

这个问题有4种答案，可以同时使用其中的任意一种、几种或者全部。

（1）某些过程并不调用其他的过程——这种过程称为叶子过程（leaf procedure）。在所有过
程中，叶子过程的比例有多大?如果我们（乐观地）假设平均的过程调用情况是，要么不调用

其他的过程，要么至少调用另外两个过程，则可以描述出一棵过程调用"树"，在这棵树中，叶

子结点的数目多于内部结点的数目。这意味着所调用的过程大多数都是叶子过程。
叶子过程不必将传人的参数保存到存储器中。事实上，常常可以完全不为它们分配栈帧。

这是一种重要的节省。

（2）有些优化编择器使用过程间寄存器分配，它可以一次分析整个程序中的所有函数。这

样编译器便可以给不同的过程指派不同的寄存器用于接收参数和存放局部变量。因此，f（x）可

用寄存器r，接收参数 x，但用寄存器r;传递参数 z来调用函数h。
（3）即使f不是叶子过程，它仍有可能在调函数 h 之前完成所有需要使用参数x的操作
（技术上，在调用h的那一点，x是—个死变量）.于是f可以重写r、而不需保护它

（4）某些体系结构有寄存器窗口，它们使得每次函数调用都分配一组新的寄存器，而无需

存储访间。
如果函数f需要将传入的参数写到栈帧中，应当写至栈帧的什么位置呢?理想的情况下，

/的栈帧布局应当只涉及广的实现。一种直接的处理方法是;调用者将参数a，⋯··a。传递至寄
存器中，将参数 a，⋯，a.传递到它自己的栈帧的末尾，即图6-1中标记为传出参数的位置，

它们将成为被调用者的传入参数。如果被调用者需要将这些参数写至存储器，则可以将它们写
到标记为局部变量的区域内。

C程序设计语言实际上允许获取形式参数的地址，并保证一个函数的所有形式参数都存放

在连续的地址上!这正是 printf 函数使用的 varargs 特征。允许程序员取参数的地址，如果其

地址存活得比栈帧还久的话——就像int* f（int x）{return &x;中参数x的地址一样——则会
导致一种所谓的悬挂引用（dangling reference）。即使这种引用不会导致错误，要求参数地址连

续也会给编译器带来限制，并使得栈帧的布局变得更复杂。为了解决用寄存器传递参数，同时

还能得到参数地址的矛盾，我们仍然将前 k个参数传递到寄存器中，但对其中任何取了其地址

的参数，则必须在函数入口处将它们保存到存储器中。为了满足 printf 的 varargs 特征，当将 131]
寄存器参数写入存储器时，其地址必须与第k十1个参数、第k＋2个参数等参数的地址连接在

一起。因此，C程序在存储器中存放参数时，不能将其中的一些存放在一处，而另一些存放在
分开的另一处-—所有参数在存储器中都必须连续存放。
因此，在很多现代计算机的标准调用约定中，调用函数在它自己的栈帧中也为寄存器参数

保留空间，此空间紧邻着第k+1个参数的空间。但是，调用者并不实际往其中存放任何内容，

这片空间由被调用函数使用，并且只有当某种原因需要时，被调用函数才将参数写入其中。

取局部变量地址的一种更优雅的方法是采用传地址方式。用这种方式，程序员不必显式地

操作变量x的地址。当x作为实参传递给函数f（y）时，如果 y是"传地址" 参数，编译器将生

成传递x的地址，而不是x的值的代码。对于该函数中 y的任何使用，编译器将生成额外的通

过指针进行的间接引用。采用传地址的方法，将不会存在"悬挂引用"，因为当厂返回时y肯定
已经不存在了，并且在 x的作用域结束之前f已经返回。
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6.1.4 返回地址

当函数f被函数g调用时，它最终必须返回，因此需要知道应返回到何处。如果函数g中
调用厂的 call指令位于地址a，则要返回正确地址（通常情况下）是 a+1、即 g中 call指令的

下一条指令处。这个地址称为返回地址（return address）。
20世纪 70年代的计算机中，返回地址是由 call指令压人栈中的。现代科学研究表明，将返

回地址传递到寄存器中要更快、更灵活，并可避免存储访问，同时。还可以避免用硬件来实现

特定的栈规则。
现代计算机中，call指令只需将返回地址（call指令之后下一条指令的地址）放人指定的寄

存器中。这样，非叶子过程必须将返回地址保存到自已的栈帧中（除非使用了过程间寄存器分

配）;叶子过程则不需要保存它。

6.1.5 栈帧内的变量

因此，遵循现代的过程调用约定，函数的参数将通过寄存器传递，返回地址将存放在一个

寄存器中，函数结果将保存在寄存器中而返回。很多局部变量以及表达式的中间结果都将分配

132 到寄存器中。只有在下面这些情况下，才需要将一个变量的值写人存储器中（栈帧内）。
·该变量将作为传地址参数，因此它必须要有一个存储器地址（而在 C语言中，E操作符在

某处曾作用于该变量）。

·该变量被嵌套在当前过程内的过程访问①。

·该变量的值太大以至于不能放入单个寄存器中②。
·该变量是一个数组，为了引用其元素需要进行地址运算。
·需要使用存放该变量的寄存器作为特殊用途，如传递参数（如前所述），尽管编译器可以

将其值转移到其他的寄存器而不是存放到存储器中。
·存在太多的局部变量和临时变量，以至于不能将它们全部放人寄存器中。在这种情况下，

它们中的一部分将被"溢出"（spilled）到栈帧中。
如果一个变量是传地址实参，或者它被取了地址（使用C语言中的&操作），或者内层的嵌

套函数对其进行了访问，我们则称该变量是逸逸的（escape）。
在处理程序的过程中，当遇到一个形式参数或者局部变量的声明时，可以方便地为它们分

配空间（要么是寄存器，要么是栈帧中的存储单元）。这样，只要在表达式中发现该恋量出现，

便可将它们翻译成引用该变量正确位置的机器代码。但不幸的是，上面列出的那些情况并不能
及早地显露出来。当编译器第一次遇到变量声明时，它还不知道该变量是否会用作为传地址参

数，是否会被内层的嵌套函数访问，或者是否会取它的地址，并且也不知道表达式的计算会需

要使用多少个寄存器（也可能原本就是希望将某些局部变量放入栈帧中而不是寄存器中）。产品
质量的编译器必须先为所有形式参数和局部变量分配临时位置，晚些时候再决定它们中的哪些

变量应当真正放到寄存器中。

①当采用跨过程寄存器分配时，被内层添数访问的局部变量有时也可以放在寄存器中，只要内层函数知道到何处访

问该变量即可。
②但是，有些编译器为了效率起见会将一个很大的值分散到若干个寄存器中。
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6.1.6 静态链

在允许声明嵌套函数的语言中（如 Pascal、ML 和 Tiger），内层函数可以使用外层函数声明

的变量，这种语言特征称为块结构（block structure）。
例如，程序6-2中，函数write引用了外层声明的变量 output，而函数 indent 则引用了外

层声明的变量n和 output。为了实现相应的功能，函数 indent不仅要能够访问它自已的栈帧

（访问变量i和 s），还要能够访问函数 show 的栈帧（访问变量n）和函数 prettyprint的栈帧

（访问变量 output）。 133
程序6-2 嵌套的函数

-em.守
type tree=(key: string,1eft:tree,right: tree}

function prettyprint(tree: tree): string =
1et。 var output;。c r function wrie(s: string)=

，昌一 output;= concat(output,8). a'
阳目心 function show(n:int,t:tree)=

let function indent(a: string)=
”忆” (for i ;=1 to n
13 do write("");
14 output:= concat(output,e);write("\n")}
15 in if t=ni1 then indent(",")
16 else(indent(t.key);
17 ghow(n+1,t.left);

18 ahow(n+1,t.right))

end19
202 in show(0,tree);output

22 end

有几种方法可实现这一目的。

·每当调用函数f时，便传递给f一个指针，该指针指向静态包含广的那个函数，称这个

指针为静态链（static link）。

·建立一个全局数组，该数组的位置i处包含一个指针，它指向最近一次进入的，其静态
嵌套深度是i的过程的栈帧，这个数组叫作嵌套层次显示表（display）。
·当g调用f时，g中每一个实际被厂（或被嵌套在厂内的任意函数）访问了的变量，都将

作为额外的参数而传递给。这称为入提升（lambda lifting）。

这里只详细描述静态链的方法。至于实际中应当使用哪种方法，见习题6.7。

每当函数f被调用时，都将传递给它一个指针，该指针指向在程序正文中直接包含f的函

数g的"当前"（最近一次进入的）活动记录。

例如，在程序6-2中∶



第一部分 编译基本原理96 多

行号
21 prettyprint 调用show，传递自己的帧指针作为 show的静态链。[134
10 show将静态链（prettyprint 的栈帧地址）保存在它自己的栈帧中。
15 show调用 indent，传递自己的帧指针作为 indent的静态链。

17 show调用自身，传递自己的静态链（不是自已的帧指针）给自己作为静态链。
12 indent使用 show的栈帧中的值 n。为了做到这一点，它从相对函数 indent 的静态链

（它指向函数 show 的栈帧）适当位移的存储位置取得该值。
13 indent 调用write。它必须传递 prettyprint 的帧指针作为静态链。为了得到这个帧指

针，它首先要从相对自己的静态链的适当位移的存储位置中（即从 show的栈帧中）取

出已传递给 show的那个静态链。

14 indent使用函数 prettyprint 中的变量 output。为了做到这点，它从自己的静态链开
始，然后获得函数 show的静态链，再通过这个静态链获得变量 output。①

因此，对于每个过程调用或者变量访向，需要一条由 0或更多次存储器读取操作组成的链，

这条链的长度正好就是所涉及的两个函数之间静态嵌套深度之差。

6.2 Tiger 编译器的栈帧

Tiger 编译器应当使用哪种类型的栈帧呢?这里，我们面临的问题是;各种目标机体系结构
有不同的标准栈帧布局，如果希望 Tiger 函数能够调用C 函数，就必须使用标准布局，但是，

我们又不想在 Tiger编译器的语义分析模块的实现中强行塞人任何特定机器的规定。

因此，必须使用抽象方法。就像 Symbol模块提供了清晰的接口并对使用者隐藏了S_table

的内部表示一样，我们必须使用栈帧的抽象表示。

135 这种栈帧的接口可以像下而这样∶
* frame.h*

typedef struct F_frame*F frame;
typedef struct F_accea8_*F_accesB;
typedef struct F_accessList_*F_acces8List;
struct F_accessLiat_{P_access head;P_accessList tall;};

F_frame F_newFrame (Temp_label name,U_boolList formals);

Temp_1abel F_nare《P_frame f);
F accesBList F formals(F frame f);

P_access P_allocLocal(F_frame f,bool eacape);

抽象接口 frame.h用一个与目标机相关的模块来实现。例如，如果编译的目标机是 MIPS 体
系结构，则将有一个文件mipsframe.c，它包含∶

#include *frame.h"

①如果这里 show是调用write 而不是直接操纵 output。则这个程序会更清楚些，但是这样做不利于知识的传授
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一般而言，我们可以假定编译器中与机器无关的部分是以以下方式来访问 frame.h的实现

的，例如.

/* in Iranslate.c *
#include "Erane.h"

F_frame frame = F_newFrame(.);

用这种方式，编译器的其余部分可以访问 Frame 模块而不需知道具体目标机的特征。
F_Frame类型表示有关形式参数和分配在栈帧中的局部变量的信息。为了给带有k 个形式参
数的函数f创建一个新栈帧，要调用函数F newFErame（f，1），其中，I是k 个布尔量组成的一个

表∶true 表示参数是逃逸的，false 表示参数不是逃逸的。函数F_newFrame 的结果是一个F_
frame 对象。例如，对于一个带有3个参数的函数g，如果其中第一个参数是逃逸的（需要保存

在存储器中），则

F_newFrame (g,UBoolList(TRUE,
U BoolList(FALSE.
U_BoolLiat (PALSE,NULL))》》

136将返回一个新的栈帧对象。

F_Access类型用于描述那些可以存放在栈中或寄存器中的形式参数和局部变量，它是一种
抽象数据类型，因此，struct F access 的内容只在 Frame 模块内才是可见的。

/* mipsrame.c *
#include "frame,h"

8truct F_access_
{enum {inPrame,inReg) kind;
union{

/* iFrane int offset;
/* InReg *Temp_temp reg;、

一日”
static P_access InFrame(int offset);
stata F_access InReg (Temp_temp reg);

InFrame（X）指出一个相对帧指针偏移为X的存储位置;InReg（t。）指出将使用"寄存器"t⋯

F_access是抽象数据类型，因此，在该模块之外，构造函数InFrame 和InReg都是不可见的。其
他模块的访问操作需要使用下一章描述的一些接口函数。

F formals接口函数抽取由k个"访问"组成的一张表，这些访问指明运行时存放形式参数

的位置。这种位置是从被调用函数的角度来看的，因为调用者和被调用者看到的参数位置是不

同的。例如，当通过栈来传递参数时，调用者将一个参数放在相对栈指针位移为4 的存储单元

内，但是被调用者却看到该参数的位置距帧指针4个位移。或者，调用者可能将参数传递到了
第6号寄存器中，但是被调用者希望将它从第6号寄存器中移出，并总是从第 13号寄存器访问
它。在有寄存器窗口的 Sparc 体系结构中，调用者将一个参数传递到 o1寄存器，但是 save指令

可以使寄存器窗口移动，从而使被调用者看到该参数在 i1寄存器中。

因为这种"视角移位"（view shift）与目标机的调用约定有关，所以必须由 Frame 模块来处
理，Frame模块则启动newFrame。对于每个形式参数，newFrame 函数必须计算两件事。
·在函数内是如何看待参数的（在寄存器中，还是在栈帧存储单元中）。

·为了实现"视角移位"，必须生成哪些指令。
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例如，驻存在栈帧的参数将视为在"相对于帧指针偏移为 X的存储单元内"，并且这种137
"视角移位"是通过在过程的入口处将栈指针复制到帧指针来实现的。

6.2.1 栈帧描述的表示

Frame模块的实现假设其使用者看不到F_frame类型的表示，但事实上 F_frame 是一个包含

以下内容的数据结构。

·所有形式参数的位置。

·实现"视角移位"需要的指令。

·迄今为止已分配的栈帧大小。
●该函数开始点的机器代码标号（见6.2.4节）。
表6-1给出了一个带3个参数的函数g 的形式参数，以及在三种不同体系结构中 newErame

可能给出的分配，其中三种体系结构分别是 Pentium、MIPS和 Sparc。因为第一个参数是逃逸

的，所以在三种机器上它都必须位于 InFrane;其余的参数在 Pentium 机器中位于 InFrame，在

另外两种机器中则都位于InReg 中。

表6-1 函数g（x，x。，x。）的形式参数，其中x;是逃逸的

Pentium SParcMIPS- InPzame(68)1nPrame(0)InFrame(8)形式 e m “吕量艺InRe(1s9)InFrame(12)参数 inRea(is) InReg(1s)InFrame(16)
M【sp+0】←fp sp←- sp-K Bave 音ep.-K，tsp
f-sp M[fp+68]410M【sp+K+0】←r2视角 tis7←-r4sp←s-K移位 宫十“

1s5 ·r5 1s12

新产生的临时变量tm和1u及复制r4、r5（在 Sparc 中是 i 和 i2）到这两个临时变量的

move指令似乎是多余的。为什么函数g不直接从接收参数的寄存器中访问它们呢?为了理解这
个问题，考虑下面的代码∶

function m(x:int,y:int)= (h(y,y);h《x,x))

如果x在m 中始终待在"参数寄存器1"中，并且又要将传递给h的y放在"参数寄存器1"中

来传递时，就会出现问题。

138 寄存器分配器最终会选择应当将1.存放在哪一个寄存器中。如果不存在函数 m给出的这
类冲突，寄存器分配器（在 MIPS机中）会小心地选择用 r4来保存t，用r5来保存1u。于
是可以不需要那两条 move 指令，并可在此时删除它们。

7.3.2节和第12章还有关于视角移位的更多讨论。

6.2.2 局部变量

局部变量有一些保存在栈中，另一些则保存在寄存器中。为了在函数f的栈帧中分配一个

新的局部变量，语义分析阶段需要调用函数

F_alloclocal(,TRUE)

该函数返回一个相对帧指针位移地址的 InFrame 访问。例如，在 Spare机器中为了分配两个局部
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变量，要调用函数 allocLocal 两次，并返回连续的 InErame（-4）和 InFrame（-8），它们是这两

个局部变量相对标准 Sparc 帧指针的位移。

传给函数 allocLocal的布尔参数指明这个新变量是否是逃逸的，即是否需要将它放入栈帧
中;如果布尔参数的值是 false，则变量可以分配到寄存器中。因此，F allocLocal（f，EALSE）可

能返回InReg（r.）。
对 allocLocal的调用不必紧跟在创建栈帧之后。在像 Tiger 或C这样的语言中，函数体内
可能还有嵌套的变量声明块。例如

void f()function f()=
{int v=6;let var y:=6
print(v);in print(9);
(int v-7;let var v :=7
print(v);in print(v)

end;
print(v》;print(v);
{int v=8:let var v ;*8
print(v);in print(v)

end;
print (v);print(v)

end

这两个程序都有三个不同的变量 v，并且都将输出67686。在处理上面这个Tiger程序的过

程中，每当遇到变量v的声明时，便调用 allocLocal分配一个临时变量或在栈帧内分配一个新的
单元，并使之与名字v关联。每当遇到 end时（或闭括号时），与v的关联将被遗忘，但是其空间 139
仍保留在栈帧中。这样，整个函数中声明的每一个变量都有一个临时空间或栈帧单元。

寄存器分配器在给临时变量分配寄存器时会尽可能少地使用寄存器。在此例中，第二和第
三个变量v（分别用7和8赋初值）可以存放在同一个临时变量中。一个好的编译器还可以注意

到可分配到同一个栈单元的两个栈变量的情况，从而优化栈帧的大小。

6.2.3 计算逃逸变量

非逃逸的局部变量可以分配到寄存器中，而逃逸的局部变量必须分配在栈帧中。函数 Find

Escape可以找出逃逸变量，并将这一信息记录在抽象语法的 escape 域。实现FindEscape 最简单
的方法是遍历整个抽象语法树，寻找每一个变量的逃逸使用。因为Semant 在第一次看到一个变

量时便需要立即知道它是否是逃逸的，所以这个阶段必须出现在语义分析开始之前。

FindEscape使用的遍历函数在抽象语法的表达式和变量上是相互递归的，就像类型检查器

的情形一样。并且和类型检查器一样，它也使用将变量映射到绑定的环境。但是，在这里，绑

定非常简单——它只是一个在发现特定变量是逃逸变量时设置的布尔标志;

/*escape h*
void Esc_findEBcape(A_exp exp);

/* escape.c*/
static void traverseExp (S_table env,int depth,A exp e);
static void traverseDec(S table env,int depth,A dec d);
static void traverseVar(S_table env,int depth,A_var v);

每当在静态嵌套深度为d的函数内发现了变量或形式参数的声明，例如

A_VarDecname=symbol("a"), escape=r,}
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就将 EscapeEntry（d，S（x->escape））添加到环境中，并且将x的 escape 域置为 EALSE。

这个新的环境用于处理该变量作用域内的表达式;每当在大于d的深度中使用a 时，x的

escape 域就设置为TRUE。140
对于允许程序员显式地取变量的地址，或以传地址方式传递参数的语言，可类似地按这种

方法用FindEscape 找出逃逸的变量。

6.2.4 临时变量和标号

编译器的语义分析阶段需要为参数和局部变量选择寄存器，并且确定过程体的机器代码的

地址。但是、要确切地确定哪些寄存器是可用的，或确切地知道过程体位于什么位置，此时还

太早。我们用术语临时变量表示暂时保存在寄存器中的值，并用术语标号表示其准确地址还需

要确定的某种机器语言的位置——它类似于汇编语言中的标号。
Temp 是局部变量的抽象名，label是静态存储器地址的抽象名。Temp 模块管理由这两种不

同的名字组成的两个集合。

/*temenh*
typedef atruct Temp_temp_*Temp_temp:
Temp_temp Temp_newtemp (void);
typedef S symbol Temp 1abel:
Temp label Temp newlabel(void);
Temp_label Temp_namedlabel(string name);
string Temp_labelstring《Temp_label s);

typedef struct Temp_tempList__*Temp_tempList:
struct Temp_tempList_{Tep_temp head; Temp_tempList tail;)
Temp tempList Temp TempList (Temp temp head,

Temp tempList tai1);
typedef struct Temp_labelList_*Temp_labelList;
struct Temp_labelList_{Templabel head;Temp labelList tall;}
Temp_labelList Temp_LabelList (Temp_1abel head,

Temp_labelList tail):

/* Temp map type, and operations on il, described on page 147 t

Temp_newtemp（）从临时变量的无穷集合中返回一个新的临时变量。Temp newlabel（）从标号

的无穷集合中返回一个新的标号。Temp_namedlabel（string ）返回一个汇编名为string 的新标号。

在处理声明 function f（⋯）的过程中，通过调Temp_newlabel（）可生成f的机器代码地址的141
标号。另一种做法是调Temp namedlabel（"f"）（如果这样做，则将使用标号f而不是诸如 L213

这样的标号，它虽然可以使汇编语言程序的调试较容易），但不幸的是，在不同的作用域有可能

存在两个名为f的不同函数。

6.2.5 两层抽象

我们的Tiger编译器在语义分析和栈帧布局细节之间有两层抽象;

Bemant,C
translate.h
translate.c

temp.hframe.h
temp.Cμframe.C
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接口 frame.h和 temp.h提供存储器变量和寄存器变量的与机器无关的视图。Translate模块

通过处理嵌套作用域的表示（利用静态链），并提供接口 translate.h 给模块 Semant来扩大这个

视图。
关键是要有一个抽象层 frame.h将源语言的语义与机器相关的栈帧布局分开（μ代表诸如

mips、sparc、pentinum 之类的目标机）。用接口 translate.h分开 Semant和 Translate 并不是绝
对需要的，我们这样做是为了避免用一个既做类型检查又做语义转换的又大又笨拙的模块。
在第7章，我们将看到 Translate如何提供有助于从抽象语法产生中间表示的C 函数。现

在，我们需要知道的只是 Translate 如何为 Semant管理着局部变量和静态函数嵌套。

/* iranslate.h*y

typedet 8truct Tr_acce88_*Tr_acces8;
typedef ...Tr_accessList ...
Tr_accessList Tr_AccessList (Tr_access head,

Tr_accessList tail);

Tr_level Tr_outermost(vofd);
Tr_level Tr_newLevel (Tr_level parent,Templabel name,

U_boolList formals);
Tr_accessLAst Tr_formals(Tr_level level);
Tr_access Tr_allocLocal(Tr_leve1 level,bool eecape);

142]
在 Tiger编译器的语义分析阶段，transDec 通过调用Tr_newLevel为每一个函数创建一
个新的"嵌套层"，Tr_newLevel则调用F_newFrame建立一个新栈帧。Semant将这个嵌套层保

存在该函数的 FunEntry 数据结构中，以便当它遇到一个函数调用时，能够将这个被调用函
数的嵌套层传回给 Translate。FunEntry也需要该函数的机器代码入口点的标号∶

/* new versions of VarEntiry and FunEntry *y
atruct E_enventry_(
enum {B_varEntry,E_funEntry}kind;
union {struct{Tr_accese accese;Ty_ty ty;)var;
struct{(Tr_level level;Temp label label;
Ty_tyLlst formals;Ty_ty result;}fun:

占””
E_enventry B_VarEntry(Tr_access access,Ty_ty ty);
E_enventry E_PunEntry(Tr_level level,Temp_label label,

Ty_tyLiBt formale,Ty_ty reeult);

当 Semant处理一个位于lev层的局部变量的声明时，它调用Tr_alloLocal（lev.esc）在lev
指定的这一层创建变量;参数 esc指出该变量是否是逃逸的。此函数的返回结果是抽象数据类

型Tr_access（与F_access不同，因为它必须知道与静态链相关的信息）。随后，当一个表达式
中使用了该变量时，Semant便可将这个 access 交给 Translate 来生成访问该变量的机器代码。

与此同时，Semant也在值环境的每个VarEntry 中记录这个访问。
可以将抽象数据类型 Tr_access 表示成由变量的层次level和它的 F_access 组成的偶对∶

/* inside translate.c 
struct Tr_acce8s_{Tr_level level;P_access access;};

因此，Tr_allocLocal要调用F_allocLocal，同时要记住此变量生存在哪个层次。随后当从（可

能）不同的层次访问该变量时，便会需要用到这个层次信息来计算静态链。
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6.2.6 管理静态链

Frame模块应与被编译的特定源语言无关。很多源语言没有嵌套函数声明;因此，Frame 不143
应当知道有关静态链的任何信息。相反，静态链是由 Translate 负责的。

Translate 知道每一个栈帧都含有一个静态链。静态链是通过寄存器传递给函数并保存在栈
帧中的。因为静态链与形式参数很相似，因此我们（尽可能地）将它作为形式参数对待。对于
一个具有k个参数的函数，令1是指明其参数是否逃逸的布尔量组成的表。则

1'。U_BoolLigt(TRUE,1)

是个新表;位于1前面的TRUE 指明作为"额外参数"的静态链是逃逸的。然后 newFrame（label，
1'）创建一个新的栈帧，其形式参数表包含这个"额外的"参数。
例如，假设函数f（x，y）嵌套在函数g之内，g的level（以前创建的）称为level，。则

transDec（在 Semant.c 内）可以调用

Tr_newLevel(level;,,
U_BoolList(PALSE,U_BoolList (PALSE,NULL)))

其中假定x和y都不是逃逸的。然后，Tr_newLevel（label.fmls）给形式参数表增加一个（关于

静态链的）额外的元素，并调用

P_newPrame (label,U_BoolList《TRUE,tmla))

它返回的是一个栈帧F_frame。在这个栈帧中有三个通过调用F_formals（frame）可访问的栈帧
位移值，其中第一个是静态链的位移;另外两个是参数 x和y的位移。当 Semant调用

Tr_formals（level）时，它可得到这两个位移，并已适当地转换成为了 access值。

6.2.7 追踪层次信息

每次调用Tr_newLevel时，Semant 都必须传递包围层的level值。当为 Tiger程序的"主"

函数（一个不位于任何函数之内的函数）创建层次时，Semant应当传递一个特殊的层次值，此

值由调用Tr outermost（）而得到，它不是 Tiger的主函数的层次，而是包含该程序的层次。所
有声明了的"库"函数（如5.2节末尾所述）都在最外层，这个最外层没有栈帧和形式参数表。

每次调用Tr_outermost（）时，它返回的都是相同的层次;将它作为一个函数仅仅是因为在C中144.
对分配在堆中的全局变量进行初始化比较困难。

函数 transDec 将为每个Tiger 函数声明创建一个新层次。但 Tr，newLevel必须知道外层包
围函数的层次，这意味着 transDec在处理每一个声明期间必须知道当前的静态嵌套层。

实现这一点并不难∶transDec 现在能得到一个指明当前层次的额外参数（除了类型环境和
值环境之外），它是通过适当调用 newLevel而得到的。transExp 也会需要此参数，这样，trans-
Dec可以将level传递给 transExp，transExp反过来又可将它传递给 transDec 用于处理嵌套函

数的声明。同样，transVar也需要有一个level参数。

程序设计∶栈帧

扩充 semant.c 为局部变量分配存储单元，并追踪嵌套层。为了使实现简单，假定每个变量
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都是逃逸的。
编写实现 Translate模块的 translate.c。
如果你的编译器的目标机是 Sparc，编写实现 SparcFrame 模块（与 frame.h 相匹配）的

sparcframe.c。如果目标机是 MIPS，实现 MipsFrame 模块，依此类推。
尝试将所有与具体机器相关的细节都放在机器相关的 Frame 模块中，而不要放到 Semant和

Translate模块中。
为了使得实现简单，只处理逃逸的参数，即，在实现 newFrame 时，只处理所有"逃逸"标

志都为TRUE 的情况。

如果你的目标机为 RISC机器（例如 Mips 或Sparc），其中前k个参数传递在寄存器中，其

余的参数传递在栈中，则为了简单起见，只处理参数个数少于或等于k个的情况。

可选;实现 FindEscape 模块，该模块设置抽象语法中每一个变量的 escape 域。修改你的

transDec 函数，将非逃逸变量和参数分配至寄存器。

可选∶处理形式参数个数大于k的函数。
在STIGER/chap6目录下可用的支持文件包括;

·temp.h、temp.c，支持临时变量和标号的模块。 145

推荐阅读

使用空间连续的单个栈来保存变量和返回地址的做法起始于Lisp【McCarthy 1960】和 Algol

【Naur et al.1963】。块结构（嵌套的函数）和静态链的使用也源于 Algol。

20世纪六七十年代的计算机与编译器将大多数的程序变量保存在存储器中，因此没有太多

必要考虑哪些变量是逃逸的（需要使用其地址）。1978年制造的 VAX计算机有一条过程调用指

令，假定所有参数都已被压入栈中，它自己则将程序计数器、帧指针、参数指针、参数计数以

及被调用者保护寄存器的掩码压于栈中【Leonard 1987】。

随着 RISC对体系结构的变革【Patterson 1985】，用更少的存储访问完成过程调用的思想得

以实现。局部变量默认情况下应当保存在寄存器中，存/取操作只有当需要时才被使用，并且是

由寄存器分配器的"溢出"来驱动的【Chaitin 1982】。
大部分过程都不会有多于5个参数和多于5个的局部变量【Tanenbaum 1978】。为了利用这

一点，在1986年，Chow等人【1986】和 Hopkins【1986】设计了一个有利于普遍情形的调用约定，
前4个参数在寄存器中传递，（极少数的）剩余参数则通过存储器传递;编译器可以分配调用者

保护的寄存器和被调用者保护的寄存器给局部变量;如果叶过程只使用了调用者保护的寄存器，

则不需要建立它们自己的栈帧，并且也不必总是将返回地址压入栈中。

习题
6.1 使用你选择的C编译器（或其他语言的编译器），将一些小的测试函数编译为汇编语言。

在Unix 系统中，这可用命令cc-S来完成。打开所有可能的编译优化，然后用下述标准
评估编译好的程序。
a.所有局部变量都保存在寄存器中了吗?



104 第一部分 编译基本原理

b.如果局部变量b是跨多个过程调用活跃的，是否将它保存在了被调用者保护的寄存器
中?解释这样做为什么会提高下面程序的执行速度;

int f(int a){int b; b-a+1; g();h(b): return b+2;}146
c.如果局部变量 x决不会跨过程调用活跃，将它保存在调用者保护的寄存器中是否合
适?解释这样做为什么会提高下面程序的执行速度∶

void h(int y){int x;x=y+1;f(y);f(2);}

6.2 如果你使用的C编译器用寄存器传递参数，用它为下面的函数生成汇编代码∶

extern void h(int,int);
void m(int x,int y){h(y.y);h《x,x);}

显然，如果给 m（x，y）的参数传递在寄存器r和rm中，并且传递给h的参数也必须在
rm和rm中，则在给 h（y，y）传递参数期间，参数 x不能待在寄存器rm中。解释为了
调用h（y;y），你的C编译器是在什么时候怎样将参数x从寄存器rm中移出的。

6.3 对于下面这段C程序中的每一个变量 a、b、c、d、e，指出它们应保存在存储器中还是

应保存在寄存器中，并说明理由。

int f(int a,int b)
{int c[3],d, e;
d=a+1;
e=g(, &b);
return e+c[1]+b;

*6.4 下面的程序需要使用多少存储空间?

int f(int 1){int j,k;j=i*i;k=1?f(i-1):0;return k+;}
void main(){f(10000);}

a.设想一个编译器，它用寄存器传递参数，没有浪费空间来为保存在寄存器中的参数提

供"备份存储"，也不使用静态链，并且在通常情况下使创建的栈帧尽可能小。那么，
函数f的栈帧应有多大（以字为单位）?

b.用这种编译器编译，该程序使用的最大存储空间是多少?

c.用你喜欢的一个C编译器生成这段程序的汇编代码，并报告函数f的栈帧大小。
d.用一个真实的C编译器编译这段程序，计算它的总存储空间大小。
e.全面而透彻地解释a和c之间的差异。

147] f.评论这个C编译器的设计者是否深入考虑到了真实程序中递归函数的重要性?
*6.5 某些 Tiger 函数不需要静态链，因为它们没有用到 Tiger语言特有的特征。

a.准确地刻画这些不需要给它们传递静态链的函数的特征。
b.给出一个识别所有这种函数的算法（与 FindEscape 有点类似）。

6.6 除了使用静态链，还有另外一些方法可以访问非局部变量。一种方法是简单地将这种非
局部变量留在寄存器中!

function f():int =
1et var a:=5
function g():int -
(a+1)

in g()+g()
end
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如果在调用g的同时将a保留在（比如）寄存器r7中，则g就可以从r7访问到a。
为了使得这种方法可行，局部变量本身、定义该局部变量的函数以及使用该局部变

量的函数必须具备什么特征?

嵌套层次显示表（display）是一种可替代静态链用于访问非局部变量的数据结构。它是售四。司
一个由帧指针组成的数组，数组下标是静态嵌套的深度。嵌套层次显示表中的元素 D.总
是指向最近被调用的嵌套深度为i的函数。

嵌套深度为i的函数f所执行的簿记工作如下所示;

复制 D.到栈帧内的保护单元;

复制帧指针到 D

⋯⋯函数f的函数体⋯⋯
恢复保护单元的内容到D

在程序6-2中，函数 prettyprint的嵌套深度是1，write 和 show 的深度是2，等等。

a.给出使用静态链将程序6-2中第14行的变量output取到寄存器中所需要的机器指令序
列。
b.给出使用嵌套层次显示表替代静态链时需要的机器指令。
c.若变量x的声明在嵌套深度为d的函数中，它的访问在嵌套深度为 d;的函数中，用静

态链的方法读取变量x需要多少条指令?
d.如果使用嵌套层次显示表方法，需要多少条指令? 148]
e.过程入口和出口的静态链管理共需要多少条指令?

f.过程入口和出口的嵌套层次显示表管理需要多少条指令?

我们是否应该用嵌套层次显示表代替静态链?也许应该。但问题会变得复杂起来。
对于像Pascal和Tigcr这种具有块结构，但没有函数变量的语言，用嵌套层次显示表方法

工作得很好。
但是，当函数可以作为其他函数的返回结果时，如 Scheme 语言和 ML语言，块结构

具有的表达能力会更加丰富。对于这种语言，除了考虑访问变量的时间、过程人口和出
口的代价之外，还有更多的问题需要考虑。例如，建立闭包的代价，避免在闭包中保存

149无用数据的问题。其中一些问题将在第15章给予解释。
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翻译（trans-late）∶转换为某人的母语或另一种语言。
韦氏词典

编译器的语义分析阶段必须将抽象语法转换成抽象机器代码。它可以在类型检查之后或在
类型检查的同时做这项工作。

尽管我们可以直接将抽象语法转换成真实的机器代码，但这样做不利于可移植性和模块化设计。

假设我们想要有这样一个编译器∶它可以编译N种不同的源语言，并为 M台不同的目标机生成代

码。原则上说，这是 N·M个编译器（见图7-1a），实现这么多的编译器是一项十分巨大的工程。

Java?Java· SparcSparc

ML,ML. > MIPS MIPS
IRPacal Pascal 

>Pentitum Petism
C,

Aipha AiphaC+4 (b)(a)
图7-1 面向5种语言并支持4种目标机的编译器∶（a）没有IR、（b）有 IR

中间表示（intermediate representation，IR）是一种抽象机器语言，它可以表示目标机的操
作而不需太多地涉及机器相关的细节。而且，它也独立于源语言的细节。编译器的前端（front
end）进行词法分析、语法分析和语义分析，并且产生中间表示。编译器的后端（back end）对
中间表示进行优化并将中间表示翻译成机器语言。

一个可移植的编译器如图7-1b所示，它先将源语言转换成 IR，然后再将 IR转换成机器语

言，这样便只需要 N个前端和M个后端。这种实现要更合理些。

即使在只需实现一个前端和一个后端的情况下，好的IR也便于将任务模块化，使得前端不
会由于机器相关的细节而复杂化，后端不会受源语言特殊信息的干扰。编译器可使用的IR有多

种形式。对于本书的编译器，我选择了简单的表达式树。150

7.1 中间表示树

接口 tree.h给出了中间表示树语言的定义，如图7-2 所示。
一种好的中间表示应具有以下一些特点。

·它必须便于语义分析阶段生成它。
·对于希望支持的所有目标机，它必须便于转变成真实的机器语言。

·每一种结构必须具有简单而清晰的含义，以便能够较容易地指定和实现重写中间表示的
各种优化变换。
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产*rmneh 
typedef struct T_8tm_*T_8tm;
Btruct T_stm_{enum {T_SEQ,T_LABEL,T_JUMP,.,T_EXP》kind;

union{struct {T_stm left,right;} SEQ;

一占
T stm T_seg(T_atm left,T_stm right);
T__stm T_Label(Temp_label);
T_etm T_Jump((T_exp exp,Temp labelList labelg);
T_stm T_Cjump(T_relOp op,T_exp left,T_exp right,

Temp label true,Temp_label false);
T_stm T_Move(T_exp,T_exp);
T_etm T_Bxp(T_exp):

typedef struct T_exp_*T_exp;
struct T_exp_(enum {T_BINOP,T_MBM,T_TEMP,..,T CALi)kind;

union(etruct{T_binop op;T_exp left,right;)BINOP;

一占日”一
T_exp T_Binop(T_binOp,T_exp,T_exp);
T_exp T_Mem(T_exp);
T exp T_Temp (Temp_temp);
T_exp T_Eseg(T_stm,T_exp》;
T_exp TName(Temp_label);
T_exp T_Const(int);
T_exp T_Call(T_exp,T_expList);

typedef struct T_expList_*T_expList;
8truct T_expList_{T_exp head;T_expList tall;};
T_expList T_BxpList(T_exp head,T_expList tail);

typedef truct T_etmLiet_*T_stmLiat;
struct T_stmList{T etm head;T stmList tail;);
T_atmList T_StmLiat(Tstm head,T gtmList tail);

typedef enum(T_plus,T_minus,T_mul,T_div,T_and,T_or,
T_Ishift,T_rshift,T_arashift,T_xor}T_binOp ;

typedef enum(T_eq,T_ne,T_1t,T_gt,T_le,T_ge,
T_ult,T_ule,T_ugt,T_uge} T_re10p:

图7-2 树中间表示

抽象语法中有个别部分可以表示复杂的事情，比如数组下标、过程调用等。"真实计算机"

中有的指令也具有比较复杂的作用（尽管对于现代 RISC体系结构来说，这种情况比早期计算机

已有所降低）。但不幸的是，抽象语法中的复杂部分并不总是能正好与机器可以执行的复杂指令
相对应。
因此，中间表示中的个体成分应该只描述特别简单的事情;如单个取、存、加法、传送或转

移等操作。这样，抽象语法中的任何复杂部分都可以用一组恰当的抽象机器指令来表示，而这些

成组的抽象机器指令则能"凝结成块"（或者凝结在不同的块中）而形成"真正的"机器指令。

151下面介绍中间表示树中每一种操作符的含义。首先是表达式（T exp），它代表某个值的计算

（可能具有副作用）。有如下一些表达式。

·CONST（i） 整型常数i，用C语言写作T_Const（i）。

·NAME（n）符号常数 n（相当于汇编语言中的标号）。用C语言写作T_Name（n）。
·TEMP（r）临时变量t，抽象机器中的临时变量类似于真实机器中的寄存器，但抽象机
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器中可以有无限多个临时变量。

·BINOP（o，e，e∶）对操作数e、e;施加二元操作符o表示的操作，子表达式e;的计
算先于e。。整型算术操作符是 PLUS、MINUS、MUL、DIV;整型按位逻辑操作符是

AND、OR、XOR;整型逻辑移位操作符是LSHIFT、RSHIFT;整型算术右移操作符是

ARSHIFT。Tiger语言没有逻辑操作符，这里出现逻辑操作符是因为中间语言是独立
于任何源语言的，并且在实现 Tiger 语言的其他特征时可能会需要逻辑操作。

·MEM（e）开始于存储器地址 e 的 wordSize 个字节的内容（wordSize是在 Frame模块中
定义的）。注意，当 MEM作为 MOVE操作的左子式时，它表示对存储器地址 e的"存

储";在其他位置统统表示"读取"。

·CALL（f，1）过程调用∶以参数表1调用函数厂。子表达式f的计算先于参数的计算，参
数的计算则从左到右。
·ESEO（s，e） 先计算语句s 以形成其副作用，然后计算e作为此表达式的结果。

树中间语言的语句（T stm）执行副作用和控制流。有如下一些语句。

·MOVE（TEMPt，e） 计算e 并将结果送入临时单元1。
·MOVE（MEM（e），e∶） 计算e;由它生成地址 a。然后计算e，并将计算结果存储在

从地址 a开始的 wordSize个字节的存储单元中。

· EXP（e） 计算e但忽略结果。
·JUMP（e，labs） 将控制转移到地址 e，目标地址 e可以是文字标号，例如用NAME
（lab）表示的标号，也可以是由其他种类的表达式计算出来的一个地址。例如，C语言的
switch（i）语句可以通过对i进行算术操作来实现。标号表labs 指出表达式e可能计算
出的所有目标地址;较后进行的数据流分析会需要它们。转移到一个已知标号1的普通
情形可表示为∶

T_Jump (1,Temp_LabelList(1,NULL));

·CJUMP（o，e1，e∶，t，户依次计算e、e;，生成值a、b，然后用关系操作符o比较a和

153 b。如果结果为true，则跳转到t;否则跳转到f。关系操作符 EO和 NE 分别表示（有

符号的或无符号的）整数的相等比较与不等比较。有符号整数的非相等比较是LT、GT、

LE、GE;无符号整数的非相等比较有 ULT、ULE、UGT、UGE。
·SEQ（s1，5;）语句s;之后跟随语句 s.。
·LABEL（n）定义名字 n的常数值为当前机器代码的地址。这类似于汇编语言中的标号
定义。值 NAME（n）可能是转移或者调用等操作的目标。
几乎已有可能给出这种Tree语言的形式语义了。但是，还未给出这种语言的过程和函数的

定义，我们只能够指定每一个函数的函数体。过程的入口和出口序列以后将作为特殊的"粘合
剂"加人进来，而对于每一种目标机，这种"粘合剂"又都是不相同的。

7.2 翻译为树中间语言

将抽象语法表达式转换成树中间语言是相当直接的，只是需要处理很多种情况。

7.2.1 表达式的种类

在 Tree 语言中应当用什么来表示抽象语法表达式A_exp?乍一看似乎应当用T_Exp。但是，
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这只适合于某些类型的表达式，即那种计算一个值的表达式。不返回值的表达式（如 Tiger语言
中的某些过程调用、while表达式）用Tstm来表示则要更自然些。而对于如 a >b这样的布尔
表达式，最好是将它表示为一个条件转移——它由一个T_stm和两个用Temp_labels表示的不同

目标地址所组成。
因此，我们将在 Translate模块中创建一种联合类型（像平常一样，它带有一个kind 标志）

来模拟这三种表达式∶

/* in iranslate.h 
typedef atruct Tr_exp_"Tr_exp; 154
/*in translare.c *
atruct Cx {patchList trues; patchList falses;T_8tm stm;};

atruct Tr_exp_
{enum {Tr_ex,Tr_nx,Tr_cx}kind;
union {T_exp ex;T_8tm nx;struct Cx cx;} u;

)
static Tr exp Tr Ex((T exp ex);
atatic Tr_exp Tr_Nx(T_stm nx);
static Tr_exp Tr_Cx(patchList trues,patchList falses,

T_sti 9tm)

·Ex代表"表达式"，表示为Tr_exp。
·Nx代表"无结果语句"，表示为 Tree 语句。

·Cx代表"条件语句"，表示为一个可能转移到两个标号之一的语句;其中一个标号是条件

为真时对应的标号，称为"真值标号"，另一个是条件为假时对应的标号，称为"假值标

号";并且语句中的这两个标号有可能还未填入。在已填入这两个标号的目标地址的情况

下，该语句的行为是;计算某些条件，然后转移到其中的一个目标地址（该语句决不会

下降执行）。
例如，Tiger表达式a>b | c<d可能被转换成如下的条件语句∶

Temp_label 2= Temp、newlabel();

.z),T_stm s1 = T_Seq{T_Cjump(T_gt,a,b, NULL
T_Seq(T_Label(z).
r_cump(T_1t,c,d,NUL,NULZ]);

这里的问题是，此时还不知道t和 f，因此语句中用 NULL 来替代它们。真值标号和假值标

号的目标地址一直要到非常晚的时候才能知道。为此我们需要建立两张表，一张表记录那
些当t已知时需要用它来填充的 NUL 的出现之处，称为真值标号回填表（true patch list）;

另一张表记录那些当f已知时需要用它来填充的 NUL的出现之处，称为假值标号回填表
(false patch list)。
我们使用 patchList来表示这种由"需要填充标号的地点"组成的表∶

typedef etruct patchList *patchList;
struct patchList_{Temp_label *head; patchList tail;};
atatic patchList PatchLiat (Temp_label*head,patchLlst tall);

155因此，可如下这样来完成将 a>b|c<d转换到Tr_exp 的翻译∶
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patchtist trues PatchList(Gs1->u.SEQ.left->u.CJUMP.true,
PatchList(&e1->u.SEQ.right->u.SEQ.rlght->

u.CJUMP.true,
NUL));

patchiist falses= PatchList(&s1->u.SEQ.right->u.SEQ.right->
u.CJUMP.falae,

NULb);
Tr_exp e1 = Tr_Cx{trues,falses,s1);

有时候我们会需要将一种类型的表达式转换成等价的另一种类型的表达式。例如，Tiger 语句

flag :=(a>b|ced)

需要将一个Cx转换为Ex，以便可以将值1（条件为真时）或0（条件为假时）存储到flag中。
有三种有助于这种转换的函数∶

static T_exp unEx(Tr_exp e);
tatic T_atm unNx(Tr_exp e);
static atruct Cx unCx(Tr_exp e);

这三个函数中，每一个的功能就像是简单地剥下（逆转）对应的构造函数（Ex、Nx或 Cx）一

样，但需领会的是，每一个转换函数都必须要能适应参数无论是用哪一种构造函数构造的情况!
设e代表a>b| c<d，则

e= Tr_Cx(trues,falses, atm)

于是赋值语句可以实现为

MOVE(TEMPa, unEx(e))

即使实际上存在的是Cx，我们也已"剥下了 Ex的构造函数"。
程序7-1是 unEx的实现。为了将"条件语句"转换为"值表达式"，我们首先生成一个新的

临时变量r和两个新的标号r和f。然后生成一条将值1赋给 r的语句T stm，紧接着生成语句

e->u.cs.stm。当该语句为真时将转移到1;为假时将转移到f。如果条件为false，则将值0 赋给r;
如果为真，将继续执行1;并跳过第二条赋值指令。整个语句的结果是值为0或1的临时变量r。156
我们通过调用 doPatch《e->u.cx.trues，t）利用标号t来填充真值标号回填表 trues中所有

待填的标号，并且类似地，调用 doPatch（e->u.cx.false，f）来填充假值标号回填表 falses中

待填的标号。doPatch 函数是操作回填表的两个实用函数之一，这两个实用函数是;

void doPatch (patchList tList,Temp label label){
for (;tList;tat=tList->tail)
*(tLigt->head)= label;

patchList joinPatch (patchList first,patchlist gecond){
if(Ifirst) return second;
for(;first->tail;first=first->tail);/gotoendoflist
firat->tail = second:
return firat

函数 unCx 和 unEx的实现留给读者作为练习。unCx的一种较好的实现应特殊对待 CONST0和
CONST1，因为它们的处理特别简单，并且能使转换过程更高效。另外，unCx也应拒绝kind 标
157 志是Tr_nx的Tr_exp——在编译一个类型正确的 Tiger程序时，这种情况决不会发生。
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程序7-1 转换函数 unEx

static T_exp unEx (Tr_exp e){
switch(e-skind)
case Tr_ex:
return e->u.ex;
case Tr_CX:{
Temp_temp r= Temp newtemp(》;
Templabel t=Temp newlabel(),fTemp newlabel();
doPatch(e->u.cx.trues,t);
doPatch(e->u,cx,falses,f)i
return T_Bseq(T_Move(T_Temp(r),T_Const(1)),
T Eseq(e->u.cx.gtm,

T_E9eq(T Label《f),
T_Eseq(T_Move(T_Temp(r),T_Const(0)),
T_Eseq(TLabel(t)。
T_Temp(=)))));

Case Tr_nx:
return T_Eseq(e->u.nx,T_Const(0));

asert(0);/*can'tget here *e

7.2.2 简单变量

语义分析阶段的函数 transVar在类型环境 tenv 和值环境 venv的上下文中对变量的类型进

行检查，它的返回值是一个类型为 expty的结构，该结构含有类型分别为 Tr_exp 和 Ty_ty的两
个成员。在第5章，这个类型为Tr_exp的成员 exp 仅仅是一个占位符，但现在必须修改 Semant
使得每一个 exp 存放有每个Tiger表达式转换后的中间表示。

对于在当前过程中声明的存放在栈帧中的简单变量 v，我们将它转换为∶

MEM
BINOP

TEMPfp CONSTkPLUS
MEM(BINOP(PLUs, TEMP fp, CONST k))

其中k 是在栈帧内的位移，TEMP fp是帧指针寄存器。在 Tiger 编译器中，我们简单地假设;
所有变量的大小都相同，即一个机器字。

Translate 和 Semant 之间的接口。类型 Tr exp是抽象数据类型，它的 Ex和Nx 构造函数都只
在 Translate 内是可见的。

对 MEM结点的管理应当都放在 Translate模块内，而不应放在 Semant中。放在 Semant 中
会阻碍该模块的可读性，并会使得 Semant 依赖于中间语言Tree表示。

我们在 Translate 接口中增加一个函数;

Tr_Exp Tr_aimpleVar(Tr_Access,Tr_Level);

这样，Semant就能够传递 x的 access（从Tr allocLocal得到的）和x所在函数的level给 Tr
simpleVar，并由此得到一个Tr_exp。
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有了这个接口，Semant 便完全不会涉及 Texp。事实上，在确定 Semant和 Translate 之间的

接口时，一种较好的规则是∶Semant 模块不应当包含任何对 Tree或 Frame模块的直接引用，任
何对IR的操作都应当由Translate来实现。158]
Frame模块包含所有机器相关的定义，这里我们再给它增加一个帧指针寄存器 FP和一个其

值是机器字大小的常数∶

/*frameh 专

Temp_temp F PP(void):
extern const int F_word8ize;
T_exp P_Exp(P_acces8 acc,T_exp framePtr);

在这里以及后面的章节中，BINOP（PLUS，e;，e。）将简写为＋（e，;e。）。因此，前面那棵树

将变成如下所示∶

MEM

TEMP f CONST k

+(TEMP fp,CONST k)

Translate 调用函数F_Bxp 将一个F_access 转换成 Tre表达式。F_Exp 的T_exp 参数是F_
access 所在栈帧的地址。因此，对于一个形如 InFrame（k）的访问a，我们有∶

F_Exp （a，TTemp （F_FP《）））返回 MEM（BINOP（PLUS，TEMP（FP）.CONST（k）））

为什么要麻烦地将树表达式TTemp（F_EP （））作为参数来传递?回答是，仅当在变量自己的

层次内访问该变量时，它的栈帧地址才是当前帧指针所指的栈帧地址。当从一个嵌套在内层的

函数中访问 α 时，它的颠地址必须用静态链才能计算出来，并日这个计算结果将作为传递给

F_Exp的T_exp参数。
如果 a是形如 InReg（tp）这样的寄存器访问，则忽略传递给F_Exp 的栈帧地址参数，其结

果简单地就是 TEMP 1。
像v或a【i】或 p.next 这样的一个左值既可出现在赋值语句的左端，也可出现在其右

端——它不同于那些只可以出现在赋值语句右端的右值。所幸的是，只有 MEM 和 TEMP结点
可以出现在 MOVE结点的左端。159
7.2.3 追随静态链

如果变量 x是在外层静态作用域中声明的、就必须使用静态链来访问它。这种变量访问的

一般形式是∶
MEM(+(CONST kn,MEM(+(CONST kn-1,.

MEM(+(CONST k1,TEMP FP)).)))

其中，k，，⋯.k。-是各个嵌套函数的静态链的位移，k。是x在自己的栈帧内的位移。

为了生成这个表达式，我们需要这个使用x的函数厂的层次l以及声明x的函数g的层次

1，。我们从l，层由里向外逐一使用其中各层的静态链位移k，k，⋯来生成访问它的表达式树。
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最终我们将到达1.层而停止。
为了读取在使用层（传递给 simpleVar 的 level参数）和定义层（位于变量的 access 内的 level

域中）之间的所有栈帧的静态链，T_simpleVar必须生成一条由 MEM和十结点组成的链。

7.2.4 数组变量

本章的余下部分将不会像前面对 simpleVar 所做的那样详细地指明 Translate 的所有接口函

数。但是在介绍 simpleVar 时给出的经验规则都是适用的;应该有一个 Translate 函数处理数组

下标，一个函数处理记录的域，一个函数处理各种类型的表达式，等等。
不同的程序设计语言对待数组变量各不相同。

在 Pascal中，数组变量代表该数组的内容——下面例子中的数组代表12 个整型变量。

Pascal 程序
var a,b : array[1..12] of integer
begin
a :*b

end;
复制数组a的内容到数组b。

C语言没有这种数组变量，它使用指针变量，数组名就像"指针常数"。因此，如下程序是
非法的∶
{int a[12],b[12];
a=b，。

160但下面的程序是合法的∶

{int a[12],*b;
b= a;
eA

语句 b=a并不是复制 a的内容，而是表示使b指向数组a的起点。
在 Tiger中（同Java和 ML），数组变量的行为与指针类似。但是，Tiger 没有C语言中的

命名数组常数，新数组是用结构 t。【n】 of i来创建（并初始化）的，其中t。是数组类型的名

字，n是元素个数，i是每个元素的初值。在下面的程序中∶

let
type intArray = array of int
var a := intArray[12] of 0
var b := intArray[12] of 7
in a ;= b
end
在程序结束点，数组变量a同数组变量b一样指向12个7;原来分配给 a的12个0已被丢弃。
Tiger的记录值也是指针。记录赋值像数组赋值一样也是指针赋值，并且不复制记录的每一

个域。现代面向对象程序设计语言和函数式程序设计语言也是这样，都试图模糊掉指针和对象
之间的区别。但是，在C和 Pascal中，一个记录的值是"一大块值"。并且记录的赋值意味着复

制记录的所有域。

7.2.5 结构化的左值

左值是一个可以出现在赋制语句左端的表达式的结果，例如x、p、y或者a【i+2】。右值
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是只能出现在赋值语句表达式右端的表达式的结果，例如 a+3或f（x）。也就是说，左值代表

一个可以赋值的位置，而右值则不是。

当然，左值也能够出现在赋值语句的右端，此时，隐含地取其位置中的内容。
整数或指针值称为"标量"，因为它只有一个成员。这种值仅占一个字的存储空间并可以放
在寄存器中。Tiger 中所有的变量和左值都是标量。即便是 Tiger数组或记录变量，事实上也是
一个指针（标量）。Tiger语言参考手册并没有明显地这样说，因为它们讨论的是Tiger语言的语

义，而不是 Tiger的实现。167]
C和 Pascal语言有结构化的左值——C中是结构，Pascal中是数组和记录，它们都不是标

量。为了实现具有像C或 Pascal中的数组和记录这种大体积变量的语言，还需要做一些额外的
工作。在C编译器中，access类型可能会需要关于变量大小的信息。因此，TREE中间语言的
MEM操作符可能会需要增加关于变量大小的表示∶

T_exp T_Mem(T_exp,int size);

则一个局部变量到IR树的转换为∶

MEM(+(TEMP fp, CONST k,), S)

其中S指出要存或取（取决于这棵树出现在 MOVE的左边还是右边）的对象的大小。
在 MEM结点中虽然 size 可使 Tiger 编译器的实现更容易，但它却限制了其中间表示的通

用性。

7.2.6 下标和域选择

要访问一个用下标指明的 Pascal或C数组元素（计算a【i】），需要计算a的第i个元素的地

址∶（i-1）×s+a，其中，1是索引范围的下界，s是每个数组元素的大小（以字节为单位），a是
数组元素的基地址。若a是全局的，它将具有编译时的常数地址，因此计算 a一s×1 能够在编译

时完成。
类似地，为了选择一个作为左值的记录 a中的域f（计算 a.D，只需要将广的常数位移与a相

加。
数组变量 a是左值，带下标的数组表达式 a【i】也是左值，尽管其中的 i不是左值。为了由

a 计算左值a【i】，我们要对 a 的地址执行算术操作。因此，在 Pascal 编译器中，左值（尤其是

结构化的左值）不应该转换成这样的形式∶

MEM

TEAPfp CONsTk
而应当是一个表示了数组基地址的Tree表达式∶

TFMP fp CONST k162]
对这个左值能做些什么呢?
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·可以用下标指明它的特定元素，从而产生一个（更小的）左值。用"+"结点可以将索

引和元素大小的乘积与该数组基地址的左值相加。

·这个左值（代表整个数组）可用于需要右值的上下文中（例如，作为一个传值参数被传递，
或赋给另一个数组变量）。然后可通过对这个左值施加 MEM操作而将它转换为右值。

Tiger语言中所有记录和数组值实际上都是指向记录和数组结构的指针，因此它没有结构化
的或"大体积"的左值。数组的"基地址"实际上是一个指针变量的内容，因此取得这个基地
址需要使用 MEM操作。

于是，若a是一个分配在存储器的数组变量，且它的存储器位置是 MEM（e），则地址 e的
内容是一字长的指针值p。地址 p，p+W，p+2W⋯（其中 W是字长）的内容是数组的元素

（所有元素都是一字长）。因此，a【门就是;

MEM

BINoPMEM
E MUL CONST-
W

MEM(+(MEM(e),BINOP(MUL,i,CONST W)))

左值和 MEM结点。技术上而言，一个左值（或可赋值的变量）应当表示成一个地址（没

有上图中顶部的 MEM）。将一个左值转换为右值（当在一个表达式中使用时）意味着从该地址

中读数;对一个左值赋值意味着对该地址存数。在不知道对 MEM结点执行的是存还是取操作
之前，我们将这个 MEM看成是左值;因为在 Tree 中间表示中，MEM既表示存入（作为

MOVE的左子式），也表示取出（其他情况），所以这样做是可行的。 163
7.2.7 关于安全性的劝告

生命是如此短暂，我们不值得将时间浪费在寻找不可再现的错误上;金钱是宝贵的，不能

浪费它们来购买奇怪的软件。当一个程序有错误时，应该尽可能早地在错误造成损失之前检测

出来并报告（或纠正》。

有些错误隐藏很深，因而很难发现，但检测出像数组下标越界这种错误并不需要劳驾天才;

如果数组的维界是L⋯H，下标是i，则当i<L或i>H时便是一个数组越界错误。此外，计

算机已具备了足够快的用于计算条件 i>H的硬件。我们知道，编译器几十年前就能够自动生

成对此条件进行测试的代码了。现在一个编译器没有任何借口不生成数组维界检查代码。这些

维界检查代码在生成之后，优化编译器常常可以通过编译时的分析安全地消除它们（见18.4节）。

有人可能会找出借口说，"但我使用的程序设计语言中有一种地址算术运算会导致无法知道
数组维界"。是的，枪杀了父母的人只能依靠法官的怜悯，因为他已成了孤儿。①

在某些极少见的情况下，程序的一部分可能会单纯地只要求速度，并且给这部分程序设定

的运行时间太紧迫以至于不允许进行边界检查。在这种情况下，最好是有一个优化编译器，它能

① 这句话的意思是，如果你用的程序设计语言使得编译器无法判断数组是否越界，那么用这个语言编写的程序的正

确性也难以保证。--译者注
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够对下标进行分析，并证明下标总是在边界内，从而不需要显式的边界检查。如果优化编译器
还不能消除这种检查，则在这种极少见的情况下，允许程序员显式地指明对一个未曾检查的下

标进行操作是可接受的。但是这并不意味着编译器可以不对该程序中其他部分的下标表达式进

行检查。
毫无疑向，编译器也应该在使用指针进行间接访问之前检查它是否为空指针 nil。

7.2.8 算术操作

整型算术操作很容易翻译∶每个Absyn算术操作符对应一个Tree操作符。

Tree 语言没有一元算术操作符。整数的一元负操作可以实现成 0减去一个整数，一元求反
操作也可以用整数与一个所有位全为1的整数求异或（XOR）来实现。

浮点数的一元负操作不能用0减去一个浮点数来实现，因为许多符点表示都允许负 0的存164
在，对负 0求负则得到正0，反之亦然。有些数值程序依赖于对诸如-0<0这种条件的识别。因

此，为了简单起见，我们的 Tree语言没有很好地支持浮点一元负操作。
幸运的是，Tiger语言不支持浮点数。但是在真正的编译器中，应当有一个新的操作符来表

示浮点一元负操作。

7.2.9 条件表达式

比较操作符的操作结果是一个Cx表达式，即一个语句s，它可转移到任意一个你指定的直
值标号或假值标号的目标地址。

用CJUMP操作符不难从 Absyn的比较操作符生成一个"简单的"Cx表达式。但Cx表示的

总的意图是要使得条件表达式很容易由 Tiger 的操作符8和|组合形成。因此，像x<5这样的

表达式将转换成具有如下形式的 Cx∶

trues= (t)
falses = /]
atm =CuUMP(LT,x.coNSr(5),□,□)
Tiger 语言的操作符&和|分别用"并"和"交"（与和或）的捷径计算来组合条件，它们
在抽象语法中已经被转换为 if表达式。

处理 if表达式

if e then e else er
最直接的方法是，将e视为 Cx表达式，将e;和 e;视为Ex表达式。也就是说，对e;施加 unCx，
对e;和e、施加 unEx。生成条件将要分支到的两个标号r和f，分配一个临时变量r，并在标号【

之后将e∶赋给r，在标号f之后将e，赋给r。两个分支都应该转移到同一个汇合点，这个汇合点
有一个新生成的汇合标号。

这样将能得到完全正确的结果。但得到的代码并不十分高效。如果 e。和 e;都是"语句"

（不返回值的表达式），则它们的表示很可能是 Nx而不是 Ex。对它们应用 unEx虽然可行——会
自动地进行强制类型转换，但专门地识别出这种情形则要更好。

① 检查空指针的另一种方法是将它映射到虚存页表中一个未映射的页0中，从而使得企图读取/存储空指针 nil所

指记录域的操作产生一个页失效中断。
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更坏的是，当e，或e，是一个Cx表达式时，对它施加 unEx强制转换则会出现转移和标号纠

165缠不清的混乱状态。因此最好是专门识别出这种情形并分开处理。

例如，对于
ix<5thena>belse 0

如前面已说明的，将 x≤5将转换成 Cx（s1）;类似地，将 a>b将转换成Cx（s;）（s;代表某个语

句）。整个 if 语句的转换结果大致如下所示∶

sBO

CJUMP SEO

CJUMPCONST LABEL.霸LT X
n N bGT ◆

SEQ(51(z, f),SEQ(LABEL z,s2(t, ))

其中z是一个新标号。简写s;（z，f）表示这个 Cx语句 s，已用 z填充了它的真值标号，用f填充
了它的假值标号。

字符串比较。字符串相等比较的运算较复杂（它必须从头至尾地逐字节进行相等比较），因

此编译器应当调用运行时系统库函数 stringEqual来实现这种比较。这个函数的返回值是 0 或1

（假或真），因此，它的CALL树必然会包含在一个Ex表达式中。字符串不等比较可通过生成对

该函数调用结果求反的Tree 代码来实现。

7.2.10 字符串

Tiger（或C）语言中的字符串字面量是有适当字符初始值的一片存储单元的地址，此地址
是一个常量。在汇编语言中，这个地址有一个标号，以便从指令序列中的某个位置来引用它。

在定义该标号的地方，其后跟有保留内存空间并用适当字符对它进行初始化的汇编语言伪指令。
对于每个字符串文字常数1it，Translate 模块生成一个新的标号 lab，并返回这个标号的

树中间表示T_NAME（lab）。它也将汇编语言片段F_string（lab，1li）放到一个由这种片段组成的
全局表中，这种片段将提交给代码流出器。7.3.3节将进一步讨论这种"片段"（fragment）。第

16612章将讨论字符串片段到汇编语言的转换。

所有字符串操作都由运行系统提供的函数来完成的。这些函数为字符串操作的结果分配堆

空间，并返回指针。因此，编译器（几乎）不需要知道中间表示是什么，它只要知道每个字符
串指针正好是一个字长。我们说"几乎"是因为编译器仍需要表示字符串字面量。

但Tiger中是如何表示字符串的呢?在 Pascal中，字符串是长度固定的数组，字面量的尾
部填有空格，这样做并没有什么好处。在C语言中，字符串是指向可变长度的以0结尾的字符
序列的指针。尽管不能表示含有一个0字节的字符串，但这样做的好处要大些。

Tiger字符串应当能够表示任意的8位码（包括0）。一种能很好地实现这种字符串的简单表示

是;使用一个字符串指针指向一个字，此字中的整数给出字符串的长度（字符的个数），紧跟在这

个字之后的是组成字符串的字符。这样，与机器相关的模块 Frame（mipsframe.c、sparcframe.c、
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pentiumframe.c，等等）便能用一个标号的定义、一条创建一个字且字中包含一个表示长度的整数

的汇编语言伪指令以及一条生成字符数据的伪指令来生成一个字符串。

7.2.11 记录和数组的创建

Tiger语言的构造al=e，f=e ，⋯，f。=e。}创建一个n个元素的记录，并用表达式e;
的值对它的各个元素进行初始化。这种记录的生存期可以长于创建它的那个过程的生存期，所

以不能将它们分配到栈中，而必须分配到堆中。Tiger语言对记录（或者字符串）的释放没有规
定;具有产品质量的 Tiger系统应提供一个垃圾收集器回收已经不可到达的记录（见第13章）.

创建一个记录最简单的方法是∶调用一个外部的存储分配函数，此函数返回一个指针;该
指针指向 n个字组成的一片空间，然后将这个指针赋给一个新的临时变量r。之后，便可用一
串 MOVE中间树语句将表达式e 的转换结果赋给从r开始的位移0，1W，2W.⋯，（n—1）W。最

后，整个表达式的结果就是TEMP（r），如图7-3所示。

ESEQ
TEMPSEO ，MOVE SEQ

TEMP CALL SEQMoVE
NAME CONSTMEM MoVEe1
n*W BINOPmalloc MEM MOvEe2

BINOPTEMP CONSTPLUS MEM en可
O*W BINOPTEMP CONSTPLUS

1*w PLUS TEMP CONST
r (n-1)*W

图7-3 记录分配

在产品质量的编译器中，对每个记录的创建都调用 malloc（或者它的等价函数）可能会太

费时间（见13.7节）。
数组的创建与记录的创建非常类似，不同的只是数组中的元素都用相同的值初始化。外部

167 函数 initArray 以数组长度和初值作为参数。
调用运行时系统的函数。为了调用一个名为initArray，带有参数a、b 的外部函数。只需生

成如下的 CALL表达式∶

CALL(NAME(Temp_namedlabel("initArray")),

T_ExpLi3t(a,T_ExpList(b,NULL)))

它引用一个外部函数initArray，这个函数是用C或汇编语言编写的——它不能用 Tiger 语言编
写，因为 Tiger没有对存储器进行管理的机制。
但是有些操作系统中的 C编译器在每个标号的开始添加了一个下划线，因而C函数的调用

约定可能不同于Tiger 函数的约定，井且C 函数也不期望接收静态链，等等。所有这些目标机
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相关的细节都应该封装在 Frame结构提供的函数F_externalCall中;

/*jrame.h*

T_exp P_externalCall(string s,T_explist arg8);

其中，F_externalCall的参数是外部过程的名字以及要传递的参数。 168
externalCall的实现取决于 Tiger的过程调用约定和外部函数的调用约定之间的关系。一种
最简单的实现方式可以像这样

T_exp F externalCall(string s,T expList args)(
return T_Cal1(T Name(Temp_namedlabel(8)),args);

但对于静态链或带有下划线的标号等，则必须进行适当的调整。

7.2.12 while循环

while循环的一般形式为
leste
if not(condition) goto done
body
goto rest
done3
若 body 中出现 break 语句（没有嵌套在任何内层的 while 语句中），则可以简单地将它转换
成一个转移至 done 的JUMP。

为了让 transExp 能够转换 break 语句，它需要有一个新的形式参数 break，此参数是直接包
含这个break语句的循环的 done 标号。在翻译while循环的过程中，对 body调用transExp时要

用 done 标号作为 break参数。当transExp在非循环上下文中递归调用自己时，它可以简单地将

接收到的break 参数向下传递。
函数 transDec也必须增加 break参数。

7.2.13 for 循环

for语句可以用其他的语句来表示∶

letvari:=lo
var limit;=hifori:-lo to hi in whilei<= limitdo body do(body;i:=i+/)

end
翻译 for语句的一种非常直接的方法是将其抽象语法重写为如上所示的 let/while 表达式的

抽象语法，然后再调用 transExp 翻译出结果。 [169
这样做基本上是正确的，但我们来看看 limit=maxinr①的情形。在这种情况下i十1将会溢
出;它要么导致硬件发出一个异常，要么导致 i≤limit 永远为真!解决这个问题的方法是将测

试放在循环的底部，其中对i<imit 的测试位于增加i值之前。然后，在进人循环之前还需要

另外一个测试来检查是否有 lo≤hi。

①maxint代表机器可表示的最大整数、-译者注
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7.2.14 函数调用

函数调用 f（a;⋯，a。）的翻译相当简单，但必须将静态链作为一个隐含的参数传递∶

CALL(NAMEly,[sl,e,e..., e])

其中11是厂的标号，sl是用第6章所述方法计算出的静态链。为完成这个计算，需要知道f
的嵌套层level和调用厂的函数的嵌套层level。然后从Frame模块定义的帧指针 TEMP（FP）

开始，顺着一系列（0个、1个或多个）level描述字形成的链读取其中找到的每一个位移

的单元。

7.3 声明

5.4节给出了对 let表达式进行类型检查的从句，我们不难对它进行扩充，使它能同时将

let表达式转换为 Tree 表达式。为此，transExp 和 transDec都要比原来（本章前面描述的）多

一个参数，并且 transDec 必须返回一个额外的结果——由声明产生的Tr_exp。
现在调用 transDec 会对 frame 数据结构产生副作用;对这个声明中的每一个变量声明，要

在当前层的frame中为它们保留空间。同样，对于每一个函数声明，要为其函数体保留一段新
的待完成的Tree代码段。

7.3.1 变量定义

第5章描述的函数 transDec 对值环境和类型环境进行更新，在处理 let表达式的函数体时需

要使用这两个环境。
但是，变量的初值会被转换成一个Tree表达式，该表达式必须放置在 let的函数体之前。

因此，transDec 也必须返回一个Tr_Exp，这个Tr_Exp 应当包含完成赋初值的赋值表达式。170
如果对函数和类型声明施加 transDec，结果将得到像 Ex（CONST（0））这样的"空操作"表达

式。

7.3.2 函数定义

每一个Tiger 函数将被翻译成由入口处理代码（prologue）、函数体（body）和出口处理代

码（epilogue）组成的汇编语言代码段。Tiger 函数的函数体是一个表达式，函数体的翻译简单

地说就是翻译这个表达式。
在函数的汇编语言代码中，入口处理代码位于函数体之前，它包括如下部分。

（1）特定汇编语言需要的声明一个函数开始的伪指令。

（2）函数名字的标号定义。

（3）调整栈指针的一条指令（用以分配一个新栈帧）。

（4）将"逃逸"参数（包括静态链》保存至栈帧的指令，以及将非逃逸参数传送到新的临

时寄存器的指令。
（5）保存在此函数内用到的被调用者保护的寄存器（包括返回地址寄存器）的存储指令。

入口处理后是∶

（6）该函数的画数体。
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出口处理代码位于函数体之后，它包括如下部分。

（7）将返回值（函数的结果）传送至专用于返回结果的寄存器的指令。
（8）用于恢复被调用者保护的寄存器的取数指令。

（9）恢复栈指针的指令（释放栈帧）。

（10）一条 return指令（JUMP到返回地址）。

（1l）汇编语言需要的声明一个函数结束的伪指令。
这里有几条（1、3、9和11）需要知道栈帧的确切大小，而栈帧的大小要等到寄存器分配

器已确定出有多少局部变量不能放到寄存器而必须存放在栈帧之后才能确定下来。因此这些指

令应在很晚的时候才生成，生成它们的函数是 FRAME 模块中名为 procEntryExi3（见第 12 章）
的函数。第2条（和第10条）位于第1条和第3条（第9条和第10条）之间，也要到那时才进

行处理。
为了实现第7条，Translate阶段应当生成一条传送指令

MOVE(EV,body)
17]

它将函数体计算出的结果存放到保存返回值的单元（RV），此单元是由机器相关的 frame 结构指

定的。
/framke.自*

Temp_temp P_RV(void);

第4条（接收传入的参数）、第5条和第 8条（保护和恢复被调用者保护的寄存器）是

6.2.1节描述过的视角移位的一部分。它们应由Frame 模块中的一个函数来完成∶

/产/Jame.h *

T_atm P_proCEntryExitl(P_frame frame,T_stm stm);

我们将在第12 章讨论这个函数的实现。Translate在翻译过程体（第5～7条）时，应当对

每个过程体调用这个函数。

7.3.3 片段

给定一个由嵌套层次 level 和一个已翻译好的函数体表达式组成的Tiger 函数的定义，

Translate 阶段应生成关于这个函数的一个描述符，它应包含如下必要信息。
·栈帧∶一个栈帧描述符，它包含有关局部变量和参数的机器相关信息。

·函数体∶从procEntryExit1 返回的结果。

这两个信息称为一个片段（fragment），片段还需要被翻译成汇编语言。这是我们见到的第

二种片段;另一种是关于字符串文字常数的汇编语言伪指令序列。因此，较好的做法是（在
Translate接口中）定义一个frag数据类型∶

八frmeh.*

typedef struct P_frag_*P_frag;
enum (F_stringPrag,P_procPrag)kind;otruct F_frag_
union(
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struct {Temp 1abel label;

string str;}atringg;
atruct{T_stm body;F_frame framei}proc;
u;

[172] P_frag F_StringFrag(Temp_label label,string str);
P_frag F_ProcFrag(T_stm body,P_frame frame);
typedef struct P fragList *F fragList;
struct P_fragtist_(F_frag head;Pfragtst tall;};
P_fragLlst P_PragList(F_frag head,F_fragList tall);

* renslate.h *

void Tr_procEntryExit(Tr_level level,Tr_exp body,
Tr accessList formals);

P_fragList Tr_getResult(void);

语义分析阶段在处理函数头时调用Tr_newLevel。随后，它将调用Translate的另一个接口

函数来翻译 Tiger 函数的函数体。这样做的副作用是可记住遇到的所有字符串字面量的片段

DataFrag〈见7.2.10节和第12章）。最后，语义分析器调用procEntryExit∶它的副作用是记住

一个过程的片段 ProcFrag。

所有记住的片段都存放在 Translate 内的一个私有片段表中，然后可以用 getResult来获取
这个表中的片段。

程序设计∶翻译成树

设计 translate.h，实现 translate.c，并重写Semant 结构以正确地调用 Translate。调用

SEM_transProg 的结果应当是一个F_fragList。

为了使得（眼下的）实现较简单，将所有局部变量保存在栈帧内;不调用 FindEscape，并
假定每一个变量都是逃逸的。

在 Frame模块中，用一个"虚"的实现∶

T_stm F_procEntryExit1(F_frame frame,T_stm stm)[
return atm;

可以让Translate 通过初步的测试。

在$TIGER/chap7中包含的支持文件有∶
·tree.h、tree.c，Tree语言的数据结构;

· printtree.c，调试中用于输出树的函数。

还有其他一些与以前相同的文件。173]

一种较简单的翻译。为了简化 Translate 的实现，你可以不用 Ex、Nx或 Cx构造函数。整个
Translate模块可以用原来的值表达式来实现，这将使得 Tr_exp和Texp 相同。也就是说，不使
用Ex（e），而是直接使用e。不使用Nx（s），而使用表达式 ESEO（s，CONST0）。对于条件，不使

用Cx，而是使用其计算结果为1或0的一个表达式。

由这种质朴的转换生成的中间表示树比那种所谓"精致的"转换要笨拙、要慢，但它一定
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能正确工作，并且原则上，一个精致的后端优化器有可能能够摆脱这种笨拙和简陋。无论如何，

一个笨拙但是正确的 Translate 模块要比一个精致但不能工作的模块要好。

习题
7.1 假设一个编译器可将所有表达式和子表达式翻译成T exp树，并且没有使用Mx和 Cx构造函数

用不同的方式来表示表达式。画出由下列表达式生成的 IR树。除非明确指明，否则假定所有

变量都是非逃逸的。
a.a+5。
b.b[i+1]。
c.p.z.x，其中 p是一个具有如下类型的Tiger 变量∶

type m ={x:int,y:int,zim)

d.write （""），和程序6-3第13行所出现的一样。
e.a<b，它应当通过生成一个ESEO来实现，其中ESEO的左操作数传送0或者1到一个
新生成的临时变量，它的右操作数是这个临时变量。
f.迁f a then belse c，其中a是一个整型变量（a≠0代表 true）;它也应当能够用ESEQ

来翻译。
g;a∶=x+y，翻译后的结果的顶部为 EXP结点。
h.if a<bthen c∶=a else c∶=b，使用从上面e部分得到的 a<b的树来翻译;不过这样
做整个语句会比较笨拙和低效。

i.if a<b then c∶=a else c;=b，用一种不太笨拙的方式来翻译。
7.2 正确地使用Ex、Nx和 Cx构造器，将下面每一个表达式翻译成 IR树。在每一种情况下，
只需画出相应的树。Ex树是表达式树（Tree exp）;Nx树是语句树（Tree stm）;Cx树是语174
句（stm），它含有目前暂为空，稍后将填入的真/假值标号。

a.a+5
b.output∶=concat（output，s），和程序6-3的第8行一样。函数concat是标准库中的一

个函数（见A.4节），为了计算它的静态链，假定它所在的嵌套层与函数 prettyprint

的相同。
c.b[i+1]:= 0
d.(c:=a+1:e c)
e. while a>0 do a:=a-1
f.a<b传送0或1到某个新生成的临时变量，并且这个传送语句的右边是这个临时变
量。
g.if athen b else c，其中a是一个整型变量（a≠0代表 true）。
h. a:=x+y
i.if a<b then a else b
j.if a<bthen c;= a else c:=b

7.3 用你选择的C编译器（或者其他语言的编译器）将一些例子函数翻译成汇编语言。在

UNIX中，这可通过指定 C编译器的- S选项来完成。
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然后标识出所有调用序列（见7.3节中的第1～11条），并解释每一行汇编指令的作

用（尤其是构成第1条和第 11条的那两条伪指令）。尝试一个没有多少计算便返回的小
函数（叶子函数）和一个返回之前需要调用另一个函数的函数作为例子。

7.4 Tree中间语言没有作用于浮点变量的操作符。说明对该语言增加新的浮点二元算术操作

符和新的浮点关系操作符后，它会是什么样子?你可能会发现需要引入一个MEM结点
的变种来描述浮点值的存操作和取操作。

*7.5 Tree中间语言不提供非一个字长的数据值。C程序设计语言中有若干种大小的有符号整

数和无符号整数，以及在不同大小之间进行转换的操作符。扩展 Tree 中间语言以适应若

干种不同大小的整数、并允许它们之间的转换。

提示∶不要在中间语言树中区别有符号值和无符号值，而要区别其中的有符号操作

符和无符号操作符。参见 Fraser和 Hanson【1995】一书的5.5节和9.1节。175
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规范的（ca-non-i-cal）;被尽可能地简化到最简单或最清楚样式的。

韦氏词典

语义分析阶段生成的中间语言树必须转换成汇编语言或机器语言。Tree 语言的操作符都经

过了仔细的选择以便与大多数机器的能力相匹配。然而，Tree 语言中存在一些与机器语言不能

完全对应的情况，也存在一些与编译优化分析相冲突的情况。

例如，计算一个表达式时，如果它的子表达式能够按任意顺序来计算，则会比较方便。但
Tree. exp 的子表达式却可能含有副作用——它的 ESEQ和CALL结点含有赋值语句并执行输入

输出。如果树表达式不含ESEQ和CALL结点，则可以按任意顺序来计算它们。

Tree 语言表示的程序和机器语言程序之间存在着如下一些不匹配的情况。

·CJUMP指令能够转移到两个标号中的任意一个，但是真正的机器语言的转移指令在条件
为假时下降至下一条指令。

·在表达式中使用 ESEO结点不太方便，因为它们会使得子树的不同计算顺序产生不同的

结果。
●在表达式中使用CALL结点会引起同样的问题。

·当企图将参数送入固定的形式参数寄存器集合时，在一个CALL结点的参数表达式中使

用另一个CALL结点会出现问题。

既然 ESEO和两路 CJUMP 会引起这么多麻烦，Tree 语言为什么还要使用它们呢?因为它 176
们有利于编译器的 Translate 阶段（翻译到中间代码）。

对于任意一棵树，我们可以将它重写为没有上述任何一种情况的等价的树。没有了上面所

列的情况，SEQ结点唯一可能的父结点就是另一个 SEQ;所有的 SEO结点都将集中在树的顶

部。这使得 SEO完全没有什么作用，因此可以删除它们，并创建一个由T_stm组成的表。
转换过程分以下三步进行。首先，将一棵树重写成一列不含SEO和 ESEO结点的规范树
（canonical tree）。然后，将这一列树分组组合成不含转移和标号的基本块集合。最后，对基本

块排序并形成一组轨迹（trace），轨迹中每一个 CJUMP 之后都直接跟随它的 false标号。

因此，模块 Canon中有对树进行重新整理的以下函数;

/* canonh*

typedef struct C_stmLilstLiet*C_stmLiptList;
struct C_block{ C_stmListiist stmtiste;Temp label label;};
9truct C_astmListLat_{T stmList head; C_stmListList tall;};

T stmLigt C_1inearize(T_stm Btm);
struct C_block C_basicBlocks(T_atmList stmLAat);
T_stmList C_traceSchedule(struct C_block b);

Linearize删除 ESEO并将 CALL移至顶层，然后 BasicBlocks将语句分成一组一组的直线代码
序列。最后，traceSchedule 对基本块排序，使得每个CJUMP后面都有跟随它的false标号。
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8.1 规范树

我们定义具有以下属性的树为规范树。

（1）无SEO或 ESEO。
（2）每一个CALL的父亲不是EXP（⋯）），就是 MOVE（TEMP r，⋯）。

8.1.1 ESEQ的转换

怎样才能消除 ESEQ结点呢?方法是在树中一级一级地将它们往上提升，直至它们可以变

为 SEQ结点。

177 图 8-1给出了一些有用的树等价形式。
等价形式（1）是显然的。等价形式（2）也一样，其中先计算语句s，然后是 e、e∶，最后返

回这两个表达式之和。如果s有影响e;和e;的副作用，第一个等式的左端或者右端都会在计算
这两个表达式之前执行这些副作用。

等价形式（3）较复杂，因为不能交换 s和e;的计算。例如，如果s是 MOVE（MEM（x）.v），

e;是 BINOPCPLUS，MEM（x），z），则当s的计算先于e，时，该程序的计算结果会与s的计算后
于e，时的不同。我们的目的只是想将s从 BINOP表达式中抽取出来。但是现在（为了保持计算
顺序）必须随同它一起将e;移出。为了实现这一点，我们将e，赋给一个新的临时变量，并将

1放入BINOP 中。
也有可能s并没有能对e;的计算结果造成影响的副作用。当e，不引用s赋值的临时变量或

存储单元（并且s和e、都不执行I/O）时，便是这种情况。在这种情况下，可以使用等价形

式（4）。
我们不是总能辨别出两个表达式能否交换。例如，MOVE（MEM（x），y）能否与MEM（z）交
换取决于 x=z是否成立，而该等式在编译时并不总能判断出来。所以我们以一种保守的近似方

式来决定两个语句能否交换，这种保守方式确定两个语句要么"肯定可交换"，要么"或许不能
交换"。例如，我们知道任何语句都肯定可与表达式CONST（n）进行交换，因此可以使用等价形

式（4）来处理像下面这样的特殊情况∶

BINOPKop,CONST(n),ESEO(s,e))-ESEO(s,BINOP(op.CONST(n).e>)

函数 commute 能（非常简单地）判别一个语句能否与一个表达式交换∶

static bool isNop(T stm x){
return x->kind = T_EXP && x-2u.EXP->kind == T_CONST;

gtatic bool commute (T atm x,T exp y){
return iaNop(x)|| y->kind==T_NAME|| y-2kind-==T_cONST;，
常数可与任何语句交换，空语句可与任何表达式交换。其他都假定是不可交换的。179
8.1.2 一般重写规则

一般而言，对于每一种 Tree 语句或者表达式，我们都能有等价的子表达式。因此，可以像

图 8-1那样，建立一套重写规则，将 ESEO移出语句或者表达式之外。
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ESEQESEQ

siQESEo(D sl e

x se 忆
ESEQ(SEQ(s1,s2).e)ESEQ(si,ESEQ(s2,e)) =
FSEQBINOP
BINOPESEQ(2) e2喜 每

它elopei
BINOP(op,ESEQ(s,e1),e2) ESEQ(s,BINOP(op,e,e2))每

ESEQ(s,MEM(e1)MEM(ESEQ(s,e1)) =
SEQ(s, JUMP(e1))JUMP(ESEQ(s,e1)) =

cJUMP(op,ESEQ(s,e1),e2,1,h)= SEQ(s,cUMP(op,e1,e2,1,l2))
FSFQBINOP
MOVE ESEQESEQel I9p

(3) BINoPTEMP welw e ，， TEMPop e2
(e'-t is a new temporary

BINOP(op,e,ESEQ(s,e2))= ESEQ(MOVE(TEMPt,e1),
ESEQ(s,BINOP(op,TEMPt,e2)))

cUMP(op,e,ESEQ(s,e2),4,12) SEQ(MOVE(TEMP t,e1),2

SEQ(s,CJUMP(op.TEMPt,e2,4,I)))

ESEQBINOP

ESEQ BINOP喜if s,e1 commuteop e1
(4) →飞 el e2op，套

if s,e; commute
ESEQ(s,BINOP(op,e, e2))BINOP(op,e1,ESEQ(s, e2)) 乡

cJUMP(op,e1,ESEQ(s,e2).l,12)= SEQ(s,CJUMP(op,e1,e2,1,I2))

图8-1 树的等价形式（同时参见习题8.1）

例如，在【e.，e;.ESEQ（s.e;）】中，需要将语句s抽取出来移到e;和e;的左边。如果它们是

可交换的，将得到（s;【e1，e.，e.】）。但是假设e.不能与s交换，则必须有

(SEO(MoVE(r,,e:),SEO(MoVE(t,e:),s)):[TEMP(t,),TEMP(t;),e,])

如果e.可与s交换，但e 不能，则有

(SEO(MOVE(..ey),s);[TEMP(1).e.e.)
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函数reorder接收一个表达式表，并返回由（语句，表达式表）组成的一个偶对。其中的
语句包含所有必须在表达式表之前执行的操作。如上面的例子所示，这包括 ESEO中的所有语

句部分，以及位于其左边但不能进行交换的所有表达式。当不存在 ESEO时，我们将使用空操
作的 EXP（CONST 0）作为语句。

算法。第一步为每一类表达式建立一个"子表达式抽取"方法。第二步建立一个"子表达
式插入"方法;给定一个已清除了所有子表达式中的 ESEO的表达式或语句，算法将生成该表

达式或语句的一个新版本。

typedef gtruct expRefList_expRefListi
etruct expRefLiet_{T_exp *head; expRefList tail;};

struct stmBxp(T_8tm 8;T_exp e;};

static T_atm reorder(expRefList rliet);

gtatic T_8tm do_stm(T_8tm stm);
static struct stmExp do_exp (T_exp exp);

函数 reorder 应该从表达式表中抽出所有的 ESEQ，并将这些 ESEO中的语句部分合并成一个
较大的T_stm。传递给 reorder的参数是一个链表，链表中的元素是指向这个语句各个直接子表达

式的指针。图8-2举例说明了如何使用指向指针的指针。当我们调用 reorder（1.）时，意思是;"请

从这个BINOP结点 e;的儿子和孙子中抽取出所有的 ESEQ。为了使你方便起见，表L中所指的各180
个位置是e。指向其各个儿子的指针所在的位置。对于每一个作为儿子的 ESEQ（s。，e、），你应当修
改指向这个儿子的指针使其指向 e、，并将s，放到那个作为结果返回的语句序列中。"

-口
吗母日土乎正
口7BINOP

才士

CONST MEM
下343

图8-2 传递给 reorder 的地址表参数

reorder（1.）对表1中的每一个表达式（即e，和e，）调用一个辅助函数do_exp。do_exp（e）

返回一个语句s，和一个表达式 e，'，其中e'不含 ESEQ且 ESEO（s，e'）与原来的表达式 e，
等价。在这个例子中，因为e太简单，使得s是一个无操作的语句EXP（CONST（0）），并

且e'= e。但是假若表达式e，的 MEM结点指向 ESEO（s.，TEMPa），则 do_exp（e，）将
产生s，=s.和 e。'= MEM（TEMP a）。
do_exp的实现相当简单。对于除 ESEQ之外的任何类型的表达式，do_exp 都只是建立其子
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表达式的地址表并调用 reorder∶

atatic struct stmExp do_exp(T_exp exp){
gwitch(exp->kind){
case T_BINOP:
return StmBxp(reorder(BxpRefList(hexp->u.BINOP.1eft,

ExpRefList(cexp->u.BINOP,right,NULL))),exp);

case T_MEM:
return StmBxp(reorder(ExpRefList(&exp->u.MEM,NUL)),exp);
case T_ESEQ;
atruct gtmExp x= do_exp (exp->u.ESEQ.exp);

return StmBxp(seq(do_stm(exp->u.ESBQ.stm),x.s),x.e);

case T_CALL:
return StmExp(reorder(get_call_rlist(exp)),exp);
default:
return StmBxp (reorder(NULL),exp);

亡
函数seq（s，s。）简单地返回一个等价于SEQ（s，s.）的语句，但在s;或s.是一个空操作语句

的常见情况下，我们还可以做得更简单些∶

static T_s艺m seq（Tstm x，T_stm y）【
if (iaNop(x))return y;
if(AgNop(y))return X;
return T_Seq(x,y);

181，
do_exp对 ESEQ情形必须调用do_stm，该函数抽出一个语句中所有的 ESEQ。它也是通过
建立所有子表达式的地址表并调用reorder来实现的∶

static T_stm do_8tm(T_stm stm)(
ewitch (stm->kind){

case T_SBQ:
return seq(do_stm(8tm->u.SEO.left),

do_stm(stm->u.SEQ.right));
Case T_JUMP:
return seq(reorder(ExpRefList(&stm->u.JUMP.exp,NULL)),atm);
case T_CJUMP:
return geq(reorder(ExpRefLiet(Lstm->u.CJUMP.left,

ExpRefList(&stm->u.CJUMP.right,NULL))),stm);
case T_MOVE;

aeebelow
case T_EXP:
if(atm->u.EXP-skind == T_CALL)
return seq(reorder(get_call_rlist(stm->u.EXP)),stm);

else return seq(reorder(BxpRefList(Estm->u.EXP,NULL)),
stm):

default:
return stm;
亡
我们不将 MOVE语句左端的操作数看成子表达式，因为它是这个语句的目的操作数——该

语句不使用它的值。但是，如果目的操作数是一个存储单元，则其地址的行为类似于源操作数。182
因此，我们有
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gtatic T_stm do_atm(T_stm stm){

case T_MOVE:
if(stm->u,MOVE.dst->kind == T_TEMP &&
stm->u,MOVE,src->kind ==T_CALL)
return seq(reorder(get_call_rlist(8tm->u.MOVE.src)),

stm);
else if(stm->u.MOVE.dst->kind == TTEMP)
return seq(reorder(ExpRefList(&stm->u.MoVE.sre,NULL)),
Btm)

else if(Stm->u,MOVE.dst->kind -T MEM)
return seq(reorder(ExpRefList(&stm->u.MOVE.dst->u.MEM,

ExpRefList(&stm->u.MOVE.src,NULL))),
stm);

else 4f(stm->u.MOVE.dst->kind == T_ESEQ){
T gtm s = stm->u.MOVE.dst->u.ESEQ.stm;

stm->u.MOVE.dst = stm->u.MOVE.dst->u.ESEQ.exp;
return do_atm《T_Seq(a,stm));

有了 do exp 和 do stm的辅助，函数reorder 便能够根据给它的指针表从右至左地从每一个

表达式e中抽出语句s。

8.1.3 将CALL移到顶层

Tree语言允许将CALL结点作为子表达式。但是在实际中CALL的实现是∶每一个函数将

它的结果返回到同一个规定的返回值寄存器 TEMP（RV）中。因此，如果我们有

BINOP(PLUs,CALL..),CALL...)

第二个调用将会在 PLUS能够执行之前覆盖R 寄存器。

这个问题可以用重写规则来解决。其思想是将每一个返回值立即赋给一个新的临时寄存

器，即

CALL(fun,args)→ ESEQ(MOVE(TEMP1,CALL(fun,args)),TEMP r)

这样，ESEO消除器就能把 MOVE从包含它的 BINOP（等）表达式中提取出来。183]
这种技术会生成少量多余的 MOVE指令，不过寄存器分配器（第11章〉最终可以将它们

清除。
重写规则的实现如下;reorder 用

ESEQ(MOVE(TEMP t re,CALL(f, arg8s)),TEMP hnew)

替代 CALL（f，args）的每一个出现，并且用ESEQ再次递归调用自己。但do_stm可以识别模式

MoVE(TEMP Inew,CALL(f,args),

并且在这种情况下，它不调用reorder处理CALL结点，而是将厂和args看成是 MOVE结点的

儿子。因此 reorder 绝不会"见到"任何一个已经是 MOVE的直接儿子的CALL结点。模式

EXP（CALL（f，args））也进行类似的处理。
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8.1.4 线性语句表

一旦整个函数体s。已用 do_stm处理完毕，将得到一棵树s??其中所有的SEO结点都集中

在树的顶部（决不会在其他类型的结点之下）。函数1inearize重复施加规则

SEQ(SEQ(a,b),c)= SEQ(a,seq(b,c))

的结果是将 s'线性化为如下形式的一个表达式

SEQ(51, SEO(52,..., SEQ(5n-1.5,)...))

其中 SEQ结点完全不提供结构化信息，因此我们可以认为它只是由语句组成的简单列表;

51,52,...5-1,5
其中所有的s.都不包含 SEQ结点或 ESEQ结点。

重写规则由 linearize 使用一个辅助函数linear来实现。1inear 函数如下∶

static T_stmList linear(T_8tm stm,T_etmList right)(
if(stm->kind -= T_SBQ)
return 1inear(stm->u.SBQ.left,

1inear(stm->u.SEO.right,
right)):

else return T_StmList(atm, right);

T_stmList C_linearize(T_stm stm)一一
zeturn 1inear (do_stm(stm),NULL);

184

8.2 处理条件分支

Tree语言不能与大多数机器指令集直接等价的另一个地方是它具有两路分支 CJUMP指令。

为了便于转换到树并对树进行分析，Tree 语言的 CJUMP设计了两个目标标号。但在真实的机

器中，条件转移指令要么使控制发生转移（当条件为真时），要么"下降到"下一条指令执行。
为了易于将树转换成机器指令，需要重新安排CJUMP，使得每一个CJUMP（cond，1，，1）

之后直接跟随LABEL（1），即"false分支"。在真实的机器上，每个这样的CJUMP 都能直接
用一条转移到1.的条件分支指令来实现。

我们分两步来实现这种转换;首先取—列规范树。并由它们形成基本块;然后对这些基本

块排序使之形成一条轨迹。下面两小节将定义这两个术语。

8.2.1 基本块

在确定程序中转移指令的目标地址时，我们要分析程序的控制流（control flow）。控制流是

程序中指令执行的先后顺序，它不关心寄存器和存储器中的数据值是什么，也不关心进行的是

什么算术运算。当然，不知道数据值就无法知道条件转移分支的真假走向。因此，我们简单地

认为这种条件转移可能转移到任意一个分支。
在分析程序的控制流中，任何非转移指令的行为对分析都没有意义。因此可以将由非分支

指令组成的序列集中到一个基本块中，并分析这些基本块之间的控制流。
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基本块是语句组成的一个序列，控制只能从这个序列的开始处进入并从结尾处退出，即

·第一个语句是一个LABEL;

·最后一个语句是JUMP或者CJUMP;
·没有其他的 LABEL、JUMP或者 CJUMP。
将一长串语句序列划分成基本块相当简单，方法是∶从头至尾扫描语句序列，每发现一

个LABEL，就开始一个新的基本块（并结束前一个基本块）;每发现一个 JUMP或CJUMP.
就结束一个基本块（并开始下一个基本块）。如果这个过程遗留有任何基本块不是以 JUMP或

CJUMP结束的，则在这个基本块的末尾增加一条转移到下一个基本块标号处的 JUMP。如果185
遗留有任何基本块不是以LABEL开始的，则生成一个新的标号并插入该基本块的开始。
我们将这一算法依次应用于每个函数体。过程的"出口处理"（回收栈并返回到调用者）
不是函数体的一部分，但是要跟随在最后一条语句的后面。当程序执行流到达最后一个基本

块的末尾时，接着将流向出口处理。但是有这样一个"特殊的"基本块是不方便的——它必须

位于一个末尾没有JUMP且是最后的基本块之后。为此，我们添加一个新的标号 done（表示

出口处理的开始）并将 JUMP（NAME done）放到最后一个基本块的末尾。
在 Tiger 编译器中，实现这一简单算法的函数是C_basiBlocks。

8.2.2 轨迹
现在我们可以按任意顺序来安排这些基本块，并且程序执行的结果仍是相同的——因为无

论怎么排序，每个基本块的末尾都能转移到一个正确的位置。我们可以利用这一点来选择适
当的基本块排列顺序，以满足每个CJUMP之后都跟随它的 false标号这一条件。
与此同时，我们也可以安排基本块，使得无条件转移 JUMP之后直接跟随的是它们的目

标标号。这样便可以删除这些无条件转移，从而使编译生成的程序拥有更快的执行速度。

轨迹是在程序执行期间可能连贯执行的语句序列，可以包含条件分支。一个程序有许多

不同的、重叠的轨迹。为了适当安排 CJUMP和 false 标号，我们需要建立一组正好能覆盖整
个程序的轨迹，也就是每一个基本块在一条且只在一条轨迹中。为了使从一条轨迹到另一条

轨迹的JUMP 个数最少，覆盖集合中的轨迹越少越好。

用非常筒单的算法就足以找出这种能覆盖整个程序的轨迹集合。方法是;从某个基本块

开始（它是一个轨迹的开始），追寻一条可能执行的路径———即追寻该轨迹的其余部分。假设

基本块 b，以一个转移至 b.的 JUMP结束，而b，有一个至 b。的JUMP，那么我们可以建立一

条轨迹 bi、b、b。。

假设 b。是以条件转移CJUMP（cond，b..b.）结束的，则我们在编译时无法知道下一个执

行的应当是b，还是 b。但可以假定某种执行将会流向by，并想象我们正在模拟这个执行。于
是，我们将 b，添加到我们的轨迹后面，并从 b。之后继续追寻剩余的轨迹。基本块 b.可能属

于其他的轨迹。186d
算法8-1（与C_traceSchedule类似）按如下方法将基本块重新排列为轨迹;它从某个基本

块开始，追踪 JUMP链，标记遇到的每一个未标记的基本块并添加到当前轨迹中。最终将到
达一个其后继都已标记过的基本块，它就是这个轨迹的结束基本块。之后它再选择一个未标

记的基本块作为另一个轨迹的开始。
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算法 8-1 轨迹的生成

将程序的所有基本块放至表Q中。

whil Q不为空
开始一个新的（空）轨迹。称之为T.
从Q中删除头元素 b。

whle b还未被标记
标记b;将b添加到当前轨迹T的未尾。

检查b的各个后继（b分支到的基本块）;

道存在着未标记的后继e

历-*c
（b的所有后继都已被标记。）

结来当前轨迹T。

8.2.3 完善
许多分析和优化算法在针对基本块（个数相对较少）时要比针对单个的语句（个数相对

较多）时运行得更快，因此讲究效率的编译器会将语句组合成基本块。但是，对于 Tiger编译
器，我们追求的是简化其后面阶段的实现。因此，我们将对轨迹排序，并仍将排序后的轨迹

表表示成一长串语句组成的表。
这时，大多数（但不是所有）CJUMP之后将跟随着它们的 true标号或false 标号。我们再

进行某些细微的调整。
·所有后面跟有false 标号的CJUMP维持不变（许多CJUMP都是这种情况）。

·对任何其后跟有 true标号的CJUMP，交换它们的 true 标号和false 标号并将其条件更改
成相反的条件。
·对其后跟随的既不是它的 true 标号也不是它的false 标号的CJUMP（cond.a∶b.L.;l）.

生成一个新的标号1'，并用如下三条语句重写该CJUMP语句，使它的 false 标号紧跟

其后∶ 187]

cJuMP(cond,a,b,.f)
LABEL1
JUAP(NAME4r)

轨迹生成算法有助于重排基本块，使得许多无条件JUMP 之后直接跟随其目标标号。这

种JUMP都可以被删除。

8.2.4 最优轨迹

在轨迹的某些应用中，一个重要的要求是;任何频繁执行的指令序列（如循环体）都应该

是一条独立的轨迹。这样不仅有助于减少无条件转移的次数，而且有助于其他类型的优化，

如寄存器分配和指令调度。

图 8-3 给出了对同一个程序用不同方式划分得到的轨迹。图8-3a中 white循环的每个迭代

有一个 CJUMP和一个JUMP。图8-3b 使用了不同的轨迹覆盖该程序，但每个迭代仍有一个

CJUMP和一个JUMP。图 8-3c给出的是一种较优的轨迹覆盖，每个迭代都没有 JUMP。
Tiger编译器的 Canon模块不打算对包含循环的轨迹进行优化，但是它能够整理好用于生

成汇编代码的 Tree 语句表，做到这一点也就足够了。
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prplogue statenentsprvlogue statements prologue statements
JUMP(NAME test)托MPfNAME-fesf） 托MPGAME-1esf

LABEL.(resr)LABEL(res) LABEL(body)
CJUMP(>,i,N,done,body) CJUMP(≤,i.N.body,done) loop body statements
L.ABEL(bod) JMP(WMEfes1)LABEL(done)

LABEL(rest)loop body statements epilogue statements
CUMP(>,i.N,done,body)LABELbody)JUMP(NAME test)
LABEL(done)loop body statemensLABEL(done)

JUMP(NAME test) epilogue statementsepilogue statements
(e)(a) (b)

图8-3 同一个程序的不同轨迹覆盖

推荐阅读

图8-1中的重写规则是一个条款重写系统（term rewriting system）的例子，已有人对

这种系统进行了很多的研究【Dershowitz and Jouannaud 1990】。188]
Fisher【1981】说明了如何用轨迹覆盖一个程序，使得频繁执行的路径能够保留在同一个轨

迹中。这种轨迹有助于程序的优化和调度。

习题
*8.1 图8-1中的重写规则是消除表达式中所有 ESEQ所必需的规则的子集。给出下列未完成
的规则的右部∶

a. MOVE(TEMP t,ESEQ(s,e))→

b. MoVE(MEM(ESEQ(s,e1), e2)→
c. MOVE(MEM(e1),ESEQ(s,e2))→

d.EXP(ESEQ(3,e))→

e. EXP(CALL(ESEQ(s,e), args)→

f. MoVE(TEMPt,CALL(ESEQ(s,e), args))=→

g. EXP(CALL(e1,[e2,ESEQ(s,e3),e4]))→

在有些情况下，根据某个部分是否可交换，相同的左部可能需要两个不同的右部《就

像图8-1中的（3）和（4）对于同一个左部有不同的右部一样）。

8.2 画出下面每一个表达式的中间语言树，然后对它们应用图8-1和习题8.1的重写规则，

以及 8.1.3 节的 CALL规则。

a. MOVE(MEM(ESEQ(SEO(CJUMP(LT,TEMP;,CONSTo,Loit,Lak),LABELok),
TEMPi)),CONST1)

b. MoVE(MEM(MEM(NAMEa)),MEM(CALL(TEMP r,[))
c. BINOP(PLUS, CALL(NAMEr,[TEMP,]),

CALL(NAMEg,[ESEQ(MOVE(TEMPx,CONSTo),TEMP:)]))
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8.3 目录sTIGER/chap8中包含了本章描述的所有算法的实现，阅读并理解这些实现。
8.4 8.1.1节最后给出了函数commute 的简单测试形式。该函数是保守的;如果交换表达式

的计算顺序会改变程序的执行结果，则该函数将确定无疑地返回 false;但是如果交换

是无害的，commute可能会返回 true 或者 false。

写一个测试能力更强的 commute，它在大多数情况下都返回 true，但仍然是保守的。
画出 commute 返回 true 时可交换的两棵表达式树，以此作为你的程序的说明。 189

*8.5 MOVE结点的左端表示的实际上是一个目的地址，而不是一个表达式。因此，下面的

重写规则并不好∶

着5，e1是可交换的MOVE(e1,ESEQ(s,e2))→ SEQ(s,MOVE(ei,e2))

编写一个与这个重写规则左部匹配但用此规则重写后会产生不同结果的语句。
提示∶语句 MOVE（TEMP，TEMP。）可与表达式 TEMP、（若 a和b不同）交换是

非常合理的，因为不论 TEMP。在 MOVE之前执行还是之后执行，它都会生成相同

的值。
结论∶MOVE（TEMP..e）的唯一子表达式是e，MOVE（MEM（e1），e.）的子表达

式是【e1.ea】;但我们不能认为a是 MOVE（a，b）的一个子表达式。

8.6 将下列程序分解成基本块。

9 r←M【7】I m←0
10 s←5+x20-0

3 if v≥n goto 15 11 ifs≤m goto 13
12 m ←s474 
13 r←r+15:40
14 goto 66 ifr <ngoto 9
15 returm m7 v←B+1

8 goto 3
[1908.7 将习题8.6中的基本块表示成Tree 中间形式的语句，并用算法8-1生成它的轨迹集合。
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指令（in-struc-tion）;告诉计算机去执行特定操作的一条代码。

韦氏词典

中间表示（Tree）语言的每一个结点只表示一种操作，如从存储器读取或存储，加或减，

以及条件转移等。真实的机器常常能用一条指令完成若干个基本操作。例如，几乎所有的机器

都可以用同一条指令完成与如下的树对应的取加操作∶

MERM

BINOP

PLUS CONST审 。
找出实现一个给定的中间表示树的恰当机器指令序列是编译器在指令选择阶段要完成的工作。

树型
可以将一条机器指令表示成 IR树的一段树枝（fragment），称为树型（tree pattern）。于

是，指令选择的任务就变成了用树型的最小集合来覆盖（tiling）一棵树。

为了说明这个方法，我们设计了一种指令集;Jouette 体系结构。图 9-1 给出了Jouette 体系

结构的算术指令和存取指令。在这种机器中，寄存器r。总是包含0。191
图9-1中双线上方的每一条指令都生成一个存放在寄存器中的结果。最上面的第一项并不

是一条真正的指令，它只是表示 TEMP结点是作为寄存器来实现的，这种结点不需执行任何指

令就能"生成一个存放在寄存器中的结果"。双线下方的指令不生成存放在寄存器中的结果，它
的执行只对存储器产生副作用。

图9-1还给出了每一条指令所实现的树型。有些指令对应于多种树型，出现多种树型是由

于可交换操作符（如+和·），以及在有些情况下寄存器或者常数可以是0（如 LOAD和STORE

操作）而导致的。在本章，我们将稍微简化树的表示∶BINOP（PLUS，x，y）将写成＋（x，y），并[192]
且不一定给出 CONST结点和 TEMP 结点的实际值。

使用基于树的中间表示来实现指令选择的基本思想是，用一些"瓦片"来覆盖IR 树;瓦片

（tile）是与合法机器指令对应的树型，指令选择的目的是用一组不重叠的瓦片来覆盖这棵 IR

树。
例如Tiger语言中的表达式a【i】∶=x，其中i是一个寄存器变量，a和x是栈帧变量，由该
表达式生成的树可以有多种不同的覆盖方式。图 9-2给出了它的两种覆盖和对应的指令序列

（记住，a实际上是一个指向数组的指针的栈帧位移）。在这两种覆盖中，瓦片1、3 和7并不对应
任何机器指令，因为它们是已经含有正确值的寄存器（TEMP）。
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作用指令名 树型
“过专疗

ADD n←r+n

冬
MUL n←r）×n
r←ry-nSUB
工十空矿DrV
n←g+eADDI

coNsTcoNsT
SUBt n←ri-e coNST

勒 MFMMNMIFMT
coisrn←Mr+elLOAD

coNSTcoNst
MovE MOVEMOVEMOVE

MEM MEM4MIEMMrEMMt7+e←nSTORE consTr
coNnst consr
冢部

Mtz）1←MfrlMOVEM MEM MEM

图9-1 算术和存储器存取指令。M【x】是地址为x的存储单元

9
MOVE。 MOVE
、MEM{MEM

MEM(MEM 。
coNST r)(P)MEM\CoNsT(P)务MEM

午。 (TEMPiCoNsT，身 (TEMP )CoNsT)
coNsra(FP\coNSTa(FP)

ri←MUp+a ni←Mp+aLOAD2 2 LOAD
r? ←n+44 ADDI r2←ro+44 ADDI
n ←n×n5 MUL n2 ←r;×n5 MUL
n←ri+r26 ADD 6 ADD n←n1+n

8 LOAD r←MIfp+xl r2 ←fp+文8 ADDI
9 STORE MIr1+0】←72 Mtru】 ←M【ra】9 MOVEM

b)(a)
图9-2 用两种方式覆盖的一棵树

我们假定最终总是能得到一个"合理的"瓦片-树型（tile-pattern）集合——因为用一些每

次只覆盖一个结点的小瓦片来覆盖一棵树总是可能的。在我们这个例子中，最终得到的覆盖

将是∶ 193
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ADDI ri ←ro+a
AD rt←fp+r
LOAD n ←M【71+0】
ADDI n ←+4
MUL r2 ←ri×r
ADD n←r+r2
ADDI 记马卡斗
r ←fp+r2ADD
r2 -MIr2+0]LOAD
M【ri+0】 ←r2STORB

对于一个合理的树型集合，让每个单独的Tree 结点对应某个瓦片就足够了。一般情况下都

可以做到这一点。例如，利用常数0，便可以用LOAD指令覆盖单个 MEM结点。

最佳覆盖与最优覆盖

树的最好覆盖对应于代价最小的指令序列;即最短的指令序列，或者当指令的执行时间各

不相同时，总执行时间最短的指令序列。

假设可以给每种指令一个代价，我们便可以将最优（optimum）覆盖定义为∶其瓦片的代价

之和可能是最小的覆盖。最佳（optimal）覆盖是指不存在两个相邻的瓦片能连接成一个代价更

小的瓦片的覆盖。如果存在某个树型，能进一步分割成几个具有较小组合代价的瓦片，则在开

始之前就应当将该树型从瓦片清单中删除。
每一个最优覆盖同时也是最佳的"，但反之不然。例如，假设除 MOVEM指令以外，其他

每一条指令的代价是一个单位，MOVEM指令的代价为 m个单位。则要么图9-2a是最优的
（当m>1时），要么图9-2b是最优的（当m<1时），要么两个都是最优的〈当 m=1时）;但

是两棵树都是最佳的。

最优覆盖基于理想代价模型。在实际中，单条指令的代价不仅仅与自已的属性有关，相邻

的多条指令之间也会像第 20章讨论的那样，以多种方式相互产生影响。

9.1 指令选择算法

现在已经有了一些确定最优覆盖和最佳覆盖的较好算法，但正如预期的那样，最佳覆盖算

法要更简单些。194
复杂指令集计算机（CISC）具有一些能一次完成若干操作的指令。这些指令的瓦片相当大，

尽管它们的最优覆盖和最佳覆盖之间的差别不是特别大，但至少有时是明显的。

现代大多数计算机都是精简指令集计算机（RISC）。每一条RISC指令只完成少量操作（除

MOVEM指令外，所有Jouette 指令都是典型的 RISC指令）。由于它们对应的瓦片很小且其代

价一致，通常在最优与最佳覆盖之间完全不存在差别。因此，采用较简单的覆盖算法就足够了。

9.1.1 Maximal Munch 算法

本节描述的最佳覆盖算法叫作 Maximal Munch。它的实现相当简单;从树的根结点开始，

①原文用了两个含义相近的词optimum 和 optimal，分别表示两种不同的"最好"情况。前者针对的是总的执行代
价，后者针对的是瓦片的覆盖形状。我们也类似地处理，用"最优"表示总执行代价可能最小的覆盖，用"最

佳"表示局部代价较小但覆盖的树型最大的瓦片组成的覆盖。——译者注
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寻找适合它的最大瓦片，用这个瓦片覆盖根结点，同时也可能会覆盖根结点附近的其他几个结

点。覆盖根结点后，遗留下了若干子树。然后，对每一棵子树重复相同的算法。

当用瓦片进行覆盖的同时，也生成了与瓦片对应的指令。Maximal Munch算法按逆序生成

指令——虽然与根结点对应的指令是首先生成的，但毕竞只有当其他指令已经在寄存器中形成
了操作数之后，才能执行与根结点对应的这条指令。

"最大瓦片"是覆盖结点数最多的瓦片。例如，ADD操作对应的瓦片只有一个结点，SUBI

操作对应的瓦片有两个结点，STORE 和 MOVEM操作对应的瓦片每一个都有三个结点。

当两个大小相等的瓦片都可以覆盖根结点时，可随意选择其中之一。如在图9-2的树中，

STORE和 MOVEM两者都可以匹配，故可从中任选一个。
Maximal Munch算法很容易用C来实现。我们只需要简单地编写两个递归函数，一个是用

于语句的 munchStm，另一个是用于表达式的 munchExp。munchExp 中每一种情形的从句将匹配一

个瓦片。这些从句按瓦片的优先级排列（最大瓦片优先级最高》。
程序 9-1和程序9-2是基于 Maximal Munch 算法的 Jouette 代码生成器中的部分代码梗概。对

图9-2中的树执行这段程序将匹配 munchStm的第一种情形的从句，它将调用 munchExp 生成所有与

STORE的操作数有关的指令，以及跟随在这些指令之后的STORE指令本身。程序 9-1并没有说

明如何选择寄存器，也没有为这些指令指明操作数的语法;我们这里关心的只是瓦片的树型匹配。 195]
如果Tree 语言的每一种结点类型都存在着一个单结点的瓦片树型，Maximal Munch 算法就

不会因为没有可与某个子树匹配的瓦片树型而"陷入困境"。 图
程序9-1 用C 语言编写的 Maximal Munch算法

static void munchStm(T_stm g)
switch(s->kind)
case T MOVE:
T_exp dst= B->u,MOVE,d8st,8rc= s->u.MOVE.8rC;
if(dst-skind==T MEM)
if （dst->u.MEM->大kind-T BINOP
&& dst->u.MEM->u.BINOP,op==T plu3
&& dst->u,MEM->u,BINOP.right-skind--T_CONST){
T exp el=dst->u.MEM->u.BINOP.1eft,e2-9rc;
/MOVE(MEM(BINOP(PLUS,el,CONST(1),e2)*
munchExp(el);munchExp(e2); emit("STORE");

elge if(dst->u.MEM->kind-=T_BINOP
&& dst->u.MEM->u.BINOP.op==T plus
&s dst->u.MEM->u.BINOP.1eft->kinds=T CONST){

Texp el= dst->u,MEM->u.BINOP,right,e2-8rC;
/* MOvE（MEM（BINOP（PLUS，CONST（i），eD）），e2） 句
munchBxp(e1);munchBxp《e2); emit("STORE");

else if《src->kind--T MEM){
T_exp e1 = dst->u.MBM,e2=Src->u.MEM;
/* MoVE(MEM(el), MEM(e2)*
munchExp(ei);munchExp(e2); emit("MoVEN");

else
T exp e1 = dst->u.MEM,e2-src;
/* MovE（MEM（el），e2）-吃
munchBxp(el);munchBxp(e2); emit("8TORE");

else if(dst->kind-=T_TEMP){
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（续）
T_exp e2=src;
/ MoVE(TEMPi.e2) 
munchBxp (e2);emit("ADD");

else assert(0);/* destination of MOVE must be MEM or TEMP/
break;

case T JUMP:.
case T_CUMP:·.
cage T NAME;...

程序9-2 C 函数 munchStm的实现梗概

gtatic void munchStm(T stm g)
MEM(BINoP(PL.US,el,cONST(i)))→ munchExp(el); emit("LOAD");
MEM(BINOP(PLUs,cONsT(i),el)) → munchExp(el); emit("LOAD");
MEM(CONST(i)) = emit{"LOAD");
MEM(el)→ munchExp(el); emit("LOAD"》:
BINoP(PLUS.el, CONST(O)) → munchExp (el); emit("ADDI"》;
BINop(PLUs. cONST(i),el)→ munchExp (el); emit("ADDI");
CONST(i) → munchExp (e1);emit("ADDI");
BINOP(PLUS,e1,CONST(i))→ munchExp(el); emit("ADD");
TEMP(r)→{}

9.1.2 动态规划

Maximal Munch算法总在寻找一种最佳覆盖，但不一定是最优覆盖。动态规划《dynamic-
programming）算法却可以找到最优的覆盖。一般而言，动态规划是根据每个子问题的最优解找
到整个问题的最优解的一种技术。在这里，子问题是每棵子树的覆盖。

动态规划算法给树中每个结点指定一个代价，这个代价是可以覆盖以该结点为根的子树的

最优指令序列的指令代价之和。
与自顶向下的 Maximal Munch算法相反，动态规划算法是自底向上的。它首先递归地求出结

点 n的所有儿子（和孙子）的代价，然后将每一种树型（瓦片种类）与结点 n进行匹配。

每个瓦片会有0个或更多个叶子结点。在图9-1中，这些叶子结点是用其底端超出了瓦片的

边来表示的。瓦片的这些叶子结点便是可以连接子树的地方。

对每一个以代价c与结点n匹配的瓦片t，存在着0个或更多个与该瓦片的叶子结点对应的

子树s，而且每一个子树的代价c，都已经计算出来了（因为该算法是自底向上的）。因此，匹配

瓦片1的代价就是c+二c。
在所有与结点 n相匹配的瓦片t中，选择代价最小的那个瓦片，于是结点 n的《最小）代

价也计算出来了。例如，考虑这棵树∶

MEM

CONST2CONST I[197
唯一与CONST1匹配的瓦片是代价为1的 ADDI指令。类似地，与CONST2匹配的瓦片代价
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也为1。有若干瓦片可与结点十匹配;

总代价指令瓦片 瓦片代价 叶子结点代价介

言- 141ADD
r-ADD1covsT eADD1

C0ONST
其中，ADD瓦片有两个叶子结点，而 ADDI瓦片只有一个叶子结点。在匹配第一种 ADDI树型

时，我们说∶"虽然已算出了CONST2的覆盖代价，但我们并不打算使用这个信息。"因为如果
选择使用第一种 ADDI树型，CONST2 便不会是任何瓦片的根，它的代价就会被忽略。在这种

情况下，两个ADDI瓦片都能使结点+的代价最小，因此选择是任意的，结点十计算出来的代

价是2.
现在，有若干瓦片可与 MEM结点相匹配∶

总代价瓦片 瓦片代价 叶子结点代价指令 

MFM N m-LOAD
MTEM

cLOAD
cONST
MEM
LOAD 便

coNsT
最后两种匹配都是最优的。

一旦求出了根结点的代价（也就是整棵树的代价），便开始指令流出（instruction emission）
阶段。指令流出的算法如下。

Emission（node n）∶对于在结点 n选择的瓦片的每一个叶子结点l，执行 Emission（l）。然
后流出在结点 n匹配的指令。

198Emission（n）并不是重复地作用于结点 n的子结点，而是作用于与结点 n 相匹配的瓦片的

叶子结点。例如，在动态规划算法找到上面的简单树的最优代价以后，指令流出阶段将流出指令;

ADDI 1 -r0+1
LOADr1 ←M【r∶ +2】

但是对于任何以中间这个＋结点为根的瓦片，并没有指令流出，因为这个+结点不是与根结点

匹配的瓦片的叶子结点。

9.1.3 树文法

对于具有复杂指令集以及若干类寄存器和寻址模式的机器，上述动态规划算法有一个很有

用的推广算法。假设我们创建了一个"大脑分裂了的"Jouette 计算机，它有两类寄存器;a寄

存器用于地址，d寄存器用于"数据"。这个"患有精神分裂症的"Jouette计算机（类似于
Motorola .68000）的指令集如图 9-3 所示。



第一部分 编译基本原理142 

指令名 作用 树型
比 TEMP一

实d←d+dADD
司码d"

←d;xd三
d.d←d-4sUB 、a建/

d←dj/dDIV e（节
TCONST乎严

还还十”ADDI coNsTcONSTd
d、

d←d-eSUBI consrTe

dMOVEA dj ←a
MOVED ad图，乎

dME  NEMMEMdMEMT

covsTd←Maj+cLOAD
cONSTcoksT 。

MOVMoVMOVMoVE

MEMA d MEMMEMMEM dM【a） +e】←dsTORE 硬.
CONsT .

cONST CONST非
MOE

专

M【aj】← M【a;lMovEM MEIMMEMA

图9-3 "患有精神分裂症的"Jouctte 体系结构

每一个瓦片的根和叶子都必须带有标记a或d，以指明使用的是哪种类型的寄存器。现在，

动态规划算法必须知道每一个结点使用 a类寄存器时的最小代价，同时也必须知道使用 d类寄

存器时的最小代价。
此时，一种有助的方法是用一个上下文无关文法来描述瓦片，该文法有非终结符s（表

示语句）、a（表示其值存放到a寄存器的表达式）和 d（表示其值存放到 d寄存器的表达
式）。3.1节描述了用于源语言语法的上下文无关文法;但这里使用它们的目的已截然

不同。
LOAD、MOVEA和 MOVED指令的文法规则将像下面这样∶

d→ MEM(+(a,CoNST))
→ MEM(+(CONST,a))
d→ MEM(CONST)
d→> MEM(a)
d→a
a→d
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这种文法具有高度的歧义性∶同一棵树有多种不同的分析结果（因为同一个表达式可
以由许多不同的指令序列来实现）。由于这一原因，第3章描述的分析技术对于这种应用不

是很有用。但是，一般的动态规划算法却能很好地适应这种情况;因为对文 法中每个非终 199
结符，要计算的只是每个结点的最小代价匹配。
动态规划算法虽然在概念上很简单。但用像 C这样的通用程序设计语言来直接实现它

却很繁琐。因此，人们开发了一些工具。这些工具就是代码生成器的生成器，处理用于指

明机器指令集的文法。对于文法中的每一条规则，都指明了代价和所要进行的动作。代价
用于寻找最优覆盖，而与规则相匹配的动作则用于指令流出阶段。

同Yacc 和Lex一样，代码生成器的生成器的输出通常是一个C程序，该程序用插人在
适当点的动作代码（用C编写）来操纵一个表驱动的匹配引擎。
这些工具十分方便。文法可以很好地指定类似于树的CISC指令的寻址模式。VAX 机的典

型文法有112条规则和 20个非终结符;Motorola 68020 的文法有141条规则和35个非终结符。
但是，对于那种产生多个结果的指令，如 VAX 机中的地址自增指令，则很难用树型来表达。
代码生成器的生成器对于RISC机器而言则可能是大材小用。因为瓦片都非常小，且其数量

也很少，故很少需要使用含有多个非终结符的文法。

9.1.4 快速匹配

对于每一个结点而言，Maximal Munch算法和动态规划算法都必须检查与该结点相匹配的
所有瓦片。如果一个瓦片的每一个非叶子结点上标记的操作符都与树中对应结点的操作符

（MEM、CONST等）相同，则该瓦片是匹配的。

比较简单的匹配算法是依次考察每一个瓦片，并对照树中相应的结点检查瓦片中的每一个
结点。不过，还有更好的方法。为了在树结点 n 匹配一个瓦片，可用结点n的标号作为case语

句的标号∶

match(n)
switch (label(m))|
case MEM:.
case BINOP:..
case CONST:...，
一旦选中了某个标号（如 MEM）的从句，则可只考虑以该标号作为根的那些树型。另一个201

case 语句则可以用结点 n的子结点的标号来区分这些树型。
关于树型匹配判定树的组织和优化超出了本书讨论的范围。但是，为了有更好的性能，函

数 munchExp 中那种自然排列的从句应当重写为按这种顺序排列的从句;它在进行比较时，决不

会对同一个树结点考察两次。

9.1.5 覆盖算法的效率

Maximal Munch 算法和动态规划算法的开销究竟有多大?

假设存在 T个不同的瓦片，平均每个匹配的瓦片有K个非叶子（带标号的）结点。令K'
表示在给定的子树中为确定应匹配哪个瓦片而需要检查的最大结点个数，该值近似于最大瓦片

的大小。假定平均而言，每一个树结点都可以与 T'个树型（瓦片）相匹配。对于典型的RISC

机器，我们可以预期T=50，K=2，K'=4，T'=5。
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假设在输入树中存在 N个结点。Maximal Munch算法只需考虑在 N/K 个结点上的匹配，

因为一旦"吃掉"了根结点，这个瓦片的非叶子结点就不再需要进行树型匹配了。
为了能找到与某个结点相匹配的所有瓦片。必须检查的树结点数至多为 K'个。但（当使用

的是一种成熟的判定树时）其中的每一个结点都只检查一次。然后，算法需要比较每一个成功

的匹配，以查看它的代价是否为最小。因此，每一个结点的匹配代价是K'+T'，总的代价则与

（K'+T'）N/K成正比。
动态规划算法必须找出每一个结点的所有匹配，因此它的代价与（K'＋T'）N成正比。但
是，动态规划算法的比例常数比 Maximal Munch 算法的比例常数要大，因为它需要对树进行两

次遍历而不是一次。

K、K'和 T'都是常数，因此所有这些算法的运行时间都是线性的。实际的测量表明，与一

个真实编译器所执行的其他处理相比，这些指令选择算法都运行得非常快——即使是词法分析，
其执行时间也可能比指令选择要长。

9.2 CISC机器

202] 典型的现代 RISC计算机具有如下一些特征。
（1）32个寄存器。
（2）仅有一类整数/指针寄存器。
（3）算术运算仅对寄存器进行操作。

（4）采用形如 r←-r;④r，的"三地址"指令。
（5）取指令和存指令只有 M【 reg+const】寻址模式。

（6）每条指令的长度恰好为 32 位。

（7）每一条指令产生一个结果或一种作用。

20世纪70年代至 80 年代中期之间设计的许多计算机都是复杂指令集计算机（CISC）。这

种计算机具有用较少位进行编码的复杂寻址方式。在计算机存储器容量较小并且很昂贵的情况

下，这种做法有其重要意义。CISC计算机有下列典型特点。

1）不多的几个寄存器（一般是16、8或6个）。

（2）寄存器分为不同的类型，某些操作只在某类特定的寄存器上才能进行。

（3）算术运算可以通过不同的"寻址模式"访向寄存器或存储器。
（4）指令是形如 r;r∶④r的两地址指令。

（5）有若干不同的寻址模式。
（6）有由变长操作码加变长寻址模式形成的变长指令。

（7）指令具有副作用，例如"自增"寻址方式。
20世纪 90年代以来设计的大多数计算机都是RISC结构的。但是。20 世纪90年代以来安

装的大多数通用计算机都是 CISC计算机，例如 Intel 80386 及其后代产品（486、Pentium）。

Pentium 计算机采用32位模式，有6个通用寄存器、一个栈指针和一个帧指针。大多数指

令可对这6个寄存器进行操作，但是乘法和除法指令只能使用寄存器 eax。与 RISC 机器中的

"三地址"指令不同，Pentium 的算术指令一般都是"两地址"指令，这就意味着目标寄存器必

须与第一个源寄存器相同。大多数指令可以有两个寄存器操作数（r;←-r，田r;），或者一个寄存
器操作数和一个存储器操作数，例如 M【r;＋c】←M【rn十c】田 r∶或者r←-r，④ M【r∶十c】，但
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不能是M【ri十c;】-M【r+c】④ M【r，+c∶】.
针对CISC机器的这些特点，我们可以用如下快刀斩乱麻的方式来解决其难题。

（1）寄存器较少;我们仍不受限制地生成 TEMP结点，并假设寄存器分配器能够很好地完

成寄存器分配的工作。 203
（2）寄存器分类∶Pentium中的乘法指令要求将左操作数（因此也是目标操作数）放入寄存

器 eax中，结果的高位（对 Tiger 程序无用）放至寄存器 edx中。解决的方法是将操作数和结果

显式地传送到相应的寄存器中。例如，用下面的指令来实现t←-1。×1。∶
mov eax,1 由田义！浴
mal t eax ← eax× 13; edx←garbage

1 ←-eaxxmoV1,eax

这看起来非常笨拙，但是寄存器分配器的工作之一就是尽可能多地清除传送指令。如果寄存器
分配器能够给1;或t、（或两者）分配寄存器 eax，则它既可以删除这两条传送指令中的一条，
也可以将两条全部删除。

（3）两地址指令;我们用与前面相同的方法来解决这个问题∶增加一条额外的传送指令。

为了实现t、←-t。十t，我们生成

mov 1:2 I.-/2
add ,f3 n←h+作
然后寄希望于寄存器分配器能够将t.和t.分配到同一个寄存器中，这样便可以删除这条传送指

令。
（4）算术运算可以访问存储器∶指令选择阶段将每一个 TEMP结点转换成一个"寄存器"引

用。这些"寄存器"中的多数都将转变成存储器单元。寄存器分配器的溢出阶段必须能够有效地
处理这种情况（见第 11章）。

对于使用存储器模式的操作数，可以简单地在运算进行之前将操作数取到寄存器，运算完成

之后再存人存储器。例如，下面两个序列完成的计算是相同的∶

moveax,[ebp -8]
add febp -8],ecxadld eax,ecx

mov [ebp-8],eax

右边的序列更加简洁（并且占用了较少的机器代码空间），但是这两个序列的执行速度是相同

的。取数、奇存器-寄存器加和存储结果各需一个时钟周期的执行时间，而在储器-寄存器加需

要三个时钟周期的执行时间。在像 Pentium Pro 这样高度流水的机器中，简单地数时钟周期数

并不能反映事情的全貌，但在这里结果是相同的;无论使用的是什么指令，处理器都必须执

行取、加和存。
左边的序列有一个相当大的缺点∶它破坏了寄存器 eax的值。因此，在可能的情况下，我

们应尽量使用右边的序列。但这是寄存器分配的问题，而不是指令执行速度的问题，因此，
我们将它推迟到寄存器分配器再解决。 204
（5）有若干种寻址模式∶典型情况下，能够完成6件事的寻址模式需要有6个执行步骤。
因此，这种指令执行起来并不比可替代它们的多条指令组成的序列快。它们只有两个优点∶

一个是"破坏"的寄存器较少（例如前例中的 eax寄存器），另一个是指令代码较短。多做一

点工作，可以使得树匹配时的指令选择能选择 CISC寻址模式，同时又能使程序的执行速度仍

与使用简单的 RISC指令时一样快。
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（6）变长指令∶这实际上不是编译器的问题。一旦选定了指令，流出具体编码就是汇编

程序的事（尽管是单调乏味的）。

（7）有副作用的指令∶有些机器具有"地址自增的"存储器取数指令，其效果如下，

言十这言六工十工十中

这条指令产生两个结果，很难用一个树型来模拟。对这一问题，有以下三种解决方法。

（a）忽略地址自增指令，并希望它们会自动消失。这是一种会逐渐变得有效的解决方
法，因为现代机器只有少数还存在多副作用指令。
（b）在采用树型匹配的代码生成器的上下文中，尽量用一种特别方式来匹配特殊"方

言"。
（c）使用完全不同的指令算法，该算法基于DAG样式，而不是树型。

这些解决方法中，有几种需要紧密地依靠寄存器分配器删除传送指令，并明智地进行溢出

（见第11章）。

9.3 Tiger编译器的指令选择

如程序9-1所示，用C实现"瓦片"的树型匹配是简单的（尽管冗长）。但是这段程序并没
有给出对于每一种树型匹配应做何种处理。它做到的只是输出了指令名，但这些指令应当使用

哪些寄存器呢?
在已用指令样式、即瓦片覆盖的树中，每一个瓦片的根对应于一个需要存放到寄存器的中

间结果。寄存器分配的任务就是给每一个这样的结点指派一个寄存器号。
指令选择阶段也可以同时进行寄存器分配。但是，寄存器分配的很多方面都与特定目标机

的指令集无关，并且为每一种目标机重复寄存器分配算法的做法也是很愚蠢的。因此，寄存器205
分配应当在指令选择之前或者之后进行。
在指令选择之前进行分配将无法知道哪些树结点需要寄存器来存储其结果，因为只有瓦片

的根（而不是瓦片内其他带标记的结点）需要有明确的寄存器。因此，在指令选择之前无法非

常准确地进行寄存器分配。但无论如何，有一些编译器为了避免在没有填充真实寄存器的情况

下描述机器指令，确实这样做了。

我们将在指令选择之后进行寄存器分配。指令选择阶段将在并不确切知道指令使用哪个寄

存器的情况下生成指令。

9.3.1 抽象的汇编语言指令

我们设计了一种数据类型 As_instr，用于表示"没有指定寄存器的汇编语言指令";

/*assem.*
typedef struct {Temp_labelList labele;}*AS_targets;
A8_targets AS_Target8(Temp_labelList labels);

typedef atruct一
enum {I_OPER,I_LABEL,I_MOVE} kind;
union {atruct(string assem;Temp_tempLiet dst,src;

AS_targets jumps;} OPER;
部ruct{string assem;Temp_label label;}LABEL;
8truct{string assem;
Temp_tempList dst,src;)MOVE;
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，]u;
)*As_instr?

AS_instr AS_Oper(etring a,Temp_tempLiat d,
Temp_tempLiet s,AS_target3 j));

AS_instr ASLabel(string a,Temp_label label);
AS_instr AS_Move(string a,Temp_tempList d,Temp_tempLAst s);

void AS_print(FILE *out,AS_instr i,Temp_map m);

OPER中包含汇编语言指令 assem、操作数寄存器表 src 和结果寄存器表 dst，其中 src 和
dst都可以是空表。对于总是使得控制顺序执行下一条指令的操作，有 jump=NULL;其他的 206
jump操作具有由它们可转移到的"目标"标号组成的一张表（如果该表有可能下降到下一条指
令执行，则它必须明确地包括下一条指令）。
LABEL是程序中转移可以到达的位置。它有一个 assem成员和一个label成员，前者用于
指明汇编语言程序中标号的形式，后者用于指出表示标号的那个符号。
MOVE与OPER类似，但只进行数据传送。如果某个 MOVE指令的临时变量 dst 和 src分

配了同一个寄存器，则该 MOVE 指令可以在稍后删除。
调用AS_print（f，i，m）可将一条汇编指令表示为字符串的形式，并输出到文件 f。m是一个
临时变量映射（temp mapping），它给出每一个临时变量的寄存器指派（或者只是寄存器的名字）。

temp.h接口描述了对临时变量映射进行操作的函数∶

*tem. ~
typedef struct Temp_map_*Temp_map;
Temp_map Temp_empty(void);/*create a new, emprty map /
Temp_map Temp layerMap(Temp_map over,Temp_map under);
void Temp enter(Temp map m,Temp_temp t,string s);
etring Temp_1ook (Temp_map m,Temp_temp t);

Temp_map Temp_name(void);

Temp_map 只是一张表，表中每一项的键值是 Temp_temp，绑定是字符串。但是，一个映射可以压

在另一个映射之上。例如，如果a=layer（a，a;），意味着look（o.，t）将首先尝试look（a，1），
如果失败则继续尝试 look（a。，t）。另外，enter（a），1，a）的效果就是将t→a 送人西∶。
这些 Temp map操作的主要使用者是寄存器分配器，寄存器分配器决定每个临时变量使用的

寄存器名字。但是 Frame模块创建了Temp_map，用于描述所有预先分配的寄存器的名字（如帧
指针、栈指针，等等）。因而为了有助于调试，最好使用一个特殊的 Temp_name 映射将每一个临
时变量（如 tu）映射到它的"名字"（如字符串"t182"）。

机器无关性。As_instr类型与所选择的目标机汇编语言无关（尽管它被调整成适合只有一
类寄存器的机器）。如果目标机是 Sparc，则 assem字符串将是 Sparc 汇编语言。我将用Jouette汇207
编语言作为例子。
例如，树
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MEM

CONST8TEMPfp
可以翻译为如下的 Jouette 汇编语言∶

AS_Oper("LOAD 'a0 <- M['s0+8]*,
Temp TempList(Temp newtemp(),NULL),
Temp_TempList《TTemp(P_FP()),NULL),

NOLL)

这条指令需要解释一下。在寄存器分配之后，实际的 Jouete 汇编语言可能是∶

LOAD r1 e-M[z27+8]

其中，假设寄存器r。是帧指针 fp∶并且寄存器分配器决定将这个新的临时变量指派给寄存器

r。但是，这条 Assem指令并不知道有关寄存器的具体指派;它只涉及每条指令的源操作数和

目的操作数。这条LOAD指令有一个源寄存器's0 和一个目的寄存器·d0。

另外还有一个有用的例子。树

MEM
TEMP192CONST3TEMP187

可能被转换为

dst SraSSsem
1908ADDI 'd0 <-'s0+3 8 t87
(909 192LOAD 'd0 <- M['g0+0]

MUL'd0 <- 's0*'e1 t910 1908,1909
其中，t908、t909 和 t910都是由指令选择器新选择的临时变量。208
在寄存器分配之后，汇编语言可能会是这样的∶

ADDI rl<- r12+3
LOAD r2 e- M[r13+0]
MUL r1 e-ri· r2

instr中的 string可以引用源寄存器's0，'s1，⋯，'s（k—1），以及目标寄存器'd0、'd1，

等等。转移指令是引用标号'j0、'j1等的OPER指令。通常，条件转移指令（它可能分支，也

可能下降执行）在 jump 表中有两个标号，但在assem 字符串中只引用其中之一。

两地址指令。一些机器具有含两个操作数的算术指令，其中一个操作数既是源操作数，又

是目标操作数。指令add t1.t2的作用同t~-t+t，它可以描述为

dst srEa3ssem
工工化addd0,e1 1

其中，'s0 是隐含的，它不会在 assem字符串中显式地出现。

9.3.2 生成汇编指令

现在，编写将Tree 表达式转换为 Assem指令的模式匹配从句的右部已是一件简单的事
情。我将给出一些源自 Jouette 代码生成器的例子，其中的思想也可用于实际计算机的代码
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生成器中。
函数munchStm和 munchExp 自底向上产生 Assem指令。函数munchExp 返回一个存放结果的临

时变量。
static Temp_temp munchExp(T exp e);
static void munchStm(T_stm s);

程序9-1中 munchExp中从句的"动作"可以按程序 9-3和程序9-4所示编写。

程序9-3 munchExp 的Assem 指令

static Temp_temp munchExp (T_exp e){
gwitch( e )
caee MEM(BINOP(PLUs,e1,CONST(i))):[
Temp temp r = Temp newtemp();
emit(AS_Oper("LOAD 'd0 <- M['g0+",.+"]\n",

L(r,NULL),L(munchBxp(e1),NULL),NULL));
return r;}
case MEM(BINOP(PLUs,cONST(i),e1)):(
Temp temp r= Temp newtemp();
emit(AS_Oper("LOAD 'd0 <-M['s04"＋i"]\n",

L(r,NULL),L(munchExp(e1),NULL),NULL));
return r;)
case MEM(CONST(i)):{
Temp_temp r=Temp newtemp();
emit(AS_oper("LOAD'd0 <-M[r0+",i＋"]\n"
L(r,NULL),NULL,NULL));

return r;)
cage MEM(el):{
Temp temp r = Temp newtemp ()?
emit(AS Oper("LOAD'd0 <-M['a0+0]\n",

L(r,NULL),L(munchBxp(el),NULL),NULL));
return x;}
case BINOP(PLUS,el,cONST(i)):{
Temp temp r = Temp_newtemp ();
emit(AS_Oper("ADDI'd0 e-'s0+"i＋"\n",

L(r,NULL),L《munchExp(e1),NUL),NULL));
return r;)
case BINoP(PLUS,cONST(i),e1):
Temp_temp r = Temp_newtemp ();
emit(AS Oper("ADDI 'd0<-'s0+"+1+"\n",

L(r,NULL),L(munchExp(el),NULL),NULL》);

return r;]
case CONST(1):{
Temp_temp r = Temp newtemp();
emit(AS_Oper("ADDI'd0 <- r0"+i+"\n",

NULL,L(munchExp(ei),NOLL),NULL));
return r;J
cae BINOP(PLUS,e1,e2):{
Temp_temp r= Temp_newtemp ();
emit(AS_Oper("ADD'd0 <-'g0+'g1\n",

L(r,NULL),L(munchExp(e1),L(munchBxp(e2),NULL)),NULL));
return r;}
case TEMP(t):
return t;
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程序9-4 munchStm的 Assem指令

Temp_tempList L(Temp_temp h,Temp_tempList t)(return Temp_TempList(h,t);)
static void munchStm(T_stm s){
awitch(8)
case MOVE(MEM(BINOP(PLUs, e1,cONST(1))),e2):
emi(AS_Oper("STORE M('g0+"+1+"]<-'s1\n",

NUL,L(munchExp(el),L(munchExp(e2),NULt)),NULL));
case MOVE(MEM (BINOP (PLUS,CONST(i),el)),e2):
emit(AS_Oper("STORE M['0+"+i +"]<-'g1\n",

NULL,L(munchExp(el),L(munchBxp(e2),NULL)),NULL));
case MOvE(MEM (e1), MEM (e2)):
emit(AS Oper("MOVE M[':0] <- M['g1]\n",

NUL,L(munchExp(e1),L(munchExp(e2),NULL)),NULL));
case MOVE (MEM (CONST(1)},e2):

emit(AS_Oper("STORE M[rO+",i,"] e-'s0\n",
NUL,L(munchBxp(e2),NULL),NULL));

case MOVE《MEM (e1),e2):
emit(AS_Oper("STORB M['eO] <-'s1\n",

NULL,L(munchExp(e1),L(munchExp(e2),NULL)),NULL));
case MOVE (TEMP(i),e2):
emit(AS_Move("ADD d0 <-'80 + rO\n",

i,munchBxp (e2)));
case LABEL(Iab):
emit((AS_Label(Temp_labelstring(lab)+";\n",lab));

，
函数 emit 只是将后面要返回的指令登记在指令表中，此表如程序 9-5所示。assem.h接口包
含了指令表 AS_instrList的数据结构和函数∶[209]

/*more of assein.h*

typedef struct AS_inatrList_*AS_instrList;
struct AS instrList_(AS_instr head;ASinstritist tail;);
AS_instrList AS_InstrList(AS_instr head,AS_inatrLis tail);

AS_instrList AS_splice(AS_inetrList a,AS_instrList b);
void AS printInstrList(FILB*out,AS_instrList iList,

Temp_map m);
typedef stzuct(
string prolog;AS_inatrLiat body;string epilog;
|*AS_proc;

程序9-5 codegen 函数

/* codegen.e *

static AS_instrList iist=NULL,last=NULL;
static void emit(AS ingtr inst){
if (last!=NULL)
last■ last->tail = AS_InstrLfst(inat,NULt);

else last = iLiat = AS InstrList(inst,NULL);

AS_instrList F_codegen(F_frame f,T_stmList stmList)
AS_instrList list; T_stmList sl;
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（续）

/* miseellaneous initializations as necessary *
for (8l=atmList:8l;gl=s]->tail)munchStm(sl->head);

list-1tist:iLiat-last=NUL;return liet;一m

9.3.3 过程调用

过程调用是用 EXP（CALL（f，args））来表示的，函数调用则用 MOVE（TEMP 1.CALL（f，
args））来表示。这两个树型可以用如下瓦片来匹配∶
case EXP(CALL(e,args)):{
Temp temp r = munchB×p(e);

Temp_tempList 1 = munchArgs (0,args);
emit(AS_oper("CALL'gO\n",cal1defs,L(r,1),NULL));}

在这个例子中，由 munchArqs 生成将所有参数传递到正确位置（实参寄存器和/或存储器）

的代码。如果传递给munchArgs的整型参数为i，则处理第i个参数;munchArgs 会用i＋1重复

处理下一个参数，依此类推。
munchArgs返回的是一张表，这张表中包含要传递给机器的 CALL指令的所有临时变量。尽

管这些临时变量不会显式地出现在汇编语言中，但仍应当将它们作为 CALL 指令的源操作数列
出，以便活跃分析（见第10 章）能够知道在此调用点需要保存它们的值。

CAL指令可能会"破坏"某些寄存器中的值，这些寄存器包括调用者保护的寄存器、返回
地址寄存器和返回值寄存器。应将这些寄存器作为 CALL指令的目标寄存器列在表calldefs中，
以便编译器在后面的各个阶段能知道这些寄存器在此曾被定值。

212通常，就任何一条指令而言，只要有写另一个寄存器的副作用，就需要进行这样的处理。

例如，Pentium 的乘法指令使用寄存器 edx来存放结果中无用的高位字节，因此 edx和 eax都要
作为乘法指令的目标寄存器列人到表中。（高位字节对于用汇编语言编写高精度的算术运算程序

是非常有用的，但是大多数高级程序设计语言都无法访问它们。）

9.3.4 无帧指针的情形

在如图6-1所示的栈帧布局中，帧指针指向栈帧的一端、栈指针则指向栈帧的另一端。在

每次过程调用时，栈指针寄存器的值将被复制到帧指针寄存器中。然后栈指针本身再加上新栈

帧的大小。
很多计算机的调用约定不使用帧指针。而是使用一个"虚拟的帧指针"，这个虚拟帧指针总

是等于栈指针加栈帧的大小。这样做可以节省时间（无复制指令）和空间（多了一个可用于其

他目的的寄存器）。但是我们的 Translate 阶段已经生成了引用这个虚拟帧指针的树。因此，函

数 codegen必须用SP＋k十fs来替代所有对 FP+k 的引用，其中 fs是栈帧的大小。codegen 在
用瓦片覆盖树的过程中可以识别出这种引用模式。

但是，为了替代它们，codegen必须知道 fs 的值，而此时还不知道寄存器分配的情况，因
此无法确定 js的值。假设要在标号L14处流出函数广的代码，codegen可以在它的汇编指令中只

生成 sp+Ll4_framesize，并期望函数了的人口代码（由F procEntryExit3生成）会包含汇编语

言常数 L14_framesize。因此 codegen（程序9-5）要接收一个frame参数，这样它就可以知道名
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字L14。
有"真实"帧指针的实现不需要对代码进行这种修改，并且可以忽略给 codegen 的 frame参

数。但是，既然使用真实帧指针的实现浪费时间和空间，为什么还要这种有帧指针的实现呢?

回答是，这种实现使得在创建了栈帧之后，仍然可以支持栈的增长和收缩;有些语言允许动态
分配数组位于栈帧内（例如，C语言中使用 alloca 分配的数组）。不过，调用约定的设计者现在

213倾向于避免动态可调整的栈帧。

程序设计∶指令选择

/*eoderent. *
AS_inatrList F_codegen(F_frame f,T_stalist stmList);

使用 Maximal Munch算法为你喜欢的指令集实现 IR 树到汇编指令的转换（令μ代表

Sparc、Mips、Alpha、Pentium等）。如果你想要生成的是 RISC 机器的代码，却没有可对所生

成代码进行测试的RISC机器，那么可以使用本书Web 网页中介绍的 SPIM（由James Larus 实
现的一个 MIPS模拟器）。
首先写出实现 codegen.h中接口的模块 pμcodegen. c，此模块用 Maximal Munch 转换算法将

IR树转换为 Assem数据结构。
在将你的 codegen模块作用于IR树之前，应先用第8章描述的 Canon 模块简化它们。用函
数 AS_printInstrList将 codegen模块得到的 Assem树转换为μ汇编语言。因为你还没有进行寄

存器分配，故只要将Temp_name传递给 AS_print 作为将临时变量转换到字符串的函数即可。
这样生成的是完全不需要使用寄存器名的"汇编"语言;指令将使用诸如 t3、t283之类的

名字。但是这些临时变量中有一些是"内建"的临时变量，它们是由 Frame模块创建的用于表

示特定机器寄存器（如 Erame.EP，见 7.2.2节）的临时变量。如果这些寄存器以本来的名字出
现（例如，用fp 而不用t1），汇编语言程序就会比较容易阅读。

Frame 模块必须提供从这种特殊临时变量至其名字的映射，并将非特殊的临时变量映射为

NUL:
/*frame.h *7

Temp_map F_tempMapi
于是，为了能够在寄存器分配之前就显示出汇编语言，可用Temp layerMap 创建一个新函数。

这个新函数首先尝试F_tempMap，如果返回 NUL，则转而使用函数 Temp_name。

寄存器表

生成下述寄存器表∶对于每一个寄存器，都需要有一个给出其汇编语言表示的字符串和一
个在 Tree与 Assem数据结构中引用它的 Temp_temp。214
· specialregs μ寄存器组成的表，用于实现"特殊"寄存器，如 RV和 FP，还有栈指针
SP、返回地址寄存器 RA，以及（某些机器上）0号寄存器ZERO。某些机器可能还有其

他的特殊寄存器。
·argregs μ寄存器组成的表，此表中的寄存器用于传递实在参数（包括静态链）。

·calleesaves μ寄存器组成的表，此表中的寄存器是被调用过程（被调用者）必须保护



153第9章 指 令选择

并恢复以防止其改变的寄存器。
· callersaves μ寄存器组成的表，此表中的寄存器是被调用者可能破坏的寄存器。
这4种寄存器表不能相互重叠，并且必须包括可能在 Assem指令中出现的所有寄存器。这

些表不能通过 frame.h 接口导出到外部，但在内部对 Frame 和 codegen 都很有用——例如，用于

实现 munchArgs 和构造 calldefs表。
实现 frame.h接口中的 F_procEntryExit2函数。

产jrame.h*）

AS_instrList P_procEntryBxit2(AS_instrList body);

这个函数在函数体的末尾添加了一条所谓的"下沉"（sink）指令，用以告诉寄存器分配器，

某些寄存器在过程的出口是活跃的。在 Jouette机器的情况下，这个函数相当简单;

static Temp_tempList returnsink - NUt;

AS_instrList F_procEntryExit2(AS__instrList body)(
if (!returnSink) returnsink =
Temp TempList(ZERO,Temp TempList(RA,

Temp TempList(SP,calleeSaves))》;

return AS_aplice (body,AS_InstrList(
AS_Oper("",NUL,returnSink,NUL),NULL));

这意味着在函数结尾处，临时变量0、返回地址、栈指针，以及所有被调用者保护的寄存器都仍

然是活跃的。使得临时变量 zero 在出口处是活跃的就意味着它始终都是活跃的，这可以防止寄

存器分配器将它用于其他目的。同样的技巧也适用于机器可能具有的其他特殊寄存器。

STIGER/chap9中包含的可用文件有∶

215·canon，c，规范化和轨迹生成∶
·assem，C，Assem模块;

● main.c，需要你修改的 Main模块。

你的代码生成器将只处理每个过程的过程体或函数的函数体，而不处理过程的入口和出口

指令序列。你可利用F_procEntryExit3 函数的一个"掐头去尾"的版本;

A8_proc F_procEntryBxlt3(F_rame frame,AS_inatrLAst body)(
char buf [100];
sprintf（buf，"PROCEDURE 奢s\n"，S_name （frame->name））;
return AS_Proc(String(buf),body,"END\n");

推荐阅读

Cattel【1980】将机器指令表示成各种树型，发明了用于指令选择的 Maximal Munch算法，还
建立了一个代码生成器的生成器，该生成器能够根据指令集的树型描述生成指令选择函数。Glan-

ville 和 Graham【1978】将树型表示成LR（1）文法中的产生式，从而使得 Maximal Munch 算法可以使
用多个非终结符来表示不同类型的寄存器和不同的寻址方式。但是描述指令集的文法的固有歧义

性导致LR（1）方法存在问题;Aho等人【1989】采用动态规划方法来分析树的文法，解决了歧义性
问题，同时该文也介绍了自动代码生成器的生成器 Twig。动态规划可以在构造编译器的时候完
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成，而不是在生成代码的时候完成【Pelegri-Llopart and Graham 1988】;利用这种技术，BURG 工
具【Fraser et al 1992】实现了一个与 Twig 相似但生成代码速度更快的接口。216

习题

9.1 画出下面每一个表达式的树，并使用 Maximal Munch算法生成它们对应的Jouette 机器指
令。圈出其中的瓦片（见图 9-2），按照匹配的顺序对这些瓦片编号，并给出所生成的

Jouctte 指令序列。

a. MOVE(MEM(+(+(CONSTyo00,MEM(TEMP)),TEMPo)).CONSTo)

b BINOP(MUL, CONSTs, MEM(CONST100))

*9.2 考虑一个具有如下指令的计算机∶

mult const1(src1),const2(src2),dst3
r3 ← M【r +const;】* M【r2 +const2】

这个机器中，r。总是0，并且 M【1】总是包含1。
a.画出与这条指令（和它的特殊情形）对应的所有树型。
b.在 a中选择一个较大的树型，并说明如何写一个对此树型进行匹配的C语言的 if语

句，使得它与Tiger编译器中使用的某个Tree表达式相匹配。

9.3 在 Jouette 计算机中有如下几种控制流指令

ifr,≥0goto LBRANCHGE费
if ri <0goto LBRANCHLT
ifr;=0goto LBRANCHFQ
if r;+0goto LBRANCHNE
goto7JMP

其中，JUMP指令的转移地址包含在寄存器中。

用这些指令实现下面的树型∶

CJUMPJUNMP JUMP
NA ME NAME NAMEGT

假设 CJUMP之后总是跟随着它的false 标号。给出实现每种树型的最好方法;在某

些情况下，你可能会需要使用多条指令或创建一个新的临时变量。如何在不使用

BRANCHGT指令的情况下实现CJUMP（GT，⋯）?[217
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活跃的（live）∶继续存在的或当前兴趣所在的。

韦氏词典

编译器的前端将程序转换为含有大量临时变量的中间语言。转换后的程序必须在寄存器个

数有限的计算机上运行。如果两个临时变量 a和b不会同时都处在"使用中"，则可以把它们放

在同一个寄存器中。因此，尽管有很多的临时变量，但可以只用少量的寄存器来保存它们。如

果不能将它们全部放入寄存器，则超出的临时变量可以放在存储器中。
因此，编译器需要分析程序的中间表示，以确定哪些临时变量在同时被使用。如果一个变
量的值在将来还需要使用，则称这个变量是活跃的 （live），于是我们称这种分析为活跃分析

(liveness analysis)。

为了对程序进行分析，通常有益的做法是生成程序的控制流图（control flow graph>。程序
中的每条语句都是流图中的一个结点。如果语句x之后跟随着语句y，则图中会有一条从x到y

的边。图 10-1表示了一个简单循环的流图。

a=0

b= a+-a-0
L::b-a+1 c=C+be-c+b
a-b2

a:=b*2if a<Ngoto L:
eturn 

acN

return c
图10-1 程序的控制流图

我们来考虑图10-2中每一个变量的活跃性。如果一个变量的当前值在将来还需要使用，该
变量就是活跃的，所以活跃分析是采用回溯方式进行的。变量 b将在语句4中被使用，所以在

边3→4上b是活跃的。因为语句3并没有给变量 b赋值，所以在边2→3上b也是活跃的。语
句2为b赋值，这意味着在边1→2上，b中的内容将不再需要使用，因此b在这条边上是不活
跃的。所以 b的活跃范国是{2→3.3→4}。

变量a 的情形比较有意思。它在1→2是活跃的，然后在4→5→2再次活跃，但在2→3→4 [218
之间不是活跃的。尽管a在结点3有适当定义了的值，但是在a被赋予一个新值之前已不再需

要使用该值。
变量c在进人这段程序时就是活跃的，它有可能是一个形式参数。如果它是一个局部变量，
活跃分析会发现它是一个未初始化的变量;此时编译器将向程序员输出一条警告信息。
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：a=0 a=0 a:=0
b;=a+I b=a+l b≥=a+1
c=c+b C 油=c+b c:=c+b

=b*2 a= b*2 a := b*2in 6

景名 s<N a<N
6

return returm c retum c
(c)(b)(a)

219] 图 10-2变量 a、b、c的活跃性

一旦计算出 a、b和 c 的所有活跃范围，我们就能从结果看出这段程序只需两个寄存器便可以存

放它们，因为a和b决不会同时活跃。寄存器1可以用来存放 a和b，寄存器2可以用来存放c。

10.1 数据流方程的解

变量的活跃性沿着控制流图的各条边"流动"，决定每个变量的活跃范围是数据流（data-

flow）问题的一种。第17章将讨论其他几种数据流问题。

流图术语。流图中的每个结点都有一条引向后继结点的出边（out-edge），以及一条从前驱

结点进入的入边（in-edge）。pred【n】是结点 n的所有前驱结点的集合，succ【n】是其所有后继
结点的集合。
图10-1中，结点5的出边包括5→6和5→2，因此 succe【5】={2，6}。结点2的入边是5→2

和1→2，因此 pred【2】={1，5}。

使用和定值。对变量或临时变量的赋值称为变量的定值（define）。出现在赋值号右边（或

其他表达式中）的变量称为变量的使用（use）。我们说一个变量的 def 是对该变量定值的图结点
组成的集合;或者说一个图结点的 def 是在该结点定值的变量组成的集合。类似地，可以定义

变量和图结点的 use。在图10-1中，def（3）={c}，use（3）=|b，cl。

活跃性。一个变量在一条边上是活跃的是指，存在一条从这条边通向该变量的一个 use 的

有向路径，并且此路径不经过该变量的任何 def。如果一个变量在一个结点的所有入边上均是活

跃的，则该变量在这个结点是入口活跃的（live-in）;如果一个变量在一个结点的所有出边上均

是活跃的，则该变量在该结点是出口活跃的（live-out）。

10.1.1 活跃性计算

活跃信息（入口活跃信息和出口活跃信息）可以用如下方式从 use 和def 求出。220
（1）如果一个变量属于use【n】，那么它在结点 n是入口活跃的。也就是说，如果一条语句

使用了一个变量，则该变量在这条语句入口是活跃的。

（2）如果一个变量在结点 n是入口活跃的，那么它在所有属于 pred【nl的结点 m 中都是出
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口活跃的。
（3）如果一个变量在结点 n是出口活跃的，而且不属于def【n】，则该变量在结点 n是入口
活跃的。也就是说，如果变量a的值在语句n结束后还需使用，但是n并没有对a 赋值，则 a

的值在进入n的入口时就是需要使用的。

上述三点陈述可以写成关于变量集合的方程 10-1。入口活跃集合是以结点为下标的数组

in【n】，出口活跃集合是数组 outr【n】。也就是说，集合 in【n】是属于use【n】的所有变量加上属
于 our【n】但不属于 def【n】的所有变量。out【n】是 n的所有后继的入口活跃集合的并集。

方程 10-1 活跃分析的数据流方程

intn]= use[n]u(ountn]-def[n])
out?】=J inls1
女exarvol

算法10-1用迭代方法求这些方程的解。像平常一样，对于所有的 n，我们初始化 in【n】和

our【n】为空集{}，然后将这些方程作为赋值语句重复地赋值，直至到达一个不动点为止。

算法 10-1 活跃性计算的迭代方法

for each n7
inln】 ←{};∶ ourtn】←【】
repeat
for eachn
in'【n】 ← in【n】; our'【n】 ←- ourt】
in【n】 ← use{n】U （ourtn】-defaJ）
oun【n】← U，ema inis】

until nln|=intal and our/'[n] = our[n] for all n

表10-1给出了对图10-1运行该算法的结果。其中，第1列、第2列等是 repeat循环的连续

迭代得到的 in 和 out 的值。因为第7列与第6列相同，所以该算法在迭代7后终止。

表10-1 沿控制流边正向进行的活跃计算

7h6thSth4th3dIst 2nd
冬多、 ieuefl outuse outin out outoutoutout 当 in人率 co=西s一 acaceacac

N m 由 =,四 需bebebecbcbe acac acac aca
色bb 由占D卧。 bhebe bcbebc玲bc学 昏 =昏 国 ”占 看国 bebebe acacacacb

in 司国。 acacacacacac acacacacac学ol o c型。。。0
通过对结点适当排序可以显著地加快算法的收敛过程。假设图中有一条边3→4，因为in【4】[221]
是由 out【4】计算出来的，our【3】是从 in【4】计算得来的，依此类推，故我们应按照 out【4】→

in【4】→out【3】→in【3】的顺序计算集合 in 和out。但是在表10-1中，每一次迭代使用的顺序恰

好相反!为了利用前一次迭代得到的信息，我们不得不在每次迭代中等待很长时间。
表10-2给出了这种沿控制流边反向进行的活跃计算，其中，每个for循环都是从 6迭代到1
（近似地沿着流图箭头的反方向），并且每次迭代总是先计算 out 集合，后计算in集合。迭代到

第二次结尾时便找到了不动点，第三次迭代只是为了确认该不动点。
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表 10-2 沿控制流边反向进行的活跃计算

3rd2nd一盈
out inout indeuse out in

lon 守 0 。。 O s温 acacacaCc
be b acac beac.m be be bebc bcbcbc e 象属 bebc acacbcb

温一~ 。acacac。 。
当用迭代方法解数据流方程时，计算应沿着信息"流动"的方向进行。因为活跃性是沿控

制流箭头的反方向流动的，即从 out 流向 in，所以计算也应如此。

使用17.4节给出的深度优先搜索算法很容易给这些结点排序。[222
基本块。流图中那些只有一个前驱和一个后继的结点对分析的影响不大。可以将它们和它

们的前驱结点及后继结点合并在一起，由此得到一个结点数少得多的图，图中每个结点代表一

个基本块。算法（例如活跃分析）在这种流图上可以运行得更快。第17章将讨论如何调整数据

流方程使其适用于基本块。为了简单起见，本章仍用单个语句作为结点的流图。

每次一个变量。除了使用集合方程来"并行地"计算数据流信息外，也可以每次只计算一
个变量的数据流信息作为该变量所需的信息。对于活跃计算，这意味着要重复地对每个临时变

量进行一次数据流遍历。也就是说，对于一个临时变量1，从它的每一个使用点开始，使用深度
优先搜索算法向后追踪（沿着流图中指向前驱的边），记录下它在每个结点的活跃信息。当到达

该变量的定值点时，这一搜索过程便终止。尽管这样似乎代价昂贵，但很多临时变量的活跃范
围非常短，所以对大多数变量来说，搜索会很快终止而且无须遍历整个流图。

10.1.2 集合的表示

表示数据流方程的集合至少有两种较好的方法∶位数组或有序变量表。
如果程序中有 N个变量，位数组表示将用 N位来表示每个集合。求两个集合的并集是对位
数组求"按位或"运算来实现的。因为计算机的每个字有K 位（典型的是K=32），所以集合

的并运算需要进行 N/K次操作。

集合也可以用链表来表示，其中链表的成员是组成集合的元素，并按任意关键字（例如变

量名）排序。求并集的计算通过合并链表来实现（忽略其中的重复元素），它的时间开销与求并

集的集合的大小成正比。

显然，如果集合是稀疏的（平均少于N/K个元素），则用有序表表示的方法速度会比较快
（表越稀疏，速度越快）;如果集合是密集的，则位数组表示会更好。

10.1.3 时间复杂度

迭代数据流分析有多快?

大小为N的程序在流图中最多有N个结点，也最多只有 N个变量。因此，每个结点的入口223
活跃集合（或出口活跃集合）最多有 N个元素。为计算入口活跃（或出口活跃）而进行的并集

运算每次所需的时间是O（N）。

for 循环对流图中每个结点进行的集合运算的次数是不变的。流图有 N 个结点，因此 for循
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环需要的时间为O（N'）。
repeat 循环的每次迭代只会使每个in 或 out 集合变大，而绝不会使其变小。这是因为 in 和

out 集合都是相互单调变化的。也就是说，在方程 in【n】=use【n】U（out【n】-def【n】）中，一

个较大的out【n】只会使得 n【n】更大。同理，在 out【n】=U，-in【s】中，一个较大的in【s】
只会使 our【n】更大。
每一次迭代都必定会向这些集合中加入一些元素，但是集合不能无限地扩大，每一个集合至多

包含全部变量。因此，所有in和 out集合大小之和是2N3，这是 repeat循环能够迭代的最大次数。
因此，该算法在最坏情况下的运行时间是 O（N'）。使用深度优先搜索（见算法17-1）对结

点排序通常可使 repeat 循环的迭代次数为2次或3次，而且活跃信息集合常常是稀疏的，所以

在实际中该算法的运行时间在 O（ N）到 O（N'）之间。
17.4节讨论了快速求解数据流方程的更为复杂的方法。

10.1.4 最小不动点

表10-3举例说明了方程10-1的两个解（和一个非解!），其中假设在程序中还有另一个未在
图10-1的程序段中使用的程序变量d。

表10-3 X和Y是方程10-1的两个解，但Z不是解

X 夏置
def 2outinin outOutse 当

l- em 。国 acded acac c
占 如bedbe acd acac看
d 。 卧bed bbebe bed
世 福 卧acdbedbe6 acac。 司 acac acdacd aC aC
6 _0o 9

在解为Y的情况下，变量 d 虽无用却仍携带在循环中。但事实上，Y同X一样满足方程
10-1。那么这意味着什么? d究竟是活跃的还是不活跃的? [224
回答是，数据流方程的任何一个解都只是保守的近似解。当程序执行到流图的结点 n时，

如果该程序的某个执行点确实还需要使用变量 a 的值，此方程的任何一个解都可以向我们保证

a在结点n是出口活跃的。但是反过来并不成立;我们可以计算出d是出口活跃的，但这并不
表示其值一定会被使用。
这样是可接受的吗?通过了解数据流信息有些什么用途，便可回答这一问题。以活跃分析

为例，如果一个变量被认为是活跃的，则可以保证让它的值待在寄存器中。活跃信息的保守近

似值只是会误认为变量是活跃的，但绝不会错误地认为它是死去的。因此，保守近似值的结果
只是导致编译器所生成的代码使用的寄存器比实际需要的要多，但生成的代码一定是正确的。
考虑用Z作为人口活跃集合，它不满足数据流方程。用这个 Z集合，我们会认为b和c绝
不会同时活跃，因此可给它们分配同一个寄存器。由此生成的程序使用的寄存器个数最少，但

却会计算出错误的结果。
为编译优化而建立的数据流方程应当使得它的任何解都向优化器提供保守信息。不够准确

的信息可以得到非最优的方程，但绝不会是错误的程序。

定理 方程10-1有一个以上的解。
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证明 X 和 Y 都是它的解。

定理 方程 10-1 的所有解都包含解X。也就是说，如果inx【n】】和in，【n】分别是解 X和Y
中某个结点 n的人口活跃集合，则有 i江nx【n】二iny【n】。
证明 见习题10.2。

我们称 X是方程10-1的最小解（least solution）。显然，解越大，使用的寄存器个数越多

（产生的代码也不是最优的），因此我们需要的是集合元素个数最少的解。幸运的是，算法10-1
总能计算出最小不动点。

10.1.5 静态活跃性与动态活跃性

一个变量是活跃的，意味着它的值在未来还要被使用。在图 10-3中，我们知道 b×b一定

是非负数，所以测试c≥b会为真。由此可推出控制永远不会到达结点4，进而推出在结点2之225
后就不再需要a的值了，因此a在结点2不是出口活跃的。

·=b*b

c;=a+b

c≥b

refurn a return c
图10-3 标准静态数据流分析不能利用控制决不会到达结点 4这一事实

但由方程10-1能知道的只是;a在结点4是入口活跃的，因此它在结点3和结点2都是出
口活跃的。这些方程并不关心条件分支的走向。但较"精明"的方程有可能允许 a 和c 分配在

同一个寄存器中。
尽管我们这里可以证明 b·b≥0，并且也可让编译器来寻找算术恒等式，但没有编译器能够

完全理解每一个程序的所有控制流是如何工作的。这是可由停机问题推导出的一个基本数学定理。

定理 不存在这样一个程序 H，它以任意程序 P和输入 X作为自己的输人，当 P（X）停止
（不会无限循环）时它返回真，当P（X）无限循环时它返回假。

证明 假设存在这样的一个程序H，我们则会得出如下的矛盾。从程序H构造出函数 F，

F(Y)= if H(Y,Y) then (while true do 0))ese true

由 H的定义，如果 F（F）会停止，则 H（F.F）应为真，因此应当执行 then语句;while循环将永远

执行，故 F《F）不会停止。但是如果F（F）永远循环，则 H（F.F）应当为假，从而应当执行 else 语

句，F（F）停止。我们得出，程序F（F）只有在自己不停止时才停止;只有在自己停止时才不停止，226
这是矛盾的。因此不存在测试另一个程序是否停止（并且自己总是能终止）的程序 H。

推论 不存在一个这样的程序 H'（X，L），对任何程序 X和 X中的标号L，它可以判断出 X

在执行中是否曾经到达了标号L。
证明 由 H'可以构造出 H∶在我们想要测试它是否终止的某个程序中、令L就是该程序的

结束点，并用 goto L取代该程序中halt 命令的所有实例。
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保守的近似值。这个定理并不意味着我们绝不可能判断出一个给定的标号是否是可到达的，

它表达的只是不存在这样一种总是能作出判断的通用的算法。我们可以用一些针对特殊情况的算

法来改进活跃分析，这些算法在某些情况下能计算出关于运行时控制流的更多信息。但它们无一

例外地都会遇到很多不能确切描述程序运行状态的情况。
由于程序分析的这种固有局限性，没有任何一个编译器能确切地说出一个变量的值是否真正

会被使用，即该变量是否真是活跃的。作为替代，我们只得凑合着使用保守近似值。我们假定每
一个条件分支都会向两条路分支，因此得到的是一个动态条件和这个条件的静态近似值。

动态活跃。如果程序的某个执行从结点n 到 a 的一个使用之间没有经过a的任何定值，那么

变量a 在结点 n是动态活跃的。

静态活跃。如果存在着一条从 n 到 a的某个使用的控制流路径，且此路径上没有 a 的任何定

值，那么变量a在结点 n是静态活跃的。

显然，如果 a是动态活跃的，则它也是静态活跃的。优化编译器必须根据静态活跃信息来进

行寄存器分配和其他优化，因为（一般）计算不出动态活跃信息。

10.1.6 冲突图

编译器中有好几种优化都需要使用活跃信息。某些优化需要确切地知道在流图的每个结点有

哪些变量是活跃的。

活跃分析最重要的应用之一是寄存器分配∶我们有一组临时变量 a，b，c，⋯，需要将它们分配227
给寄存器r，，⋯，r。阻止将a和b分配到同一个寄存器的条件称为冲突（interference）。
最常见的一种冲突是由于活跃范围相互重叠而造成的冲突;当a和b在程序中的同一点均活
跃时，不可以把它们放人同一个寄存器中。但是其他情况也会产生冲突。例如，当必须用一条不

能对寄存器 r;进行寻址的指令来生成 a时，则 a 和 r;之间存在冲突。
冲突信息可以用矩阵来表示;图10-4a中的"×"标记指出了图10-1中变量之间的冲突。冲

突矩阵也可以用无向图来表示（图10-4b），图中每个结点表示一个变量，每条边连接相冲突的两

个变量。

⑤b/ C
()面”由 ×× (0)。 ××
（b）图（a）矩阵

图10-4 冲突的表示

MOVE指令的特殊处理。在静态活跃分析中，对于 MOVE指令需要一些特别的考虑。要引起

重视的是不要在传送指令的源操作数与目标操作数之间制造人为的冲突。考虑下面的程序;

复写一，名

（s的使用）千，：。场：

（r的使用）飞十：：中了
在复写指令之后，s和1都是活跃的。一般情况下我们会创建一条冲突边（s∶1），因为在t的
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定值点s是活跃的。但是我们并不需要分别给s和1分配不同的寄存器，因为它们的值相同。解

决的方法是在这种情况下不加入冲突边（t.s）。当然，如果之后还有t 的另一个（非传送的）定

值，且在此定值点s仍是活跃的，则要创建一条冲突边（s，1）。
因此，为每一个新定值添加冲突边的方法如下。228
（1）对于任何对变量 a定值的非传送指令，以及在该指令处是出口活跃的变量b，，⋯，b），添

加冲突边（a.b）.⋯，（a，b）。

（2）对于传送指令a*-c，如果变量bi⋯，b，在该指令处是出口活跃的，则对每一个不同于c

的b添加冲突边（a，b1）⋯，（a，b;》。

10.2 Tiger编译器的活跃分析

Tiger编译器的流分析分两步进行∶首先，分析 Assem 程序的控制流并生成一个控制流图;然

后，在控制流图中分析变量的活跃性并生成冲突图。

10.2.1 图

为了表示这两种图，我们定义了一个 Graph抽象数据类型（见程序10-1）。

程序10-1 Graph 抽象数据类型

/*grph.h 动
图类型typedef struct G_graph_ *G_graph;
结点类型typedef atruct G_node_*G_node;

结点表typedef gtruct G nodeList *G nodeList;
struct G_nodeLiet_{ G_node head;G_nodeList taili)7

创建一个新的图G_graph G_Graph(void);
G node G Node(G graph g,void*info); 创建一个新的图结点
G_nodeList G_NodeList(G_node head,G_nodeList tail);

获得图的结点表G nodeList G nodes(G graph g);

a属于1吗?bool G_inNodeList(G_node a,G_nodeList l);
创建一条断边void G_addEdge (G_node from,G_node to);

void G rmEdge(G node from,G node to); 删除一条边
void G_show(FILE *out,G_nodeList p,void showInfo(void*));
G nodeLigt G Bucc (G node n); 获得n的所有后继

获得n的所有前驱G_nodeList G_pred(G_node n);
G_nodeList G_adj (G_node n); G_suce(n)UG_pred(n)

有从到b的边吗?bool G goesTo(G node a,G node b);
int G degree(G node n); n的度（入边和出边之和）是多少?
void *G_nodeInfo(G_node n); 获得n的信息

typedef struct TAB_table__*G_table; 映射结点至任何事物
创建一个新表G table G empty(void);

void G_enter(8_table t,G_node n,void *v); 在表中冲建立m→v
void *G_look (G_table t,G_node n); 查找n-w，并报告出v

函数G_Graph（）创建一个空的有向图，G_Node（g.x）在图g中生成一个新的结点，x是调用者

希望"添加"到这个新结点的附加信息。G_adfEdge（n，m）创建从 n到 m 的有向边;创建了这条边
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之后，便可以在表g_succ（n）中找到 m，在G_pred（m）中找到 n。采用无向图时，函数adj会有帮
助，它的定义是∶G_adj（m）=G_succ（m）UG_pred（m）。

G_rmEdge 删除边。m—n测试 m 和 n 是否为相同的结点。
当在算法中使用图时，图中的每个结点代表的是某种对象《例如，程序中的一条指令）。我们

用表G_table实现从结点到它们所表示的对象的映射。下面的习惯用法在映射表mytable中建立结

点n与信息x之间的关联。

G_enter((mytable,n.x);

不采用一张分开的表来实现映射n→x，我们可以将x直接放在结点 n中。执行 n=G_Node

（g·x）将创建一个有"关联信息"x的新结点 n。调用G_nodeInfo（n））则读取结点n的关联信息x。

10.2.2 控制流图

Flowgraph模块管理控制流图。流图中的每一个结点代表一条指令（或一个基本块）。如果指令 n

的执行可以跟随在指令 m之后（无论是通过跳转还是顺序执行），则在图中会有一条边（m，n）。 229
/* flowgraph,h
Temp_tempList FG_def (G_node n);
Temp_tempLAet FG_use(G_node n);
bool FG_isMove (G_node n):

G_graph PG_AssemFlowGraph (AS_instrtist ll);

一个流图就是一个G graph，其中每个结点都含有某些附加（隐藏）信息。从这些信息中可以得

知每个结点 n的如下三种属性。

·FG_def（n）结点 n中定值的临时变量（结点 n对应指令中的目标寄存器）组成的表。

·FG_use（n）结点 n中使用的临时变量（结点 n 对应指令中的源寄存器）组成的表。

·EG_istove（n）指明 n表示的指令是否为一条 MOVE指令;如果是 MOVE指令，则当
它的 def 和 use 相同时，可以删除这条 MOVE 指令。 230]
Flowgraph模块是一种抽象数据类型，使用它的客户看不到结点内的信息。它的实现

《flowgraphh）含有一个函数 FG_AssemFlowGraph，这个函数的参数是一张指令表，其返回结果

是一个流图，流图中每一个结点 G_node 的 info 域实际上是指向 AS_instr 的指针。在创建这个
流图时，指令 instr的 jump 域用来创建控制流的边，use 和 def 信息从该指令的 src 和 dst 域获

得。Flowgraph 的客户决不应直接调用G nodeInfo而是要通过 flowqraph.h中提供的操作来获

得与结点关联的信息。

结点关联的信息。对于一个流图，我们需要给图中的每个结点关联一些use 和 def 信息。之

后，活跃分析算法也需要记录每个结点的入口/出口活跃信息。我们已在G node数据结构中留

出了存放所有这些信息的空间，这些信息是通过G nodeInfo（）来访问的所谓"关联信息"。这
样做可行，而且相当有效率，但模块化的程度却不是很好。因为此后还可能要对流图进行其他

的分析，这些分析也会需要记住每个结点有关的其他信息。但我们可能不愿对每种新的分析都

修改这个数据类型（这个数据结构是一种广泛使用的接口）。

因此，我们可以不将信息存储在结点中，而是采用更加模块化的方法将图与流图分开。图

就是图，而流图是附带有独立封装的辅助信息、（表或将结点映射到其他某种信息的函数）的图。
类似地，针对图的数据流算法不需要修改结点内的数据流信息，而只需修改自己独有的映射。
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这样做在效率和模块化之间会有所折中，因为将信息保存在结点内的方法效率要高些，它

可通过简单的指针遍历而不需使用散列表或搜索树进行查找。

10.2.3 活跃分析

Liveness 模块处理流图，并生成两样东西;冲突图和由结点偶对组成的表，表中的结点偶
对代表一条尽可能分配相同寄存器的 MOVE指令（从而使得这条 MOVE指令可以被删除）。[231]
/*ivenes.h *
typedef struct Live_moveList_*Live_moveList;
struct Live_moveList[③_node src,dat;

Live_moveList tall;);
Live_moveList Live_MoveLiat (G_node src,G_node dst,

Live_moveList tall);

struct Live_graph(G_graph graph; Live_moveList moves;);
Temp_temp Live_gtemp (G_node n);

struct Live_graph Live_liveness(G_graph flow);

对于冲突图中的结点 n，Live_gtemp指出 n 表示的是哪个临时变量，这是通过让每个图结

点的 info 域指向一个Temp_temp来实现的。

在 Liveness模块的实现中，用一个数据结构来记住在每一个结点有哪些出口活跃的临时变

量会有所帮助∶

static void enterLiveMap (G_table t,G_node flowNode,
Temp_tempList temps){

G_enter(t,flowNode,temps);

static Temp tempList 1ookupLiveMap(G_table t,
G node flownode){

return《Temp_tempList)G_look(t,flownode);
A

已知一个流图结点 n，在此结点活跃的临时变量集合可通过查看全局表liveMap得知。
计算出完整的liveMap 之后，便可以构建冲突图。对于流图中的每一个结点 n，如果该结点

有新定值的临时变量 d Edef（n），并且有属于liveMap 的临时变量{1.;1。，⋯1，则添加冲突边

（d，t1），（d，1。），⋯。对于 MOVE指令，添加这些边是安全的但不是最理想的;10.1.6节介绍

了一种更好的处理方法。

如果新定值的临时变量在定值之后就是不活跃的会怎样呢?这应当是一个变量虽被定值但
未被使用的情况。似乎完全没有必要将这个变量放到寄存器中，因此它不会和其他任何临时变

量发生冲突。但是如果对它定值的指令是需要被执行的指令（或许是因为需要该指令的其他副232
作用），那么此变量将会被写到某个寄存器中，这个寄存器最好不要包含其他活跃的变量。这

样，长度为 0的活跃范围就能与任何与其重叠的活跃范围相冲突。

程序设计∶构造流图

实现将 Assem 指令列表转换为流 图的 flowgraph.c。使用$TIGER/chap10 中提供的接口

graph.h、1flowgraph.h和 graphc实现。
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程序设计∶活跃分析模块

实现Liveness模块。可使用集合方程算法，或者一次计算一个变量的方法。采用集合方程

算法时，可以用布尔数组表示集合，也可用临时变量有序表表示集合。

习题
10.1 对习题8.6中的程序执行流分析。

a.画出控制流图。
b.计算每个语句的入口活跃集合和出口活跃集合。

c.构造出寄存器冲突图。

**10.2 证明方程10-1有最小不动点，并且算法10-1总是能够计算出最小不动点。

提示∶我们知道算法10-1 直到遇到一个不动点时才会结束。这里的问题是∶（a）此
算法最终是否一定会结束?（b）算法计算出的这个不动点是否小于其他所有的不动点?

对于（a），证明集合只会越来越大。对于（b），用归纳法证明在任一时刻，集合 in 和集
合out 是所有可能的不动点集合的子集。初始状态下，当 in 和 out 都是空集时，这是
正确的。证明算法的每一步都保持这个不变式。

*10.3 分析每次计算一个变量的数据流信息方法的渐近复杂度。

*10.4 分析在最坏情况下构造一个大小为N的程序（即最多有 N个变量且最多有N个控制流

结点）的冲突图的渐近复杂度。假定数据流分析已经完成且每个结点的 use、def和出
口活跃信息的查询时间为常数。为了提高效率，图的邻接矩阵应该使用哪种表示? 233

10.5 对于希望能从算术异常恢复执行的程序，DEC的 Alpha体系结构对浮点指令有以下

规定。
（1）在一个基本块内【实际上是在任何没有被自陷栅栏（trap-barrier）指令分隔的指
令序列内】不可以有两条指令写同一个目标寄存器。

（2）指令的源寄存器不能与该指令的目标寄存器或基本块中位于该指令之后的任何指

令的目标寄存器相同。

工十产门。ri+n→ni+r→r 寸十下；

r×n→+rr,×r1→*rir,×r-*rrs×r→r_1
OK违反规则 2违反规则1违反规则 2 主

说明如何在寄存器冲突图中表示这些限制。 [234]
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寄存器（reg-is-ter）∶一种用于存储少量数据的设备。

分配（al-lo-cate）∶为特定目的而进行的分派。

韦氏词典

我们这个编译器在 Translate、Canon 和 Codegen 阶段均假定有无限个寄存器可以用于存放

临时变量，同时假定 MOVE指令没有代价。寄存器分配器的任务就是将大量的临时变量分配到

计算机实际具有的少量机器寄存器中，同时在可能的情况下，给一条 MOVE指令的源地址和目

的地址分配同一个寄存器，以便能删除该 MOVE 指令。

通过考察控制和数据流图，我们可以得到冲突图。冲突图中的每一个结点代表一个临时变

量，每一条边（t1，t）指出一对不能分配到同一个寄存器中的临时变量。产生冲突边的最常见

原因是因为t;和t。是同时活跃的。冲突边也能够表示其他的约束。例如，若我们的机器不允许

某条指令 a*b田c将结果存放于寄存器rg，则可以让 a与rn相冲突。

然后，我们给这个冲突图着色。我们希望使用尽可能少的颜色，但由同一条边相连的一对
结点不能使用相同的颜色。图着色问题源于古老的地图标示规则;地图上相邻的两个国家应当

用不同的颜色来表示。在这里，"颜色"对应于寄存器;如果目标机器有K个寄存器，则可以

用 K 种颜色给图着色，于是，得到的着色就是关于这个冲突图的一种合法的寄存器分配。如果
不存在 K 色着色，我们就必须将一部分变量和临时变量存放在存储器中，而不是寄存器中，这

称为溢出（spilling）。235]

11.1 通过简化进行着色

寄存器分配是一个NP完全问题（除了一些特殊情况，如表达式树之外），图着色也是一个

NP完全问题。幸运的是，对于图着色问题，存在着一种能给出较好结果的线性时间近似算法，

它由四个主要的处理阶段组成∶构造、简化、滥出和选择。

构造（build）∶构造冲突图。利用数据流分析方法，计算在每个程序点同时活跃的临时变量

集合。由该集合中的每一对临时变量形成一条边，并将这些边加入冲突图中。对程序中的每一

点重复这一处理过程。

简化（simplify）∶用一个简单的启发式对图着色。假设图 G 有一个结点 m，它的邻结点个

数少于K，其中 K是机器寄存器的个数。令 G'为 G一|m}，即 G'是从图 G中去掉结点m后

得到的图。若G'能够用K色着色，那么 G也可以。因为当将 m 添加到已着色的图G'时，m

的邻结点至多使用了K一1种颜色，所以总是能找到一种颜色作为 m 的颜色。这自然地导出了
一种基于栈（或递归）的图着色算法;这个算法重复地删除度数小于K的结点（并将它压入栈

中）。每简化掉一个结点都会减少其他结点的度数，从而产生更多的简化机会。
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溢出（spill）;假设在简化过程的某一点图 G 只包含高度数（significant degree）结点，即
度≥K的结点。这时简化阶段使用的启发式算法已不起作用，于是我们标记某个结点是需要溢

出的结点。也就是说，在图中选择一个结点（代表程序中的一个临时变量），并决定在程序执行
期间将它存储在存储器中而不是寄存器中。我们对这个溢出的效果做出乐观的估计，寄希望于

这个被溢出的结点将来不会与余留在图中的其他结点发生冲突。因此可以将这个选中的结点从

图中删除并压入栈中，然后继续进行简化处理。

选择（select）;将颜色指派给图中的结点。我们从一个空的图开始，通过重复地将栈顶结

点添加到图中来重建原来的冲突图。当我们往图中添加一个结点时，一定会有一种它可使用的

颜色，因为在简化阶段将这个结点移出的前提是，只要图中剩余的结点可以成功着色，这个结
点就总是有可能分配到一种颜色。

236当从栈中弹出一个用溢出启发式算法压入栈的潜在溢出结点 n时，并不能保证它是可着色

的∶在图中。它的相邻结点可能已用 K 种不同的颜色着色。在这种情况下，我们就会有一个实

际溢出。此时。我们不指派任何颜色，而是继续执行选择阶段来识别其他的实际溢出。

但是，潜在溢出结点 n的邻结点中或许有一些结点的颜色是相同的，因此它们之中的颜色
数可能会少于K种。这样，我们就能给结点 n着色，并且它不会成为一个实际溢出。这种技术

称为乐观着色（optimistic coloring）。

重新开始（start over）∶如果选择阶段不能为某个（或某些）结点找到颜色，则必须对程序

进行改写，使得在每次使用这些结点之前将它从存储器中读出，在每次对这些结点定值之后将

它存回到存储器中。这样，一个被溢出的临时变量会转变成几个具有较小活跃范围的新的临时
变量。这些新临时变量可能会与图中的其他临时变量发生冲突，因此对改写后的程序还要再重

复用该算法进行一次寄存器分配。这种处理过程将反复迭代，直到没有溢出而简化成功为止。

但在实际中，几乎总是迭代一两次就足够了。

例子
图11-1 给出了一个简单程序的冲突图。其中的结点是用它们所代表的临时变量来标记的，

并且在两个同时活跃的结点之间存在一条边。例如，结点 d、k和j在此基本块的末尾是同时活

跃的，因此它们之间都有边相连。假设机器中有4个可用的寄存器，于是简化阶段开始时，算

法的工作表中包含候选删除结点g、h、c和f，因为它们中每一个的邻结点个数都少于4。只要 237]
图中剩余的结点都可成功着色，就肯定能为这 4 个结点找到一种颜色。假设算法开始时先删除
h、g和它们的所有边，则结点k将成为下一个候选的删除对象，并被加入到工作表中。图11-2

是删除结点g、h和k 后所形成的图。图11-3a所示的栈表示的是用这种方式继续时，结点被删

除的一种可能的顺序，其中栈是向上增长的。

现在我们从栈中弹出结点，重新构造原来的冲突图，并在构造的同时给该图着色。我们从m

开始，此时可以给它随意指派一种颜色，因为图中只有一个结点。下一个要放入图中的结点是

c，这时唯一的限制是要给它指派一种与m不同的颜色，因为存在着一条从m到 c的边。

图11-3b给出了对这个重构的复原图的一种可能的颜色指派。 [238]
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hie-in: k j
g:= mem[j+12] 、
h := k- 1 ，
f:=g*h
e:= mem[j+8]
m:= mem[j+16] 围卧
b := mem[f]
c :=e+8 (-]d:=c

(=k:=m+ 4 ，;= b
live-out: d kj
图11-1 一个程序的冲突图。虚线不是冲突边，但它指出了传送指令
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图11-2 删除h、g、k之后
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b）指派互站
图11-3 简化栈和一种可能的着色

11.2 合并

利用冲突图可以很容易地删除冗余的传送指令。如果在冲突图中，一条传送指令的源操作

数和目的操作数对应的结点之间不存在边，那么可以删除这条传送指令。它的源操作数结点和

目的操作数结点可以合并（coalesce）成新的结点，这个新结点的边是被合并两个结点的边的

并集。
原则上，可以合并任何一对无冲突边相连的结点。这种积极的复写传播形式可以非常成功地
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删除传送指令。但不幸的是，合并引入的新结点受到的限制比合并删除的那两个结点的限制要多，

因为新引人结点的边是被删除结点的边的并集。因此，一张图很有可能在合并之前是可 K 色着色

的，而在盲目合并之后就不再是可 K色着色的了。我们希望的是，仅仅在合并是安全的情况下才
实行合并，所谓安全是指合并不会导致图成为不能着色的。下面两种合并策略都是安全的。

·Briggs∶如果结点 a和b合并产生的结点 ab的高度数（即度≥K）邻结点的个数少于K，
则结点a和b可以被合并。这样的合并可以保证不会将一个可 K色着色的图变成非可 K

色着色的，因为在简化阶段将所有度<K的结点从图中移走之后，被合并的结点将只能与

高度数的结点相邻。因为这些结点的个数少于 K，通过简化便可以将这个合并的结点从图
中移走。因此，如果原来的图是可着色的，则保守的合并方案不会改变这个图的可着色性。

·George∶结点 a和b可以合并的条件是∶对于a的每一个邻居1，或者t与b已有冲突，
或者t是低度数（度<K）的结点。通过下述推理可以证明这种合并是安全的。令S为原
图中结点a的度一K的邻结点组成的集合。若不进行合并，简化可以移去 S中的所有结
点，得到一个变小了的图G。如果进行合并，则简化也可以移去S内的所有结点，得到

图 G，。但是，G∶是G的子图（结点G;中的 ab 对应于G中的b），因此它至少会比 G、

更容易着色。

之所以说这两种策略是保守的。是因为在合并不成功时它们仍然是安全的。这意味着程序

可能会执行一些不必要的传送指令——但这总比溢出要好!

将这种保守的合并穿插到简化步骤中能删除大部分传送指令，并保证不会引入新的溢出。
如图11-4 所示，这种合并、简化和溢出过程将交替进行直到冲突图为空。 239]

actualbuld —→ simplifty—→ coaiesce-→ freze—potential. —→+select-1spl spH
如果存在任何实际溢出则重新构造图

图11-4 带合并的图着色

以下是一个具有合并能力的寄存器分配器的各个处理阶段。

·构造∶构造冲突图，并将每个结点分类为传送有关的（move-related）或传送无关的

（non-move-related）。传送有关的结点是这样一种结点，它是一条传送指令的源操作数或

目的操作数。
·简化;每次一个地从图中删除低度数的（度<K）与传送无关的结点。

·合井∶对简化阶段得到的简化图施行保守的合并。因为通过简化已降低了很多结点的度数，
所以此时保守合并策略找出的合并可能要比原冲突图多。在合并了两个结点（并删除了关

联它们的传送指令）之后，如果由此产生的结点不再是传送有关的，则它可用于下一轮的

简化。重复进行这种简化和合并过程，直到仅剩下高度数的结点或传送有关的结点为止。
·冻结（freeze）∶如果简化和合并都不能再进行，就寻找一个度数较低的传送有关的结点。

我们冻结这个结点所关联的那些传送指令;放弃对这些传送指令进行合并的希望。这将

导致该结点（或许还有与这些被冻结的传送指令有关的其他结点）被看成是传送无关的，

从而使得有更多的结点可简化。然后，重新开始简化和合并阶段。

·溢出∶如果没有低度数的结点，选择一个潜在可能溢出的高度数结点并将它压人栈。
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·选择∶弹出整个栈并指派颜色。

考虑图11-1，结点b、c、d和j是仅有的传送有关的结点。简化阶段使用的初始工作表必须只含[240]
传送无关结点，因此它由结点g、h和F组成。在删除g、h和k后，我们再次得到了图11-2。
我们可以继续进行简化。但是，如果此时进行一轮合并，会发现c和 d的确是可合并的，

因为合并后得到的这个结点只有两个高度数的邻居∶■和b。合并后得到的结果如图 11-5a 所示，

合并得到的结点标记为c&d。

()
家

[-
(e](e m m
六图（孤b(ckd)
(b)(a)

图11-5 （a）合并c和d之后;（b）合井b和j之后

从图11-5a可看出，b和j也是可以合并的。结点b和j与两个高度数的结点m和e相邻。
合并 b和j的结果如图 11-5b 所示。

在合并这两个传送之后，图中不再有传送有关的结点，因此没有进一步合并的可能了。为

删除剩余的所有结点，可再次调用简化阶段。图11-6给出了一种可能的颜色指派。

马。 ， 固

py mm，
j&b 守 b m3
c&d
k c e a)

二
(}g - 。一

岗 着色
图11-6 图11-1的一种带合并的着色方案

有一些传送指令既没有被合并，也没有被冻结，它们是受抑制的（constrained）。考虑图的

结点x、y、z，其中（x，2）是唯一的冲突边，并且有两条传送指令，xy和y*z。这两条传送
指令都是合并的候选。但在x和y合并之后，得到的传送 xy*-z不能再合并，因为存在冲突边241]
（xy，z）。我们称这个传送是受抑制的。在进一步考虑到它不会再导致其他结点成为传送有关的

结点之后，我们可以将它也删除。

溢出
当有溢出时，必须对整个程序重复一遍构造和简化阶段。最简单的做法是，当构造阶段必

须重复一遍时，忽略所有已找到的合并。这样，在新一轮的构造中，合并不会增加溢出的数量。
一种更有效的算法是在发现第一个潜在的溢出之前照常进行合并，但在发现溢出后忽略所有的

合并（即不合并）。
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合并溢出。在有很多寄存器（>20）的机器上，一般只有少量的溢出结点。但是在只有6
个寄存器的机器上（如 Intel Pentium），则会有很多溢出结点。编译器前端会生成许多临时变

量，并且诸如 SSA（见第19章）之类的转换还可能将这些临时变量进一步分裂成更多的临时变

量。如果将所有要溢出的临时变量都保存在栈帧内，栈帧可能会非常大。
更糟糕的是，有很多传送指令可能会涉及一对被溢出的结点。但是当a 和b都是被溢出的

临时变量时，为了实现 a←-b，需要一个存/取序列∶t∶=M【b.】;M【a.】∶=t。这样做的代价

很高，同时还定义了一个临时变量t，而 1本身又可能导致其他结点的溢出。

不过，这些溢出的偶对中有很多从不会同时活跃。因此，通过合并便有可能对这些结点着
色!事实上，对栈触单元的数量并没有固定的限制。因此我们可以实施激进的合并。而不用考

虑被溢出的结点有多少个高度数的邻结点。于是合并溢出的算法如下。

（1）使用活跃信息构造被溢出结点的冲突图。

（2）如果传送指令关联的一对溢出结点不相冲突，合并它们。

（3）使用简化和选择对图着色。在着色过程中不会有（进一步的）溢出;相反，简化阶段只
是挑选度数最低的结点，选择阶段则取第一个可用的颜色，它不对颜色数量预先设定任何限制。

（4）这些颜色对应于被溢出变量在活动记录中的存储单元。
这个算法应该在生成溢出指令和重新生成寄存器-临时变量的冲突图之前进行，以避免为已

242]合并的传送指令所关联的溢出结点生成存/取指令序列。

11.3 预着色的结点

有一些临时变量是预着色的——它们代表的是机器寄存器。例如，当两个模块按照标准调
用约定对接时（即一个模块调用另一个模块时）），编译器前端就会产生这种临时变量。对于每一
个有专门用途的真实寄存器，例如帧指针、第1个参数使用的标准寄存器、第 2个参数使用的

标准寄存器，依此类推，Codegen 或者Erame模块应该使用与这些寄存器永久绑定的特殊临时变

量（参见第12 章）。对于任一给定颜色（也就是说，对于任一给定的机器寄存器），应该只有一

个使用这种颜色的预着色结点。
选择和合并操作可以给普通临时变量分配与预着色寄存器相同的颜色，只要它们之间不发

生冲突，而事实上这是很常见的情况。因此，一个调用约定的标准寄存器能够在过程中重新用

于临时变量。预着色结点可以通过保守的合并算法与其他（非预着色的）结点合并。

对于有 K 个寄存器的机器，会有 K 个预着色结点，并且它们之间相互冲突。预着色结点中

那些没有被显式使用过的（例如在参数传递约定中）结点将不会与任何一个普通结点（非预着
色的）相冲突。但是，一个显式使用了的机器寄存器将会有一个活跃范围，因此会与任何在此

范围内也同时活跃的其他变量相冲突。

我们不能简化一个预着色的结点——将该结点从冲突图中抽出来并寄希望于稍后能为它指
派一种颜色。事实上我们不能自由地为预着色结点指派颜色。而且也不应该将预着色的结点溢

出到存储器，因为由定义可知机器的寄存器是寄存器 （而不是临时变量》。因此，应认为它们的

度是"无限大"。

11.3.1 机器寄存器的临时副本

着色算法通过不断调用简化、合并和滥出过程来工作，直到只剩下预着色结点，然后，选
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择阶段才能够开始向冲突图中加入其他的结点（并对它们着色）。

预着色结点不能溢出，因此编译器前端必须小心地使它们的活跃范围保持较小。可以通过
生成保存和恢复预着色结点值的 MOVE指令来实现这一点。例如，假设r是一个被调用者保护

的寄存器，它是一个在过程入口有"定值"并将在过程出口"使用"的寄存器。我们不是在整

243]个过程中都将它保存在预着色寄存器中（见图 11-7a），而是将它保存到一个新的临时变量 t.
中，然后在过程出口时再将它恢复回来（见图11-7b）。当这个函数存在较大的寄存器压力（对

寄存器有较大的需求）时，ta。将会溢出;否则ta可以与r;合并，并且可以删除与ta和 r;关

联的那两条 MOVE指令。

enter. def(r7) enter: def(r)
过十了

n7←21
exit: use(7) exit: use(r)

(b)(a)
图 11-7 将一个被调用者保护的寄存器传送到一个新的临时变量中

11.3.2 调用者保护的寄存器和被调用者保护的寄存器

最基本的溢出启发式算法可以做到将跨调用活跃的变量分配到被调用者保护的寄存器中。

对于局部变量或任何跨过程调用都不活跃的编译器生成的临时变量，一般应当将它们分配到调

用者保护的寄存器中。因为在这种情况下，可以完全不需要保护和恢复任何寄存器。另一方面，

任何跨过程调用活跃的变量都应该保存在被调用者保护的寄存器中，因为这样便只需要做一次

保护和恢复（在被调用过程的入口处和出曰处）。

寄存器分配器应当按上述准则来给变量分配寄存器。幸运的是，带溢出的图着色寄存器分

配器能很容易地实现这一点。Assem 语言中的CALL指令所附带的注释指明了所有调用者保护
的寄存器（即与它相冲突的寄存器）。如果一个变量不是跨过程调用活跃的，它往往会被分配到

调用者保护的寄存器中。

如果变量x是跨过程调用活跃的，那么它会与所有调用者保护的（预着色的）寄存器

相冲突，并且会与所有用于保存被调用者保护的寄存器而生成的新临时变量（如图11-7中
的tau）相冲突。在这种情况下，变量 x会导致一个溢出。当使用的是普通的溢出代价启发

式算法时，这种启发式算法溢出的是一个度数较高但使用次数较少的结点。这样。为溢出

所选择的结点将不会是x而是t。因为tm溢出后，可用 r。给x（或某个另外的变量）
着色。

11.3.3 含预着色结点的例子

我们通过一个模拟图着色工作过程的例子来说明。在有预着色的结点、被调用者保护的寄

存器和溢出等情形下，寄存器分配中遇到的问题。

假设一个C编译器正在为某个目标机编译程序11-1a。该目标机有三个寄存器;r，和r;是调24
用者保护的，r、是被调用者保护的。因此代码生成器在生成函数f的代码时。通过将 r复制到

临时变量c，然后再将它恢复到r，中来显式地保护r，的值。
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程序 1-1一个C函数以及由它转换成的指令
enter. c ←nya-r
b←nint ((int a,int b)(

d-0int d=0;
int e-a; e←aao (d- d+b; d←d+bloope-e-1; e-e-1}while (e>0);

if e >0goto loopreturn d;
n1←d
了”

(ri,r, live outretum
(b(a)

设指令选择阶段已生成了程序11-1b所示的指令表。该函数的冲突图如下所示。

。
寄存器分配的处理过程如下（其中 K=3）。

（1）在这个冲突图中，没有简化和冻结的机会（因为所有非预着色的结点的度数都大于等

于K）。任何进行合并的企图生成的合并结点都会是一个与 K个或K 个以上高度数结点相邻的

结点。因此，必须溢出某个结点。我们计算出的各个结点的溢出优先级如下∶

内层循环的外层循环的 必结点 溢出优先级Use+DefUse+Def

二心”密a o 0.50+10× =--”占 2.751 +10× =- 2 +10× N m 5.502 +10× e 24510.331 +10×， =1

结点c的优先级最低——它与许多其他临时变量相冲突但却

很少被使用，所以应该先将它溢出。溢出c 后得到右图。

（2）现在a和e是可以合并的，因为合并它们得到的结点的
邻结点中，高度数结点的个数小于K（在合并之后，结点d将变

成低度数的，尽管它现在是高度数结点）。此外，没有其他简化

或合并的可能了。

（3）现在、我们可以合并 ae 和r，也可合并b和r∶。我们 十学

选择合并后者。
推e.
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学（4）现在，我们可以合并 ae 和r，也可合并d和r。我们选择

合并前者。 rjac

-r2brt

（5）现在，我们不能合并r，ae 和d，因为它涉及的传送是受抑制
T1ae的∶结点r、ae 和d相冲突，我们必须简化 d。

（6）至此，我们得到了一个只含有预着色结点的图，于是开始从栈中弹出结点，并给它们
指派颜色。我们首先弹出结点 d，并给它指派颜色r、。结点a、b和e 已经通过合并被指派了颜

色。但是，对于潜在的溢出结点c，当将它从栈中弹出时，由于已经没有颜色可用而变成了一
个实际的溢出结点。

（7）由于在这一轮存在溢出，所以必须重写这个程序使之包含实 enter∶ c1 ←r
MIce】 ←e现溢出的指令。为此，对于c的每一次使用，我们生成一个新的临时 a←r1

变量，在使用c之前生成一条将该临时变量读取到寄存器的取数指 于，己
d←0令;对于c的每一次定值，我们也生成一个新的临时变量，在对c 定 e←a

1oop:d←d+b值之后生成一条将寄存器的值存储到该临时变量的指令。
e4-e-1
ife>0 goto loopn-d246 c2← M（cowe】
ns +42
return

（8）现在，我们再重新构造一个新的冲突图，如右图所示。 ，

（9）随后如下继续进行图着色处理。我们可以立即合并c;和r;， r3912、
之后合并c;和r.。

nCi27
（10）接下来，同前面一样，可以合并a和e，然后合并b和r∶。 T B-

rjc192- -r2b：：：

（11）同前面一样，合并 ae 和r1，然后简化d.
管

ColorNode。（12）现在，开始从栈中弹出结点;为d选择颜色r;，d是栈中唯一 理1
b 过的结点——所有其他结点都已被合并或是预着色的。分配的颜色如右图所 rsc

示。 可 r3- 于
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enter. r3 <←r3
M[eel -ry（13）现在，可以用指派的寄存器来重写这个程序。
ni←n
西十记
r-0
于十工

loop∶ ry ←户3+r2
广 ni-1
ifr >0 goto loop
7-
过十运宁景 [247]r3←rreturm
M【cne】←r3（14）最后，可以删除源操作数和目的操作数相同的传送指令; entcr:
r3 -0

右图是经过合并后得到的结果。 n←n+nloop?
n1←ni-1
ifri >0goto loop
n1←n
工十运
return最终得到的程序只有一条未合并的传送指令。

11.4 图着色的实现

图着色算法需要频繁地查询冲突图数据结构。有两种查询操作。

（1）获得与结点 X相邻的所有结点。

（2）判断 X 和Y是否相邻。
使用邻接表（每个结点一个）可以快速地回答第一种查询，但是当邻接表很长时，却不能

很快地答复第二种查询。一个以结点编号作为索引的二维位矩阵可以很快地答复第二种查询，

但是却不能很快地答复第一种查询。因此，我们需要同时使用这两种数据结构来（冗余地）表

示冲突图。如果图是非常稀疏的，则使用整数偶对的散列表可能比使用位矩阵更好。
机器寄存器（预着色的结点）的邻接表可能会非常大，因为标准调用约定使用了这些寄存

器，所以它们会与程序中过程调用点附近恰好是活跃的所有临时变量相冲突。不过，我们并不

需要表示预着色结点的邻接表，因为邻接表只有在选择阶段 （它不作用于预着色的结点）和

Briggs合并测试中才使用。为了节省空间和时间，我们不显式地表示机器寄存器的邻接列表。
我们可以用George合并测试来合并一个普通结点 a和一个机器寄存器r，这种测试需要 a的邻

接表，但不需要r的邻接表。

为了测试能否合并两个普通结点（非预着色的结点），本节给出的这个算法使用 Briggs合并

测试。
每个传送有关的结点都有一个计数器，这个计数器中记录的是该结点涉及的传送指令的条

[248数。我们能够很容易地维护它，并用它来测试一个结点是否不再与传送指令相关。所有结点都

还有另一个给出图中当前与它相邻的结点个数的计数器，该计数器在合并期间用于确定一个结

点是否是高度数结点，在简化期间用于确定一个结点是否能从图中删除。

寄存器分配中，重要的是要能够快速地执行每一个简化步骤（删除一个低度数的传送无关

的结点）、每一个合并步骤以及每一个冻结步骤。为了做到这点，我们需要维护记录下述信息的
4张工作表。
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·低度数的传送无关的结点（simplify Worklist）。
·有可能合并的传送指令（worklistMoves）。
·低度数的传送有关的结点（freezeWorklist）。
●·高度数的结点（spillWorklist）。
利用这些工作表，就可避免在寻找合并结点时计算时间上出现二次量级的爆炸。

11.4.1 传送指令工作表的管理

当结点 x从高度数结点变为低度数结点时，与其邻结点关联的传送指令必须添加到传送指
令工作表中。此时，那些原来因为合并后会有太多的高度数邻结点而不能合并的传送指令现在

则可能变成可以合并的了。传送指令只在下面少数几种情况下才会加人工作表中。
·在简化期间，删除一个结点可能导致其邻结点 x的度数发生变化。因此要把与 x的邻结

点相关联的传送指令加人到 worklistMoves中。
●·当合并u和v时，可能存在一个与u和v都有冲突的结点x。因为x现在只与u和v合

并后的这个结点相冲突，故x的度将减少，因此也要把与x的邻结点关联的传送指令加
人到worklistMoves表中。如果x是传送有关的，则与x本身关联的传送指令也要加入到
此表中，因为 u 和v有可能都是高度数的结点。

11.4.2 数据结构

算法用下面的若干数据结构来掌握有关图结点和传送边的情况。

结点、工作表、集合和栈的数据结构。下而的表和集合总是互不相交的，并日每个结点都

属于一个且只属于一个集合或者表。

· precolored∶机器寄存器集合，每个寄存器都预先指派了一种颜色。
· initial∶临时寄存器集合，其中的元素既没有预着色，也没有被处理。
· simplifyWorklist∶低度数的传送无关的结点表。

249] ·freezeWorklist∶低度数的传送有关的结点表。

· spillWorklist∶高度数的结点表。
·spilledNodes∶在本轮中要被溢出的结点集合，初始为空。
·coalescedNodes∶已合并的寄存器集合。当合并 u←-v时，将 v加入到这个集合中，u则

被放回到某个工作表中（或反之）。
·coloredNodes∶已成功着色的结点集合。

·selectStack∶一个包含从图中删除的临时变量的栈。

因为常常要测试这些集合的成员关系，所以每个结点的表示应该包含一个枚举值，用以说
明它属于哪个集合。因为会频繁地从这些集合中添加或者删除一个结点，所以每个集合都被表

示成结点的双向链表。开始时（在 Main 的入口处），以及在 RewriteProgram 的出口处，只有

precolored集合和 initial集合是非空的。
传送指令集合的数据结构。下面给出了5个由传送指令组成的集合，每一条传送指令都只

在其中的一个集合中（执行完 Build之后直到 Main结束）。

· coalescedMoves∶已经合并的传送指令集合。

·constrainedMoves∶源操作数和目标操作数冲突的传送指令集合。
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·frozenMoves∶不再考虑合并的传送指令集合。
·worklistMoves∶有可能合并的传送指令集合。

·activeMoves∶还未做好合并准备的传送指令集合。

像结点工作列表一样，这些传送指令集合也应该用双向链表来实现，并且每一条传送指令

含有一个枚举值用以说明它属于哪个集合。

其他数据结构。

·adjSet;图中冲突边（u，v）的集合。如果（u，v）E adjSet，则（v，u）∈ adjSet。
· adjList∶图的邻接表表示。对于每一个非预着色的临时变量u，adjList【u】是与u 冲突的

结点的集合。
·degree;包含每个结点当前度数的数组。
·moveList∶从一个结点到与该结点相关的传送指令表的映射。
·alias∶当一条传送指令《u，v）已被合并，并且v已放入已合并结点集合coalescedNodes 时，
有 alias（v）=u。

[250·color∶算法为结点选择的颜色。对于预着色结点，其初值为给定的颜色。

不变式。执行完 Build 之后，下列不变式总是成立的。

度的不变式。

(u e simplifyWorklist U freczcWorklist U spilIWorklist) →
degrce(u)= JadjList(u )n (precolored U simplify Worklist

U freeeWorklist U spilIWorklist)]

简化工作表的不变式。

(u e simplifyWorklist)→
degree(u)< K A moveListu]n (activeMoves U worklistMoves)=[

冻结工作表的不变式。

(u ∈ freezeWorklist)→
degree(u)< K A moveListu] n (activeMoves U worklistMoves)≠1

溢出工作表的不变式。

(uE spillWorklist) → degree(u)≥K

11.4.3 程序代码

算法的启动点是过程 Main。它不断循环（通过尾递归调用）。直到不再生成溢出为止

procedure Main()
LivenessAnalysis()
Build()
MakeWorklist(
repeat
if simpliryWorklist ≠{ then Simplify()
else if worklistMoves 子（】 then Coalesce（）
else if freezeWorklist≠I]then Freeze()
else if spillWorklist≠(1} then SelectSpilO
until simpifyWorklist={}A worklistMoves={}
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入 freezeWorklist ={} AspillWorklist = 1】
AssignColors()
if spilledNodes 手【】 then
RewriteProgram(spilledNodes)
Main()

当 AssignColors生成了溢出时，RewriteProgram 要为被溢出的临时变量分配存储单元，并
插入访问这些单元的存/取指令。这些存/取指令访问的是新创建的临时变量（具有很小的活跃

范围），因此必须对改变后的图再次调用Main 过程。251
procedure Build ()
foralb∈程序中的基本块
let live =liveOut(b)
forall 7 E instructions（b）按逆序
if isMoveInstruction(1) then
livc -five\use(7)
forall n E def(1)U use(1)
moveList[n] -moveList[n]U {1)

worklistMoves 4- worklistMoves U {7]
live ←liveudef（7）
forall d E def(1)
foralll e live
AddEdge(1, d)

live  use(/)U (live\def(0))

过程 Build使用静态活跃分析的结果来构造冲突图（和位矩阵），并且初始化 worklist-

Moves，使之包含程序中所有的传送指令。

procedure AddEdge(u,t)
if(u,D)g adjSet)A(u ≠D)then
adjSct eadjSet U {(u,0).(D.u)}
ifug precolored then
adjListu】 ←adjListu】U{v）
degree【u】 ←degree【u】+1

if y g precolored then
adjListv】 ←adjList【?JU（u}
degree【ul ←degree【u】+!

procedure MakeWorklist()
forall n E initial
initial ←initial \n}
if degree[n]≥K then
spillWorklist ←-spillWorklist U {n】

else if MoveRelated(n) then
freezeWorklist -frcezeWorklist U(n)
else
simplifyWorklist- simplifyWorklist U (n

function Adjacent(n)
252] adjList[n]\(selecetStack UcoalescedNodes)

function NodeMoves (n)
moveList[nJn (activcMovesU worklistMoves)

funetion MoveRelated(n)
NodeMoves(n)≠[]
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procedure Simplify()
let n e simplifyWorklist
simplifyWorklist e simplifyWorklist \[n}
push(n, selectStack)
forall m ∈ Adjacent(n)
DecrementDegree(m)

从图中去掉一个结点需要减少该结点的当前各个邻结点的度数。如果某个邻结点的 degree

已经小于K-1，则这个邻结点一定是传送有关的，因此不将它加人到 simplifyNorklist中。当
邻结点的度数从K变到K一1时，与它的"邻结点相关的传送指令将有可能变成可合并的。

procedure DecrementDegree(m)
let d= degree[m]
degreem] -d-1
ifd=K then
EnableMoves({[m] U Adjacent(m))

spilIWorklist ← spifIWorklist \ {}
if MoveRelated(m) then
freezeWorktist ←-freezeWorklist U 【m}
else
simplifyWorklist ← simplify Worklist U {m}

procedure EnablcMoves(nodes)
forall n ∈ nodes
forall m E NodeMoves(n)
if m E activeMoves then
activeMoves + activeMoves ) (m)
worklistMoves ← worklistMoves U （m}

合并阶段只考虑worklistMoves 中的传送指令。当合并一条传送指令时，它涉及的那两个结

点可能不再是传送有关的，因而可用过程 AddWorkList将它们加人简化工作表中。函数OK是合
并一个预着色寄存器时所使用的启发式函数。Conservative是实现保守合并启发式的函数。 253
procedure Coalesce()
let m{=erpytr,y)∈ worklistMoves
x←GctAlias（x）
y ←GetAlias（y）
if y E precolored then
let (u,D)=(y,x)
etse
let (u,D)=(x,y)

worklisMoves ←worklistMoves \【m}
if(w = v)then
coalescedMoves -coalescedMoves U (m)
AddWorkList(u)

else if ve precolored v(u,u) E adjSet then
constrainedMoves- constrainedMoves U {ml
AddWorkList(u)
AddWorkList(v)

ekse ifu E precolored A(V e Adjacent(D),OK(t,u))
uE precolored A

① 指这个邻结点本身的。——译者注
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Conservative(Adjacent(u)U Adjacent(u)) then
coalescedMoves -coalescedMoves U (m]
Combine(u.)
AddWorkList(u)
else
activeMoves ←activeMoves U {m}

procedure AddWorkList(u)
if（u 学 precolored A not（MoveRelated（u））A degreelu】<K）then
freezeWorklist ←freezeWorklist \【u】
simplifyWorklist ←simplifyWorkist U {ul

function OK(r,r)
degrce[r]<K vt E precolored v(t,r)E adjSet

function Conservative(nodes)
letk=0
forall n E nodes
ifdcgrece【n】≥Kthenk←k+1
return (k < K)

function GetAlias (a)
if n E coalescedNodes then
GetAlias(alias[n])
else 254
procedure Combine(u,v)
if v E freezWorklist then
feezeWorklist-freezWorklist \[v]
else
spillWorklist ←spillWorklist\（el
coalescedNodes -coalescedNodes U{u}
alias【?】←- u
moveList【u】←-moveList【u】UmoveListvl
EnableMoves(u)
forallr E Adjacent(D)
AddEdge(t,)
DecrementDegre(r)

if degree[u] ≥KAu e freezeWorkList
freezeWorkList ←freezeWorkList \|u）
spillWorkList - spillWorkList U[u]

procedure Freeze()
let u ∈ freezeWorklist
freezeWorklist-freezeWorklist\[u]
simplifyWorklist ←simplifyWorklistU{ul
FreezeMoves(u)

procedure FreezeMoves(u)
forall m(=c() E NodeMoves(u)

if GctAlias(y)=GetAlias(u)then
v +GetAlias(x)
else
v ←-GetAlias（y）

activeMoves ←- activeMoves\（m】
frozenMoves -frozenMoves U {m]
if NodeMoves(u)=(} A degreefu]<K then
freezeWorklist ←freezeWorklist \【u）
simplifyWorklist ← simplifyWorklist U【u}
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procedure SeleceSpil()
let mEspillWorklist 并且m是用所喜好的启发式从这个集合中选择出来的
注意;要避免选择那种由读取前面已溢出的寄存器产生的、活跃范围很小的结点

spilIWorkist ← spilIWorklist \{m}
simplifyWorklist ←- simplify Worklist U{m}
FreezeMoves(m)
procedure AssignColors( 255while SelectStack not empty

let n = pop(SelectStack)
okColors ←（0.，K-1】
forall w E adjList[n]

if GetAlias(s)E (coloredNodes U precolored) then
okColors ←okColors\ {color【GetAlias（w）】}

if okColors ={] then
spilledNodes ←spilledNodes U{n}
else
coloredNodes ←coloredNodes U {nl
let c E okColors
color【n】 ←-c

forall n E coalescedNodes
color【n】 ←color【GctAlias（n）】

procedure RewriteProgram(
为每一个vEspilledNodes分配一个存储单元，
为每一个定值和每一个使用创建一个新的临时变量y，
在程序中（指令序列中）v的每一个定值之后插入一条存
储指令，v;的每一个使用之前插入一条取数指令。
将所有的山放入集合ncwTemps。
spilledNodes -(1
initial -coloredNodes U coalescedNodes U newTemps
coloredNodes -]
coalescedNodes ←【】

我给出的是图着色算法的一个变种，在这个变种算法中。如果必须重写程序以插人实现溢

出的存/取指令，则所有的合并都将被忽略。为了使算法更快，可以在第一次调用 SelectSpill

之前保存已找到的所有合并，然后重写程序删除已合并的传送指令和临时变量。
原则上，本应使用启发式来选择要冻结的结点，而上面给出的 Freeze是从冻结工作表中随

意取出一个结点。但是因为冻结的情况并不常见，所以使用选择启发式不一定会有显著的差别。 256

11.5 针对树的寄存器分配

在表达式树上进行寄存器分配要比在随意的流图上简单得多。我们不需要进行全局数据流

分析，也不需要冲突图。假设有一棵如图 9-2a所示的已用瓦片覆盖了的树。这棵树有两个为叶

子结点的瓦片;TEMP结点 f 和i;假定它们已经分别存储在寄存器r和r中。我们希望可以

用表r，r。，⋯，r、中的寄存器来标记那些不是叶子结点的瓦片的根。
算法11-1对树进行后序遍历来给每个瓦片的根指派一个寄存器。n 的初始值为0，算法作

用于树根（瓦片9）产生分配|tile2→r，tile4→r，tile5→r，，tile6→r，，tile8→ra，tile9 →
r，}。此算法可以和 Maximal Munch 算法结合，因为两者都是从底向上进行遍历的。
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算法 11-1 对树进行的简单寄存器分配

function SimpleAlloc(1)
fort的儿子中的每一个非平凡的瓦片u

SimpleAlloc(u)
forr的儿子中的每一个非平凡的瓦片u
n←n-1
n<n+1
指派r，存放根结点的值

但是这个算法并不总能得到最佳分配。考虑下面这棵树，其中每个瓦片是一个单独的

结点∶

MEM(NAME a)

MEMtNAME b) MEM(NAME c)

函数 SimpleAlloc将为这个表达式分配三个寄存器（如下面左列所示），但是通过重排指令，257
我们只用两个寄存器就能完成计算（如下面右列所示）;

r-Mlb]r-Mta]
n-M[D] rn:·-Mtc]
rs-Mtcl 工十工义订

rz-Ma]rn+-rn×ry
n1←n+nn+月+n

使用动态规划方法，我们可以找出最优的指令顺序。算法的思想是，在计算每个瓦片的

同时，用它所需要的寄存器个数来标记此瓦片。假设瓦片t有两个非叶子结点的儿子 ue和

uenm，它们分别需要 n和 m个寄存器用于其计算。如果我们先计算 um，并在计算 um时将
um的结果存放到一个寄存器中，则为了计算以t为根的整个表达式，需要 max（n，1+m）个

寄存器。相反，如果首先计算 u.，则需要 max（1＋n，m）个寄存器。显然，如果 n>m，则应
该先计算ua。如果n<m，则应该先计算 um。如果 n=m，则无论谁先计算都会需要 n＋1个
寄存器。
算法11-2用need【t】来标记每一个瓦片1，它是以t为根的子树所需要的寄存器个数。这个
算法也可以推广到处理含两个以上儿子的瓦片。Maximal Munch算法标识（而不是流出）瓦片258]
的过程可以与算法11-2的标记同步进行，下一遍再流出这些瓦片的 Assem指令;当一个瓦片有

多个儿子时，必须按 need 指明的所需寄存器个数的降序来流出这些子树的指令。

[259 在采用图着色寄存器分配的编译器中使用算法11-2 可得到好处。按 need 的降序流出子树
可使得同时活跃的临时变量的个数最少并减少溢出的数量。
在不使用图着色寄存器分配的编译器中，算法11-2可作为算法 11-3 之前的一遍。其

中，算法11-3 在流出树的同时指派寄存器，并简洁地进行溢出处理。这样做照顾到了表达

式树内部结点的寄存器分配;而为Tree 语言中显式出现的 TEMP变量分配寄存器原本是需
要用其他方法才能实现的。一般而言，不使用图着色寄存器分配的编译器会将程序中几乎
所有的变量都保存在栈帧中。因此。在这些显式出现的 TEMP 中，不会有很多TEMP 需要

进行分配。
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算法11-2 Sethi-Ulman 标记算法

function Label(r)
for每一个是∶的儿子的瓦片u
Label(u)
irt是平凡的
then need【n】 ←-0
else it有两个儿子，"e和ung
then if needuien] = need[ungbl
then needl门】←1+need【uienl
ele need【r1← max（1，nedluenl.needungmD）

else ift只有一个儿子，u
then needr】←max（1，need【u）
else ift 没有儿子
then need【r】 ←1

算法11-3 针对树的 Sethi-Ulman寄存器分配

function SethiUllman(0)
if1有两个儿子，ucn和4gh
if need【uhenl≥K 入need【utnghl≥ K
SethiUllman(tign)
n←n-1
溢出∶流出存储g【 rign】的指令
SethiUman( hen)
恢复溢出reg【tngh】←"ra+!";流出取reglnem的指令
else if needuhen]≥ need[unghl
SethiUIIman(1ien)
SethiUllman(righ)
n←n一1
else need[uhen]< needlunghl
SethiUIlman(ngha)
SethiUllman(1ien)
n ←n-1
三；占己
流出oER（instructiont】. reg【7】.I eg【hen】，regtrplD）
else if∶只有一个儿子，u
SethiUIlman(u)
regtn1 ←"ro"
流出oPER（instructiont】.reg【1】.Ireg【ul】）
else ift是非平凡结点但没有儿子
n-←n+1
res【t】←"，"
流出oPER（instructiont】，reg【】.【1）
else ift是一个平凡结点TEMP（r）
regt7] ""
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程序设计∶图着色

用两个模块 Color和RegAlloc来实现图着色寄存器分配，其中Color只对图着色;RegAlloc
处理溢出，并将Color作为子程序来调用。为了简单起见，不实现溢出或合并，这样可以显著
地简化算法。

/*colorh *
struct COL_result{Temp_map coloring;Temp_tempList spills;};
struct COL_result COL_color(G_graph ig,

Temp_map initial,
Temp_tempLlst registers);

/*realoc.h *
etruct RA_result{Temp_map coloring; AS_instrLiet il;};
struct RA_result RA_regAlloc(P_frame f,AS_instrList il);

给定一个冲突图、一个初始分配 initial和一张代表寄存器的颜色表registers，其中的

initial给出了由调用约定强加给某些临时变量的初始分配（预着色）。模块 Color中的函数

color扩大初始分配 iniial。你实现的这个分配要用 registers表中的寄存器对流图中使用的
所有临时变量进行分配。
初始分配 initial是由 Frame 结构提供的 F_tempMap，参数 registers 是所有机器寄存器组
成的表，即F_registers（）（见第 12章）。初始分配 initial中的寄存器也可以出现在传递给

COL_color（）的参数 registers中，因为也允许用它们给其他结点着色。
COL color 的结果是一个给出了寄存器分配的 Temp map和一张溢出表。RegAlloc 的结果在

没有溢出的情况下是一个同样的 Temp_map，可以在最后的汇编代码流出中作为As_print的参数。260]
更好的 COL_color接口应当有一个描述每个临时变量溢出代价的 spil1Cost参数。它可以是
临时变量的使用次数和定值次数，并且最好是用循环和嵌套循环适当加权后的使用次数和定值

次数。一个朴素的、对每一个临时变量都返回1的 spil1Cost也能工作。

实现一个简单的无合并的着色算法只需要一个工作表∶simplifyWorklist，它包含所有非预
着色的结点和度小于K的未简化的结点。显然，不需要使用frezeWorklist。如果每次 simpli-

fyWorklist 变为空时，我们都愿意在原始图中查找所有的结点来作为溢出候选结点，那么也不

需要 spillWorklist。

当只使用 simplifyWorklist 时，双向链表的表示也是不必要的∶这个工作表既可以用一个
单向链表来实现。也可以用一个栈来实现，因为绝不会"从中间" 来访向此表

高级项目∶溢出

实现溢出，使得无论 Tiger程序中有多少个参数和局部变量，都可以对它进行正常编译。

高级项目∶合并

实现合并，实际删除程序中的所有MOVE指令。
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推荐阅读

Kempe【1879】发明了通过去掉图中度<K 的结点来为图着色的简化算法。Chaitin【19821将

寄存器分配问题形式化为图着色问题（使用Kempe 算法为图着色），并在对图着色之前，通过

（非保守的）合并无冲突的传送有关的结点实现了复写传播。Briggs等人【1994】用乐观溢出的思
想改进了该算法，同时通过在对图着色之前使用保守合并启发式而减少了滋出的产生。George

和Appel【1996】发现，如果保守的合并在简化过程中进行，而不是简化之前完成，则会有更多的

261合并机会，并由此开发了本章给出的工作表算法。

Ershov【1958】开发了对表达式树进行最佳寄存器分配的算法;Sethi 和 UIlman【1970】推广了
该算法，并说明了应如何处理溢出。

习题

11.1 假设已经在一台有3个寄存器r、rs、r，的机器上编译了下面的程序;其中r，和r，是参
数寄存器，并且是由调用者保护的;r;是被调用者保护的寄存器。构造这个程序的冲突
图，并像11.3.3节中那样详细说明寄存器分配的处理步骤。当你合并两个结点时，要说

明使用的判别标准是 Briggs 还是George。
提示;如果两个结点是由一条冲突边和一条传送边连接起来的，你可以删除这条传送边，

这称为抑制（constrain），删除动作是通过 Coalesce 过程中的第一个else if从句来实现的。

c+n
DP←养
ifp=Ogoto L
n←Mpl
call （使用r，定值ri，7）
3←7
r+M[p+4]
cal f （使用r，定值ri，r>）
一，工
铭-s+1
goto L2
宁”葛，一

L2.n←u
于。

（使用r，7）return
11.2 下表表示的是一张寄存器冲突图。结点1～6是预着色的（用颜色1～6），结点A~H是普通

（未着色）结点。每一对预着色的结点之间都存在冲突，每一个普通结点与这张表中标记有×

的结点相冲突。 [262]
2 34 5 6 A B CD EF G H1

k<mUO03 ×X×× ×× X 。。景 ”。””本十
X X X×× 本

X美X

XXXH X×XX丰
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下面的结点偶对是与MOVE指令有关的∶

(A,3)(H.3)(G,3)(B,2)(C.1)(D.6)(E,4)(F.5)

假定寄存器分配是针对一个有8个寄存器的机器进行的。

a. 忽略 MOVE指令并且不使用合并启发式，用简化和溢出为此图着色。记录简化和潜
在滥出的判定结果序列（栈），说明哪些潜在溢出会变成实际溢出，并且给出由此产

生的着色。
b.使用合并对这个图着色。记录简化、合并、冻结和滋出的判定结果序列，说明每个合
并的风格是 Brigs的还是 George 的，并说明还剩下多少条 MOVE指令。

c.另一种合并启发式是偏着色（biased coloring）。它不是在简化期间使用保守的合并启
发式——像上面 a那样运行算法的简化和溢出部分，而是在算法的选择部分使用合并

启发式。
（i）当为一个与结点 Y传送有关的结点 X选择一种颜色时，若已经给Y选定了颜色，

则在可能的情况下，为 X也选择同样的颜色（用以删除与它们关联的这条 MOVE

指令）。
（i）当为一个与结点 Y传送有关的结点 X选择一种颜色时，若还未给 Y选定颜色，

则选择一种与 Y的所有邻结点使用的颜色都不相同的颜色（以增加启发式（i）在对

Y着色时的成功机会）。
人们已经发现（简化阶段的）保守合并一般比偏着色更具效率。但是对于这个
特定的图则可能不是这样。因为这两种合并算法在不同的阶段使用，所以它们
能用于同一个寄存器分配器。

'd.在寄存器分配过程中同时使用保守合并和偏着色。说明偏着色在何处能有助于做出正

确的决策。
保守合并的名称源于它不会引入任何（潜在的）溢出。但是，它能够避免溢出吗?在下11.3 4
图中，实线代表冲突，虚线表示一个 MOVE。263

b)
(u)

(-)〔a

(ej
0)

(e

a.不进行合并，用4种颜色对此图着色。给出选择栈的内容。并指出移走结点的顺序。

其中有潜在溢出吗?有没有实际溢出?

b.采用保守合并，用4种颜色对此图着色。你使用的判别准则是 Briggs 还是 Gcorge?现

在有潜在溢出吗?有没有实际溢出?
11.4有人提出可以简化保守合并启发式。当测试 MOVE（a;b）是否可以合并时，不是查询合

并后的结点ab 的高度数的邻结点个数是否小于K个，而是简单地测试 ab的所有邻结点

个数是否小于K。这样做的道理是，如果 ab有很多低度数的邻结点，这些结点总是可通

过简化而被删除。

a.说明这种合并不会创建任何新的潜在溢出。
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b.用下图举例说明该算法（令K=3）;

(6a 一重千 (.
匀() [g)

*c.证明这种测试效率低于标准的保守合并。

提示∶使用习题11.3中的图，并令K=4。 [264



第12 章 整合为一体

调试（de-bug））∶排除系统中的错误或存在的故障。

韦氏词典

第 2~11章介绍了一个好的编译器的基本组成部分，包括一个前端和一个后端。前端进行

词法分析、语法分析、构造抽象语法树、类型检查和翻译成中间代码;后端进行指令选择、数

据流分析和寄存器分配。
我们都学到了什么呢?我希望读者学到了用于一个编译器不同组成部分的各种算法和连接

各组成部分的接口。而作者自己也从习题中得到了相当多的收获。

我的目的是想要介绍一个好的编译器，即借用爱因斯坦的名言，它是一个"尽可能简单，

但不过于简单"的编译器。下面将讨论的是在设计Tigcr 及其编译器时遇到的一些棘手的问题。

嵌套函数。Tiger有嵌套函数，因而需要某种机制（如静态链）来实现对非局部变量的访

问。但是许多广泛使用的程序设计语言（如 C、C十+、Java等）都没有嵌套函数或静态链。假
如没有嵌套函数，Tiger编译器可能会更简单些，因为这样的话不会有逃逸的变量，也不需要
FindEscape 阶段。但是有两个理由使我们需要讲解怎样编译非局部变量。第一，对一些程序设

计语言而言，嵌套函数是特别有用的——它们是第15章将要介绍的函数式语言。第二，我们会

发现在可获取地址（如 C）或传地址（如C+）的程序设计语言中存在逃逸变量，因而编译器

需要有对它们进行处理的机制。265
结构化的左值。与C、C十+和 Pascal不同，Tiger没有记录和数组变量。相反，所有的记录

和数组实际上都是指向分配在堆中的数据的指针。这种省略实际上只是为了使得编译器简单;

实现结构化的左值需要考虑得更多一些，但并没有实质性的新知识点。

树中间表示。Tree 语言有一个根本性的缺点;它不能描述过程的人口和出口。入口和出口

由隐含在 Frame模块中的生成Tree代码的过程来处理，这些过程对客户是不透明的。这意味着

对于同一个程序，用Frame 的 PentiumFrame 版本转换得到的 Tree 代码将不同于用SparcFrame 版

本转换得到 Tree 的代码——Tree表示不是完全与机器无关的。

另外，Tree本身表示的信息不足以表示整个程序的执行，因为视角移位（见6.2节）有一

部分是通过过程的入口处理和出口处理来实现的，而过程的人口处理和出口处理不能用树来表

示。因此，没有足够的信息可用于整个程序（跨函数边界）的优化。

Tree表示宜作为低级中间表示，它有利于指令选择和过程内的优化。高级中间表示应当保
存更多源程序的语义，包括嵌套函数、非局部变量、记录的创建（不同于不透明的外部函数调

用）等概念。和通用的 Tree 语言相比，这种高级中间表示与具体源语言族的关系要更紧密。

寄存器分配。图着色寄存器分配广泛用于真实的编译器中，但是对于我们这个想要"尽可

能简单"的编译器而言，使用它是否合适呢?毕竟，它需要全局数据流（活跃）分析，需要构

造冲突图，等等。这会导致编译器的后端相当大。
设想一下Tiger编译器没有寄存器分配的情形，我们便会明白为什么这个编译器要使用图着
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色寄存器分配。如果没有寄存器分配，所有局部变量都必须存放在栈帧内（就像对逃逸变量所

做的一样），并且仅当它们作为指令的操作数时才会被取到寄存器中。尽管通过局限于基本块的

[266活跃分析可以消除位于单个基本块内的冗余取数指令，并且 Tree表达式的中间结点也可以通过

算法11-2 和算法 11-1指派到寄存器中，但是编译器的其他部分将变得非常难看;对树进行规范

化（删除 ESEQ）而引人的临时变量将不得不用一种特别的方式来处理，即需要给 Tree 语言扩
充一个明确指出临时变量作用域的操作符;Frame接口在多处涉及了寄存器，现在咖必须用一种

更复杂的方式来处理它们。使用图着色寄存器分配使我们能够创建任意多的临时变量和传送指

令，并且可依赖寄存器分配器来清除它们，从而最大程度地简化了过程调用序列和代码生成。

程序设计∶过程入口/出口

实现 Frame模块的剩余部分，包括该编译器的所有机器相关部分;寄存器集合、调用序列，

以及活跃记录（栈帧）的布局。

程序12-1给出了 Erame.h。在其他地方已经给出了这个接口的大部分描述，剩下的部

分如下。
·registers 机器的所有寄存器的名字组成的一张表，它将作为寄存器分配的"颜色"。

·tempMap 对于每一个机器寄存器，Frame 模块维护着一个特定的 Temp_temp，它表示与

该寄存器对应的"预着色临时变量"。这些临时变量出现在由 CALL结点生成的 Assem指
令中，由 procEntryExit1生成的过程入口序列中，等等。tempMap给出每一个预着色临时

变量的"颜色"。

· procEntryExit1 将每一个传人的寄存器参数存放到从函数内来看它的位置。这个位置可

以是栈帧内的单元（对于逃逸的参数）或是一个新的临时变量。一种较好的实现方法是，

由 newErame创建一组T_MOVE语句来访问所有的形式参数。newErame可以将这一组语句保
存到 frame数据结构中，然后 procEntryExit1只需要将它们与过程体连接起来即可。

同时连接到过程体的还有那些对被调用者保护的寄存器（包括返回地址寄存器）进

行保护和恢复的语句。如果寄存器分配器没有实现溢出，则应当在过程体的开始就将所

有被调用者保护的（以及返回地址）寄存器写到栈帧内，并在过程体的结尾将它们重新
恢复到寄存器中。因此，procEntryExit1 应当对每一个要保护的寄存器调用 allocLocal，
并生成保护和恢复这些寄存器的T MOVE指令。对被调用者保护的寄存器进行保护和恢复

能使寄存器分配器有足够多的可用于分配的寄存器，运气好的话，一些非平凡的程序可

以成功地进行编译，无需溢出。当然有些程序没有溢出是不能成功编译的。
如果你的寄存器分配器实现溢出，则不应当总是将被调用者保护的寄存器写到栈帧

267内。如果寄存器分配器需要可分配的寄存器，它可以选择只溢出某些被调用者保护的寄

存器。但是决不要溢出"预着色"的临时变量。因此，procEntryExit1应当为每一个被
调用者保护的（和返回地址）寄存器建立新的临时变量，在过程入口，将所有这些寄存
器传送到它们的新临时变量单元中，在过程出口，再将它们传送回来。当然，这些传送

指令（对非溢出的寄存器）将通过寄存器合并而消除，因此，它们不会有什么开销。
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程序 12-1 接口 frame，h

/frame.h *
typedef atruct P_frame*P_frame;
typedef struct P_access_*P acceBs;
typedef atruct P_acces8List_*P_acceseList;
struct F accesList(F_access head;P_acces8List tall;);
F_acceaSList P AccessList(FacceB8 head,F_acceseList tail);

typedef struct F_frag_*P_frag;
struct P_frag_
enum (P_atringFrag,F_procFrag)kind;
union(struct(Templabel label; etring stri)atringg;
struct(T atm body;F frame framei)proc;

]u;，一
P_frag F_StringPrag(Temp_label label,string str);
F_frag F_ProcFrag(T_stm body,Pframe frame);

typedef struct P_fragList_*P_fragList;
struct P_fragList_{F_frag head; P_fragLiet tail;);
F_fragList FFragList(F_frag head,PfragList tail);

Temp_map F__tempMap;
Temp tempList P registers (void);
string F getlabe1(F frame frame);

T exp F Exp(F access acc,T exp framePtr);

(see p.g8)F access P_alloctocal(P_frame f,bool ecape); (
F_acceeeList F_formals(F_framme f); (P.97)

(P 96)Temp_label P_name(F_frame f);
extern const int P_wordsize; (p.112)

(n 12)Temp temp P Fp(void)j
Temp temp F SP (void);

Temp_temp P ZERO (vold);
Temp temp F RA(void);

(P121)Temp temp F_RV (void);

p.96)P_frame F_newFrame (Temp_label name,U_booltist tormals);
(2.119T exp PexternalCall(string s,TexpList argB);

P frag F string(Temp_label lab,string atr); n 191)
P frag P newProcFrag(T atm body,F frame frame);
T stm P procEntryExit1(F frame frame,T stm stm);((P.190)
AS_instrList F_procEntryExit2(AS_instrList body);(p.153)
AS_proc P_procEntryExit3(F_frame frame,AS_instrList body);

/* codeen.h y
AS_instrList F_codegen(F_frame f,T_stmList stmList);(p.150)

·procEntryExit3 生成过程人口处理和出口处理的汇编语言代码。首先（对于某些机器而
言），它计算通过栈帧传递实参需要的空间大小。这个大小等于该过程体内所有CALL指

令的实参的最大个数。不幸的是，在转换到 Assem树之后，过程调用已与它们的参数分

开，导致实参已不能明显区分出来。为此，procEntryExit2 应当扫描过程体并将实参

信息记录到 frame类型的某个新成员中，否则，procEntryExit3 应当使用一个最大的
合法值。
一旦知道了这个大小，有关过程的入口、栈指针的调整，以及过程的出口的汇编语

言代码就可以整合到一起∶这些就是过程的入口处理（prologue）和出口处理（epilogue）。
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·string Tiger中被转换为F_StringFlag 片段的字符串文字常数最终必须被转换为机器相
关的一段汇编语言代码，这段代码保留一片内存空间并进行初始化。函数 F string返回

一个字符串，该字符串包含定义和初始化一个字符串文字常数所需要的汇编指令。例如，

P_string(Tep_namedlabel("L3"),"hello*)

将产生典型的汇编语言代码∶"L3∶.ascli"hello"\n"。Translate模块可创建一个F_
StringFrag（L3，hello）（见 7.3.3 节）;Main 模块（见后面）将通过调用F_string来处
理它。

程序设计∶创建一个可运行的编译器

使你的编译器能够生成可以运行的工作代码。
文件§ TIGER/chapl2/runtime.c是一个C语言源文件，它包含若干对你的Tiger 程序有用的

外部函数。这些函数一般是通过你的编译器生成的 externalCal1来调用的。你可以根据需要修

改它们。
写出模块 mainc，对于每一个输入程序 prog.tig，它调用所有其他的模块产生汇编代码文件

269]prog.s。prog.s 应当经过汇编《产生 prog.o）并与runtime.o一起连接才能生成一个可执行文件。

程序设计项目

在你的Tiger编译器完成之后，可以进一步考虑下面一些工作。

12.1《用C语言）为你的Tiger编译器写一个垃圾收集器。为了增加关于记录和栈帧的描述
字，你会需要修改编译器本身（见第 13章）。

12.2 在 Tiger中实现一阶函数值，使得函数既可以作为参数传递也可以作为返回值返回（见

第15章）。
12.3 使 Tiger语言是面向对象的，即用带有方法的对象替代其中的记录。构建一个这种面向

对象的Tiger编译器（见第14章）。

12.4实现诸如到达定值和可用表达式这样的数据流分析，并利用它们实现第17章讨论的某

些优化。
12.5 考虑用其他方法来改进你的编译器生成的汇编语言，可以只讨论，也可以尝试实现。

12.6 实现指令调度，用以填充汇编语言中的分支延迟槽和隐藏取数延迟。也可以讨论怎样将

这种模块集成到现存的编译器中;哪些接口需要改变?采用什么途径改变?
12.7 在你的编译器中实现"软流水"（围绕循环迭代的指令调度）。

12.8 分析 Tiger 语言本身是否适宜书写编译器?为使它成为一种更有用的语言，最少应有哪
些可能的增加/改变?

12.9 在 Tiger语言中，有些记录类型是递归的并且必须作为指针来实现;另外一些不是递归
的，可以不需用指针来实现。修改你的编译器通过将非递归、非逃逸的记录保存在栈帧
内而不是堆中来利用不需指针的优点。

12.10 类似地，有些数组具有编译时已知的维界，并且不是递归的，也没有将它们赋给其他的

数组变量。修改你的编译器将这种数组存放在栈帧中。
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12.11 实现函数的内联（见15.4节）。

12.12 假设一个普通的Tiger 程序要在一台并行机（多处理机）上运行。编译器怎样才能自动

270 地由原来的串行程序构造一个并行程序?研究其处理方法。
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第13章 垃圾收集

垃圾（gar-bage）;不想要的或无用的东西。

韦氏词典

在堆中分配且通过任何程序变量形成的指针链都无法到达的记录称为垃圾（garbage）。垃
圾占据的存储空间应当被回收，以便分配给新的记录，这一过程叫作垃圾收集（garbage collec-

tion）。垃圾收集不是由编译器完成的，而是由运行时系统完成的，运行时系统是与已编译好的

代码连接在一起的一些支持程序。
理想情况下，可以将所有动态不再活跃的《即在以后的计算中不再需要的））记录都视为垃
圾。但是如10.1节所述，我们并不总是能知道一个变量是否是活跃的，因此采用的是一种保守

的近似方法;我们要求编译器保证所有活跃的（live）记录都是可到达的（reachable），并尽可

能减少那些可到达的、但非活跃的记录的数量;同时，我们保留所有可到达的记录，尽管其中

有些记录可能不是活跃的。

图13-1 说明了一个要（在标记"garbage-collect here"处）进行垃圾收集的Tiger 程序。作
用域中只有三个程序变量∶p、q和r。

维程序变量1et
type list=(1ink: 1iat,

画
key: int}

type tree-{key: int,
left: tree,
right: tree)

function maketree()=
function ahowtree(t:tree)，
in
let var x:= 1iat(1ink=nil,key=7)
var y;= 1ist{link=x,key=9}
in x.1ink := y
end;
let var p:= maketree()
var r ;= p.right
var q:= r.key
in garbage-collet here
ahowtree (r)
end
end ：

<)

图13-1 要进行垃圾收集的堆存储
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13.1 标记-清扫式收集

程序变量和堆分配的记录构成了一个有向图。每一个程序变量是图中的一个根。如果存在
着从某个根结点r出发，由有向边r→⋯→n组成的一条路径，则称这个结点 n是可到达的

[273 （reachable）。类似于深度优先搜索的图搜索算法（算法13-1）可以标记出所有可到达结点。

算法13-1 深度优先搜索

function DFS(x)
if x是一个指向堆的指针

if记录x还没有被标记

标记x
ror记录x的每一个域f

DFsx.()

任何未标记的结点都一定是垃圾，应当回收。通过从第一个地址到最后一个地址对整个堆
进行清扫 （sweep），查找那些未标记的结点（算法13-2，图13-2给出了图示说明），便可以做

到这一点。那些清扫出来的垃圾可以用一个链表（称为空闲表）链接在一起。同时，清扫阶段

应当清除所有已标记结点的标记，以便为下一次垃圾收集做准备。

算法 13-2 标记-清扫式垃圾收集

清扫阶段∶棒记险段∶
for 每一个根v p-堆中第一个地址
DFS(r) while p<堆中最后一个地址

i记录p已标记
去掉p的标记
else令为p中的第一个域
p.fi-freeliit
frellit-p
p*-p+(size of record p)

已编译好的程序在垃圾收集完成之后将恢复继续执行。每当它需要在堆中分配一个新的记录

时，便从空闲表中获得空间。当空闲表为空时，则是开始另一次垃圾收集来补充空闲表的好时机。[274
垃圾收集的代价。深度优先搜索所需的时间与它标记的结点个数成正比，即与可到达数据

的数量成正比。清扫阶段所需的时间与堆的大小成正比。假设在大小为H的堆中有R个字的可

到达数据，则一次垃圾收集的代价是c R+c;H，其中c，和 c.是常数;例如，c.可能是10条指

令，c，可能是3条指令。
收集得到的"好处"是可用大小为 H一R个字的自由存储单元补充空闲表。因此，我们可
以将收集所花的时间除以回收的垃圾数量所得的结果作为收集的分摊代价（amortized cost）。也

就是说，对于已编译好的程序所分配的每一个字，有一个最终的垃圾收集代价∶

6R+c理
H-R
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如果 R 接近于H，这个代价就会非常大∶每一次垃圾收集仅回收几个字的垃圾。如果 H比

R大得多，则每个已分配字的代价近似地为c∶，即每个已分配字的垃圾收集代价约为3条指令。

这种垃圾收集器可直接度量出 H（堆大小）和 H—R（空闲表大小）。在一次收集之后，当

R/H大于0.5（或其他某个标准）时，收集器应当向操作系统申请更多的存储单元以增大 H。

这样，每个已分配字的代价将大约为c.十2cy，即大概每字16条指令。

中
·C. 磁、6 ，v”，
35

59

ol一e0
空闲表 .
（b）清扫（a）被标记

图13-2 标记-清扫式收集

使用一个显式的栈。DFS算法是递归算法，它的最大递归深度与可到达数据图中的最长路径的 275
长度相等。最坏情况下可能存在长度为 H的路径，这意味着活动记录栈有可能超过整个堆的大小!

为了解决这个问题，我们使用一个显式栈（而不是通过递归），如算法13-3所示。现在，这

个栈仍有可能生长到 H大小，但它至少只是 H个字而不是H个活动记录。尽管如此，要求辅

助栈的存储空间大小与被分配的堆空间大小相同仍然是不能接受的。

算法 13-3 使用显式栈的深度优先搜索

tunction DFS(x)
ix是一个指针井且记录x没有标记

标记x
r-1
主完稻己十
while t >0
x*-stack[i];I*-r-1
ror 记录x的每一个域育
ifx./是一个指针并且记录x./没有标记

标记x.
stackr]-x:/:一中十六
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指针逆转。在记录域x.f的内容被压人栈后，算法13-3将不再查看原来的x.f。这意味

着我们可以使用x.f来存储栈自身的一个元素!这种极为聪明的思想称作指针逆转（pointer

reversal），因为它能使x.f，反指向这样一个记录∶从该记录可到达x。之后，当从栈中弹出 x.
f的内容时，再将域x.f，恢复为它原来的值。

276 算法13-4要求每个记录有—个名为 done 的域，用以指明一个记录中有多少个域已被处理
过，它在每个记录中只占几个比特位（并且也可以用作标记域）。

算法 13-4 使用指针逆转的深度优先搜索

runction DFS(x)
其x是一个指针并且记录z没有标记

1-nil
标记r;done【x1-0
whilefnue
i-donel.×]
ifi<记录x中域的个数
y-x乔
iy是一个指针并且记录y没有标记
x.有←1; 1←x∶ x←y
标记 x; done【7】 -0
else
donel2z] -1+1
else
y←x; x←1
ifx= nil then return
-done[*]
1←x.∶式乔←y
donetk】←1+1

变量t用于指明栈顶，栈内的每一个记录x都是已标记了的记录，并且如果i=done【x】，

则 x.f，是链接下面一个结点的"栈链"。当对栈执行弹出操作时，x.f，则恢复为它原来的值。

空闲表数组。不论采用何种标记算法，清扫阶段都是一样的;它只是简单地将未标记的记

录置于空闲表中，并清除带标记的记录中的标记。但是，如果记录的大小各不相同，则对分配
器而言，采用简单链表的效率将不会很高。因为当要分配一个大小为n的记录时，为了找到适

当大小的空闲块，分配器可能不得不沿着链表向下搜索较长的路径。

一种较好的解决方法是使用一个由若干个空闲表组成的数组，使得 freelist【i是所有大小为

i的记录组成的链表。这样，当程序要分配一个大小为i的结点时，只需取 freelist【i的表头即
可。收集器的清扫阶段可以将每一个大小为j的结点放在 freelist【j】的表头处。
如果程序企图从一个空的freclist【i】进行分配，它可以从 freelist【j】（j>i）抢夺一个较大的

记录，并分割这个记录（将未用的部分放回到freelist【j一i】）。如果不能这样做，那么就到了应

该调用垃圾收集器补充空闲表的时候了。

碎片。有时会出现这种情况∶程序想要分配一个大小为n的记录，并且有许多小于 n的空

闲记录，但却没有所需大小的记录。这种情形叫作外部碎片（external fragmentation）。另一方

面，内部碎片（internal fragmentation）发生在程序使用了一个太大的记录并且没有对它进行分
割时，这种情况使得未使用的存储空间位于记录之内而不是在记录之外。277]
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13.2 引用计数

有一天，一个学生来见 Moon教授，并对他说∶"我知道如何构造一个更好的垃圾

收集器。我们必须保存指向每一个结构的指针的引用计数。"

Moon教授耐心地给学生讲了下面的故事;

"有一天，一个学生来见 Moon教授并对他说∶'我知道如何构造一个更好的垃圾

收集器.

（麻省理工学院的人工智能禅语，作者Danny Hillis）

标记-清扫式收集通过首先找出哪些记录是可到达的来识别垃圾。实际上，通过记住每一个

记录有多少个指针指向它便可直接做到这一点;这个计数叫作记录的引用计数（reference

count），它与每一个记录存储在一起。 [278
编译器要生成一些额外的指令，使得每当将 p存储到x.f时便增加p 的引用计数，并减少

x.f以前指向的记录的引用计数。如果某个记录r的引用计数减少为零，则需将r放到空闲表

中，并且减少r指向的所有其他记录的引用计数。

除了在将r放到空闲表时减少r.f的计数外，另一种更好的做法是在将r从空闲表中删除
时，"递归地"减少r.f，的计数，这样做有两个原因。

（1）它能将"递归减少"的动作分解为较短的操作，从而使得程序的运行更为平滑（这只

对交互式程序或实时程序有意义）。

（2）编译器（在每一个做减少操作的地方）必须生成这样的代码∶检查计数是否为0，并在
为0的情况下将记录放到空闲表中。但用递归减少的做法，递归减少动作只需在一个地方进行，

即在分配器中。
引用计数收集似乎简单而有吸引力。但是它存在两个主要的问题。

（1）无法回收构成环的垃圾。例如在图13-1中，存在着一个由表元素组成的环（它们的键

值是7和9），这些元素是从程序变量不可到达的，但是每一个表元素的引用计数都为1。
（2）增加引用计数所需的操作代价非常大。对于每一条机器指令x.f，←p，程序都必须执

行下述代码。

-x.所。
-z.countC
-c-Ic

z.COunt 4c
if c =0 call purOnFreist
x， ←P
e←p∶count
←c+1，

p.Count -c
一个简单质朴的引用计数器会对程序变量的每一次赋值都执行这种增加和减少计数的动作。

这样做的代价极其昂贵。因此要尽量利用数据流分析来消除这种增/减计数器的操作;每当读取

一个指针值，然后通过局部变量传播它时，编译器能够将对相关的计数器的多次改变操作汇总
成一次增加计数操作，或完全不产生额外的指令（当净改变是0时）。但即使采用这种技术，也

[279仍然会余留很多增/减引用计数器的操作、并且它们的代价很大。
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有两种可行的"环"问题解决方法。第一种方法简单地要求程序员在使用一个数据结构时

显式地解开所有的环。这比显式地调用free（在完全没有垃圾收集情况下必须做的动作）的烦

恼要少些，但是很难保证每一个程序员都优雅地做到这一点。第二种解决方法是将引用计数

（用于急切的且非破坏性的垃圾回收）与偶尔的标记-清扫（用于回收环）相结合。

总体来讲，引用计数的回题超过了它的优点，所以它很少在程序设计环境中用干自动存储

管理。

13.3 复制式收集

堆中的可到达部分是一个有向图，堆中的记录是图中的结点，指针是图中的边，每一个程

序变量在图中是一个根。复制式垃圾收集（copying garbage collction）遍历这个图（堆中称为
from-space 的部分），并在堆的新区域（称为 to-space）建立一个同构的副本。副本 to-space是
紧凑的，它占据连续的、不含碎片的存储单元（即在可到达数据之间没有零散分布的空闲记
录）。原来指向 from-space 的所有的根在复制之后变成指向 to-space 副本;在此之后，整个

from-space（垃圾，加上以前可到达的图）便成为不可到达的。
图13-3举例说明了在进行复制式收集之前和之后的情形。在收集之前，因为 next已到达
1imit，所以from-space 充满了可到达结点和垃圾，已没有剩余的空间可用于分配。在收集之
后，位于 next 和limit 之间的 to-space 区域可用于已编译好的程序分配新记录。因为新分配的

区域是连续的，故给指针p分配一个大小为 n 的记录非常容易;只需将 next 复制给 p;并使

next增加 n即可。复制式收集没有碎片问题。
from-亏 t0-from- spaceSpace 根pce根space.

一next

next
一1imit峰1imit

（b）收集之后（a）收集之前
图13-3 复制式收集

最终，程序将由于已分配了足够多的空间而使 next到达limit;于是需要另一次垃圾收集。

此时 from-space和 to-space 将交换角色，并再次复制可到达数据。

收集的初始化。为了开始一次新的收集，初始化指针 next 使其指向 to-space 的开始。每当
在 from-space 发现一个可到达记录，便将它复制到to-space 的 next所指的位置，同时使 next增
加该记录的大小。280
转递。复制式收集的基本操作是转递（forwarding）指针，即使一个指向 from-space的指

针 p转而指向 to-space（算法13-5）。

存在如下三种情形。
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（1）如果 p指向的是 from-space中一个已复制过的记录，则p.f，是一个指明副本在何处的
特殊的转递指针（forwarding pointer）。通过指针指向 to-space 内这一事实可识别出这种转递指
针，因为原来的 from-space域中不会有指向 to-space的域。
（2）如果 p指向 from-space中一个还未复制过的记录，则将它复制到 next 所指的位置;同

时将转递指针赋给 p.f。此时写 from-space中原来那个记录的域f是合法的，因为所有数据都[281
已复制到了 to-space 的next处。

（3）如果 p不是指针，或者指向的是 from-space 之外的指针（指向垃圾收集区域之外的记
录，或指向 to-space），则转递 p不做任何事情。

算法13-5 转递指针

function Forward(p)
if p指向 from-space
then if p∶f指向 to-space

then return p.
ese for p的每一个域 
next.Ji-P、J
P.i*next
next- next+记录 p的大小
retarn p.

else return p

Cheney算法。最简单的复制式收集算法使用宽度优先搜索对可到达数据进行遍历（算法13-
6，图13-4给出了图示说明）。首先，它转递所有的根结点，这会导致连带复制少数几个记录

（这是一些从根结点指针直接可到达的记录）到 to-space，并由此增加 next。

算法13-6 宽度优先复制式垃圾收集

gcan*next0-space 的开始
for 每一个根r
r-Forward(r)
while scan<next
for scan处的那个记录的每一个域
gcan.f;-Forward(scan.1)
can+scan+acan处的那个记录的大小

位于 scan和 next之间的区域包含的是已复制到 to-space但其子域还未转递的记录;一般而

言，这些子域指向 from-space。位于to-space开始和 scan 之间的区域包含的是已复制并已转递

的记录，因此这个区域中的所有指针都指向 to-space。算法13-6的 white 循环使 scan 向 next移
动，不过复制记录也会导致 next移动。最终，当所有可到达数据都被复制到 to-space 之后，
scan将追上 next。
Cheney算法不需要外部的栈，也不需要逆转指针∶它使用 scan 和 next之间的 to-space 区
域作为其宽度优先搜索队列。这使得它的实现比采用指针逆转的深度优先搜索简单得多。
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from-space 根from-space 根 from-space根 to-spaceto-spaceto-space
1scanscan

诲橱? :next
e口 sCan)

融 31长多

noxt

：· n0x
需

国一，：
（a）收集之前 （b）根转递 （c）扫描了一个记录后

图13-4 宽度优先复制式收集

引用的局部性。但是，采用宽度优先顺序复制的指针数据结构的引用局部性较差;如果一

个位于地址 a的记录指向另一个位于地址b的记录，则 a和b很可能会相距很远。相反，位于

地址 a＋8的记录却很可能与位于地址 a的记录无关。那些被复制的相互离得较近的记录是与根

的距离相等的一些记录。282
在有虚拟存储器或高速缓存的计算机系统中，具有良好的引用局部性非常重要。当程序从

地址 a读取了数据后，存储器子系统会预期不久将读取地址 a附近的数据。这样便可以保证能

够快速地访问包含 a及其邻近地址的整个页面或高速缓存行。

假设程序是沿着链表中由 n个指针组成的指针链读取数据的。如果表中的记录在存储器内
是分散的，例如每个页面（或高速缓存行）一个记录且页面中包含的是完全不相关的数据，则

将需要 n个不同的活跃页或高速缓存行。但是，如果链中连续的记录有相邻的地址，则只需要

n/k个活跃页（或高速缓存行），其中每页（或高速缓存行）容纳k个记录。

深度优先复制能得到更好的局部性，因为每一个对象 a往往与它的第一个儿子b相邻;除
非b已与另一个"父亲"a相邻。a 的其他儿子可能不与a 相邻，但如果子树 b较小，则它们

应该会在a 的附近。
283] 但是深度优先复制需要指针逆转，这既不方便也较慢。一种混合的方法，即部分采用深度
优先和部分采用宽度优先的算法，能提供可接受的局部性。它的基本思想是使用宽度优先复制，

但每当复制一个对象时，要查看是否有某个儿子可以复制在它附近（算法13-7）。

垃圾收集的代价。宽度优先搜索（或半深度优先的变种）的时间与它标记的结点数量成正

比;即 c，R，其中c;是常数（约为10条指令）。因为没有清扫阶段，故 cR是总的收集代价。

因为堆被分成两半，故每一次收集回收 H/2—R个字，且这些字是下一次收集之前可用于分配

的字。因此分摊的收集代价是每个分配字
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cR
孕一R

条指令。 [284
算法 13-7 半深度优先转递

function Forward(p)
if p指向from-space
then if p.f;指问to-space
then return p.fi
else Chase(p);return p.f

else returnp
function Chase(p)
repeatq←next
next ← next+记录p的大小
r←nil
for 记录P的每一个域f;
q-f←p.f
i q;/指向from-space 且g..j不指向to-space
thenr ←g.f
p.←q
p←r
untlp=nil
当 H的增长远远超过R时，这个代价将接近于0。也就是说，不存在固有的垃圾收集代价

的下界。在一个更为真实的设置中 H=4R，其代价是每个已分配字大约10条指令。在空间和

时间上这个代价都相当大;它需要的存储空间是可到达数据的4倍，并且对于每一个已分配的4
字对象，需要 40条指令的开销。为了显著地减少空间和时间，一般使用分代收集（generational

collction)。

13.4 分代收集

在许多程序中，新创建的对象有可能很快便死去;但一些经过多次垃圾收集之后仍然是可

到达的对象则很可能再经过多次的垃圾收集之后还是可达到的。因此，收集器应当将它的注意

力集中在那些较"年轻"的数据上，因为它们的存储单元成为垃圾的可能性较高。
我们将堆划分成若干"代"，最年轻的（即最近分配的）对象属于G。代;所有属于 G，代的
对象都比 G。代的对象要"老";所有属于G;代的对象都比 G，代的对象要"老"。依此类推。
为了只收集 G。中的对象（通过标记-清扫式方法或通过复制式方法），收集器只需要从根结

点开始进行深度优先标记或宽度优先复制（或半深度优先复制）。不过此时这些根不仅仅是程序

变量，其中还包括G，G，⋯·中那些指向G。中对象的指针。如果这种指针太多的话，则处理这 [285
些根结点所花的时间可能要多于遍历G。代中可到达对象的时间!

幸运的是，极少出现较老的对象指向年轻得多的对象的情况。在许多常见的程序设计风格
中，每当创建一个对象 a时，通常会立即对它的各个域进行初始化，例如可能使它的两个域分

别指向b和c，而此时b和c 已经存在，它们都比 a 要"老"。因此我们有一个指向较老对象的
新对象。一个较老的对象b能够指向一个较新的对象a 的唯一途径是;在创建对象b很长时间
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后才更新b的某个域;但这种情况是很少出现的。

为了避免在所有的G，，G。⋯中搜索G。的各个根结点，我们让编译好的程序记住何处存在

有这种从老对象指向新对象的指针。有几种方法可实现这种记忆。

·记忆表∶编译器在每一条形如 b.f←-a的对存储器进行更新的存储指令之后，生成将b

加入一个由被更新过的对象组成的向量中的代码。然后在每次垃圾收集时，收集器扫描

这个记忆表来寻找指向 G。的老对象b。

·记忆集合;与记忆表类似，但它是用对象b内的1位来记录 b已在更新对象向量中。然

后由编译器生成的代码可以查看这1位，以避免在向量中重复引用b。

·卡片标记∶将存储器分成大小为2'字节的许多逻辑"卡片"。一个对象可以占一张卡片的

一部分，也可以从一张卡片的中间开始并延续到下一张卡片。每当更新地址 b时，包含

地址b 的那张卡片便波标记。有一个用作标记的字节数组，字节索引可由 b的地址右移

2*位而获得。
·页标记∶它类似于卡片标记，但如果2'与页的大小相同，则可以使用计算机的虚拟存储
器系统替代由编译器生成额外的指令。对老一代的更改将导致在那一页设置一个脏位

（dirty bit）。在操作系统不允许用户程序使用这种脏位的情况下，用户程序可以这样来实

现对脏位的设置;对该页设置写保护并要求操作系统将违背保护的访问提交给用户模式

下的页失效异常处理程序，由这个程序来记录脏位并解除对该页的保护。

在垃圾收集开始时，记忆集合指出老一代中哪些对象（或卡片、页）有可能包含指向 G。代

的指针;需要扫描这些指针来寻找出所有的根结点。

收集器可以使用算法13-2 或算法 13-6来收集G。代;此时的"堆"或"from-space"即
G。，"to-space"是一个新的足以容纳G。中所有可到达对象的区域，而"根结点"则包括程序

286变量和记忆集合。指向较老一代的指针保持不变;标记算法不标记老一代中的记录，复制算法
逐字地复制这种指针但不传递它们。

在对 G。进行了若干次收集后，G;可能积累了相当多的应当收集的垃圾。由于 G。可能包含许
多指向 G，的指针，最好将 G。和 G;合在一起进行收集。同前面一样，也必须扫描记忆集合寻找

G2，G，⋯中的根结点。甚至在很少的情况下也还可能对G.进行收集，如此等等（见图 13-5）。

醇根 G。G。 ag B叶中口丁山 十二

GG1

记住的指针集合记住的指针集合一 G

G1 G.
p

（a）收集之前 （b）收集之后
图13-5 分代收集。粗箭头表示的是少有的从老一代指向较新一代的指针之一
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和其下一代的空间相比，每个较老一代的空间都呈指数级增长。如果 G。是0.5MB，则 G，
可能是2MB，G，就可能是 8MB，依此类推。当一个对象经历了对 G，的两到三次收集之后仍是

可到达的，就应当将它从G，提升到G，-1。

分代收集的代价。不知道以实验为基础的关于对象生命期分布的详细信息，我们就无法分

析分代收集的行为。不过，在实际中常见的情况是，最年轻一代中的活跃数据一般都小于10??

在采用复制式收集器的情况下，这意味着这一代的 H/R 值是10，因此分摊到每个回收字的代
价是 c，R/（10R一R），或大约1条指令。如果G。中约有50～100KB的可到达数据，且在最年
轻一代中H=10R，则"浪费"的空间大约是1MB。在50MB的多代系统中，这种代价是很小

的。
对较老的一代进行收集的代价要大一些。为了避免使用太多的空间，对老一代可以使用较

小的比值H/R。这样虽会增加老一代收集所花的时间，但由于对老一代进行收集的情况很少发
生，因此总的分摊时间开销仍然会比较理想。

维护记忆集合也需要花时间。为了将一个对象加人到记忆集合，然后处理此集合中该对象
的登记项，每一个指针更新约需 10 条指令。如果程序进行的指针更新大大超过新空间的分配，
则分代收集的代价可能会高于非分代收集的代价。

13.5 增量式收集

尽管整个垃圾收集所需的时间占全部计算时间的百分比非常小，但收集器还是偶尔会有较

长一段时间中断程序运行的情况。对于交互式程序或实时程序而言，这种情况是不受欢迎的

增量式的或并发的垃圾收集算法是在程序执行的同时插入垃圾收集动作，从而可避免对程序较

长时间的中断。 287
术语。收集器（collector）试图收集垃圾;与此同时，编译好的程序则不断地使可到达数据

图发生改变（变异），因此，称它为变异器（mutator）。在增量式（incremental）算法中，仅当
变异器需要时，收集器才进行操作;并且收集器的操作可以在变异器执行的任意两条指令之间，

或在其执行的任意指令期间，以一种并发的方式来进行。

三色标记（tricolor marking）。在标记-清扫式或复制式垃圾收集方式中，有以下三种记录。

·白色对象是用深度优先或宽度优先搜索那些还未访问过的对象。

·灰色对象是那些已经被访问过（标记或复制），但其儿子还未被查看过的对象。在

标记-清扫式收集中，这些对象是栈中的对象;在 Cheney 复制式收集中，它们是处在
scan 和 next 之间的对象。

·黑色对象是那些已经被标记过，并且其儿子也已被标记过的对象。在标记-清扫式收集

中，这些对象是已从栈中弹出的对象;在 Cheney算法中，它们是已经被扫描过的对象。
收集过程从所有白色对象开始，收集器执行算法13-8，它将灰色对象改变成黑色，并使

它们的白色儿子变为灰色。将—个对象由灰色变成黑色隐含着将它从栈中或队列中移出，将

一个对象变成灰色隐含着将它放至栈中或队列中。当已没有灰色对象时，所有白色对象都一

定是垃圾。



204 第二部分 高 级 主题

算法13-8 基本的三色标记

while存在任何灰色对象

选择一个灰色记录p
for p的每一个域j
if记录 p.是白色
将记录p.f;涂成灰色

将记录p涂成黑色

算法13-8是迄今介绍的所有标记-清扫式和复制式算法（算法13-1、算法13-2、算法13-3、
算法13-4 和算法13-6）的概括。

所有这些算法都保持了下面两个自然的不变式。

（1）不会有黑色对象指向白色对象。

（2）每一个灰色对象都位于收集器的（栈或队列）数据结构中（我们称之为灰色集合）。

288 在收集器操作期间，变异器创建新的对象（什么颜色?）并更新已有对象的指针域。如果变
异器违背了上述两个不变式之一，收集器就不能正确工作。
大部分增量式或并发收集算法都基于允许变异器在保持这两个不变式的前提下完成工作的

技术，下面是一些例子。

·Djkstra、Lamport等人的算法。每当变异器将一个白色的指针 a存储到一个黑色的对象b时，

它便会将 a涂成灰色的（编译器在每一条存储指令处生成对此进行检查的额外的指令）。

·Steele 算法。每当变异器将一个白色的指针a存储到一个黑色的对象b 时，它便会将b涂
成灰色的（利用由编译器生成的额外指令）。

·Boehm、Demers、Shenker算法。将全都是黑色的页标记为虚存系统中的只读页。每当变异
器将一个值存储到一个全黑的页时，页失效便会将那一页中的所有对象都标记成灰色的

（并使得这一页成为可写的）。

·Baker算法。每当变异器读取一个指向白色对象的指针 b时，它便会将 b涂成灰色的。

变异器决不会持有一个指向白色对象的指针，因此它不会违背不变式1。检查b的颜色

的指令是由编译器生成的，它们位于每一条取指令之后。

·Appel、Ellis、Li算法。每当变异器从任何含有非黑色对象的虚存页中读取一个指针b时，
页失效处理程序便会将那个页中的每一个对象改变为黑色的（同时使得这些对象的儿子

变成灰色的）。因此变异器决不会持有一个指向白色对象的指针。

这些算法中的前三个是栅栏写（write-barrier）算法，这意味着必须对变异器所执行的每一

条写数（即存数）指令进行检查以确保其遵守相关的不变式。最后两个算法是栅栏读（read-
barrier）算法，，这意味着读数（即取数）指令是必须进行检查的指令。我们前面在分代收集中

已见到了栅栏写的算法∶记忆表、记忆集合、卡片标记和页标记都是栅栏写的不同实现。类似
地，栅栏读也可以用软件（例如 Baker算法）或虚拟存储器硬件来实现。

栅栏写或栅栏读的任何实现都必须与收集器同步。例如，在 Dijkstra 风格的收集器企图将
一个白色的结点改变为灰色（并将它放到灰色集合中）的同时，变异器也正处在将该结点改变
为灰色（并将它放到灰色集合）的过程中。因此，用软件实现栅栏读或栅栏写需要显式地使用

同步指令，而这种指令的代价是很大的。

而使用虚拟存储器硬件的实现则可以利用页失效所隐含的同步;当变异器在某页发生了页
289 失效时，操作系统会保证在完成对该页的处理之前不会有其他进程访问该页。
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13.6 Baker 算法

Baker算法说明了增量式收集的细节。它是基于 Cheney 复制式收集算法的，因此要将可到

达对象从 from-space转递到 to-space。Baker算法可与分代收集兼容，这样 from-space 和 to-
space可以用于G。代，也可以用于G。十 ⋯+G，代。
为了启动垃圾收集（这发生在分配请求由于缺乏可用的存储空间而失败时），（原来的）

from-space和 to-space 的角色要进行交换，并且要转递所有的根结点，这个过程叫作翻转
（flip）。然后变异器恢复执行;但每次变异器调用分配器申请一个新记录时，会扫描 scan处的
几个指针，使得 scan 向 next推进。然后通过将limit 减小适当的数量而在 to-space的末尾分配

一个新的记录。
这里的不变式是∶变异器只具有指向 to-space 的指针（绝不会指向 from-space）。因此，当
变异器分配一个新记录并对它进行初始化时，不需扫描该记录;当变异器存储一个指针到老记

录时，它存储的只是一个指向 to-space 的指针。

如果变异器读取记录域，则它有可能会破坏这个不变式。因此在每一条读记录域的指令之

后需要有两到三条指令检查被取的指针是否指向 from-space。如果指向from-space，该指针必

须立即使用标准的转递算法进行转换。

对于每个已分配的字，分配器一定会使 scan向前移动至少一个字。当scan=next时，收集
过程将终止并一直到下一次分配器没有空间可分配时才会再次运行。如果堆空间被分为大小为

H/2 的两半，并且 R一H/4，则在 next延伸到 to-space 的一半之前，scan 将赶上 next;并且在

此时，新分配的记录所占的空间将不到 to-space 的一半。
Baker算法在翻转时复制的数据并不会多于活跃的数据。因为在收集期间分配的记录不经

过扫描，所以不会增加收集的代价。因此，收集代价是 c，R。但是，还存在着（在每一个分配

点）对是否需要增量扫描进行检查的代价，这个代价与H/2-R 成正比。

Baker算法的最大代价是为了维持不变式而在每条取数指令之后增加的额外指令。如果每

290]隔 10条指令就有一条读取堆记录的指令，并且这些指令需要两条额外的指令来测试它是否是一

个from-space 指针，则仅用于维持不变式的开销就至少是 20??所有用软件实现栅栏读/写的

增量式或并发式算法对普通的变异器操作都存在着相当大的开销代价。

13.7 编译器接口

支持垃圾收集语言的编译器通过在所产生的分配记录的代码中给出每一次垃圾收集的根结

点的位置描述以及堆中数据记录的布局描述来与垃圾收集器相互作用。对于某些增量式垃圾收

集的版本，编译器还必须生成实现栅栏读或栅栏写的指令。

13.7.1 快速分配

有些程序设计语言（和某些程序）分配堆数据（和产生垃圾）的速度非常快。用函数式语

言编写的程序尤其是这样，因为它不鼓励对旧数据进行更新。

对于一个合理的程序，我们能设想到的最多的分配（和垃圾）是每条存储指令分配一个字，
这是因为堆分配记录中的每一个字通常都会被初始化。经验性的测试表明，大约每执行7条指
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令就有一条是存储指令，这个结论几乎与程序设计语言或程序无关。因此，每执行一条指令
（至多）就有1/7个字的分配。

假设通过适当调整分代收集器可减少垃圾收集的代价，但即使这样。堆记录的创建代价仍

然还是相当大。为了尽可能地减少这种代价，应当使用复制式收集，使得分配的空间是连续的
空闲区域;这个区域的末端是limit，而 next则指向下一个空闲单元。为了分配一个大小为 N

的记录，其步骤如下。
（1）调用存储分配函数。

（2）测试 next十N<1imit是否成立。（若不成立，调用垃圾收集器。）
（3）将 next复制到 result。

（4）清除 M【next】，M【next+1】，⋯，M【next+N-1】。

(5)next-next+N。
（6）从分配函数返回。

A.将 result传送到计算上有用的某个地方。

291 B.将要用的值存储到该记录。
通过在所有分配记录的地方对分配函数进行内联扩展可消除步骤1和步骤6。步骤3常常可

与步骤 A合并进而得以消除，因为有步骤 B，所以可以消除步骤4（步骤 A和步骤 B没有编号

是因为它们属于有用的计算，而不属于分配开销）。

不能消除步骤 2和步骤5，但如果在同一个基本块中（或在同一条轨迹中，见8.2节）有多

个分配，则可在多个分配之间共用比较操作和自增操作。通过将 next和limit存放在寄存器中，

步骤2和步骤5总共只需3条指令。

通过这些技术的组合，分配一个记录（以及最终垃圾回收它）的代价可以减少到约需要4
条指今。这意味着在平常的程序设计中可以有效地使用诸如长效二叉搜索树（persistent binary

search tree，5.1.3节）这样的程序设计技术。

13.7.2 数据布局的描述

收集器必须能够操作各种类型的记录，如链表、树以及程序能声明的任何类型。它必须能

够确定每一个记录中域的个数，以及每一个域是否为指针。

对于静态类型语言（如 Tiger或 Pascal）或面向对象的语言（如 Java 或 Modula-3）识别堆

对象最简单的方法是让每个对象的第一个字指向一个特殊的类型（或类）描述字记录。这个记
录给出对象的总大小和每一个指针域的位置。

对于静态类型语言，每个记录有一字的开销用于垃圾收集器。但是面向对象的语言在每个

对象中需要这个字正好可以用来实现动态方法的查找，因此每个对象没有额外的用于垃圾收集

的开销。
编译器必须根据语义分析阶段计算出的静态类型信息生成类型或类的描述字，并将该描述

字的指针作为运行时系统的存储分配函数 alloc 的参数。

除了描述每个堆记录外，编译器还必须为收集器标识出那些存放指针的临时变量或局部变

量，并指出它们是存放在一个寄存器中还是在一个活动记录中。因为每一条指令都有可能使得
活跃临时变量集合发生改变，故指针映像（pointer map）在程序的每一点都是不同的。因此，

较简单的方法是，仅在那些可以开始一次新的垃圾收集的点上才描述指针映像。这些点是alloc292
函数的调用点;另外，由于调用的其他函数内也有可能再调用 alloc，在每一个函数的调用点都
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必须描述指针映像。
指针映像最好以返回地址作为键值;在位置 a 的一个函数调用最好用它的返回地址来描述。

即紧跟在 a后面的地址，因为这个返回地址是收集器在下一个被激活的活动记录中能看到的内

容。指针映像数据结构会将返回地址映射到活跃指针集合;对于每—个紧跟在这个调用之后的

活跃指针，指针映像都会指出它的寄存器号或栈帧中的位置。

为了找出所有的根结点，收集器从栈顶开始逐个栈帧地向下扫描，每一个返回地址键值对

应一个指针映像登记项，该登记项描述下一个栈帧。在每一个栈帧内，收集器从栈帧内的指针

开始进行标记《或在复制式收集的情况下进行转递）。

对被调用者保护的寄存器需要进行特殊的处理。假设函数f调用了函数g，而g 又调用了函

数h。函数h知道自己在栈帧内保存了一些被调用者保护的寄存器，并在其指针映像中反映了
这一事实，但是h 并不知道这些寄存器中哪些是指针。因此，g的指针映像必须指出在调h时

它的被调用者保护的寄存器中哪些是指针，哪些是从f"继承的"。

13.7.3 导出指针

有时候，已编译好的程序会有一个指向一个堆记录中间的指针，或者有一些分别指向该记录

之前或之后的指针，例如，对于表达式 a【i-2000】，在内部可能被计算成Ma-2000+i】;

1<-a-2000
合；工十
f ←M【2】

如果表达式a【i-2000】出现在循环内，编译器可能会选择将1←a-2000 提升到循环外执行，
以避免在每次迭代中都重复计算它。如果这个循环也包含了对 alloc 函数的调用，并且垃圾收

集发生在1，活跃时，那么收集器是否会被指针t并没有指向一个对象的开始处。更为糟糕的是

它可能指向一个毫不相关的对象而搞糊涂呢?

我们说这个t;是由基（base）指针a导出的（derived）。指针映像必须标识出每一个导出指

针（derived pointer），并指出导出它的基指针。于是，当收集器将 a重新定位到地址a'时，它

必须调整t1使之指向地址t;十a'一a。 [293
当然，这意味着只要t;是活跃的，a就必须保持是活跃的。考虑下面左边的循环，右边是

它的实现∶

1et r1 100
var a:=intarray[100] of 0 r2 ← 0

call alloc
a  r1

An 1;← a-2000
141930for:=1930 to 1990
宁”工，这宁十平do f(a[i-2000])
cal1 f
L2:if i≤199 goto L1end

如果没有其他地方使用临时变量a，在对1赋值之后 a 就将死去。但是这样一来，与返回地址

L;相关联的指针映像将不能恰当地"解释"1。因此，为了便于编译器的活跃分析，一个导出
的指针将隐含地保持其基指针是活跃的。
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程序设计∶描述字

实现用于 Tiger编译器的记录描述字和指针映像。

对于每一个记录类型的声明，构造一个字符串字面量作为记录描述字。这个字符串的长度

应当等于记录中域的个数。如果记录的第i个域是指针（字符串、记录或数组），则该字符串的

第i个字节应当为p;如果不是指针，则第i个字节应为n。

函数 allocRecord应该以记录描述字字符串（指针）作为参数，而不是用记录长度作为参

数，因为分配器可以从字符串字面量中得到记录长度。然后，allocRecord 函数应将这个描述字

指针存储在记录的第 0号域中。请你在运行时系统中实现此处所描述的修改。

现在，用户可见记录的各个域的位移量则由0.1，2，⋯变成了1.2.3.⋯。请对编译器进行适

当的调整。
设计用于数组的描述字格式，并在编译器和运行时系统中实现它。

用一个布尔变量为每个临时变量实现一个临时变量映像;它指出该变量是否为指针。同时，

为驻存在栈帧内的指针变量构造一个关于栈帧内位移的类似映像。你不必处理导出指针，因为

Tiger 编译器可能不保持导出指针是跨函数调用活跃的。

对于每个过程调用，紧跟在 call1指令之后放置一个新的返回地址标号L.。对每个这样的

294标号构造如下形式的一个数据段;
与前一个指针映像项的链接lpump37 呼学呈号学,word

word Lra3.27 本项的键值
,word . 本返回地址的指针映像

于是，运行系统就能遍历这个指针映像登记项的链表，并且可能会将它加入到它自己选择的数
据结构中，以便快速地查找返回地址。当然，安排数据的伪指令形式 （。word等）与具体的机器

相关。

程序设计∶垃圾收集

用C 语言实现一个标记-清扫式或复制式收集器，并将它连接到运行时系统中。当空闲空间

耗尽时，从 allocRecord或者 initArray中调用收集器。

推荐阅读

引用计数【Collins 1960】和标记-清扫式收集【McCarthy 1960】的历史几乎和具有指针的语言

一样久远。Knuth【1967】认为指针逆转的思想既应归功于 Peter Deutsch，也应归功于 Herbert

Schorr和 W.M.Waite。
Fenichel 和 Yochelson【1969】使用深度优先搜索算法设计了最初的空间对开的复制式收集

器;Cheney【1970】设计了一种算法将 to-space 中未扫描的结点作为宽度优先搜索队列，并使用

了半深度优先复制来改善链表的局部性。

Steele【1975】设计了第一个并发的标记-清扫式算法。Dijkstra等人【1978】形式化了三色标记
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的概念，同时设计了一个可证明正确性的并发算法，并尝试尽可能地弱化对同步的要求。Baker
【1978】发明了增量式复制算法，在这种算法中，变异器看到的只是指向 to-space的指针。
分代垃圾收集是由Lieberman 和 Hewitt【1983】发明的，它利用了较新的对象死得较快且从

295老对象指向新对象的指针很少这一事实;Ungar【1986】开发了更简单有效的记忆集合机制。

Symbolics Lisp机器【Moon 1984】有专门辅助增量式垃圾收集和分代垃圾收集的硬件。微代
码式的存储器取指令可强制保持 Baker算法的不变式;微代码式的存储器存数指令可为分代收

集维护记忆集合。收集器通过将有关联的对象保存在同一个虚存页中，第一次明显地改善了引

用的局部性。
由于现代计算机已很少使用微代码，并且嵌入在通用存储层次体系结构中的现代通用微处
理机往往比采用特殊指令和存储器标识的计算机更快而且更便宜，到 20世纪 80年代末期，人

们的注意力便转移到了那些可以用标准 RISC指令和标准虚拟存储器硬件来实现的算法上。

Appel等人【1988】在一个采用 Baker算法的真实并发变种中用虚拟存储器实现了栅栏读;Shaw

【1988】使用虚拟存储器的脏位实现了用于分代收集的栅栏写;Boehm 等人【1991】为并发分代收
集的标记-清扫提供了同样简单的栅栏写服务。栅栏写的实现比栅栏读的实现代价要小，这是因

为向旧的页中存数的操作比从 to-space中取数的操作更为稀少，并且栅栏写只需设置一个脏位，

对变异器造成的中断极少。Sobalvarro【1988】发明了卡片标记技术，这种技术使用普通的 RISC

指令。不需要与虚拟存储器系统打交道。

Appel和 Shao【1996】介绍了快速分配堆记录的几项技术，并讨论了其他几个与垃圾收集系
统有关的效率问题。

Branquart 和 Lewi【1971】描述了用于编译器与其垃圾收集器之间进行通信的指针映像;
Diwan等人【1992】将指针映像与返回地址绑定在一起，说明了如何处理派生指针和如何压缩映像

以节省空间。
Appel【1992，第12章】指出函数式语言编译器必须小心处理闭包表示。例如，使用简单的静

态链会使得大量的数据是可到达的，从而妨碍了收集器回收它们。
Bochm和 Weiser【1988】介绍了一种保守收集（conservative collection），在这种方法中，编
译器不告诉收集器哪些变量和记录域包含指针，收集器必须自己做出"猜测"。任何指向已分配

堆内的位模式都假定可能是指针，并且被它指向的记录将保持活跃。但是，这种位模式可能实

际表示的是一个整数，它是不能移动的（移动它会导致这个整数发生改变），从而有些垃圾对象 296
可能不能被回收。Wentworth【1990】指出，这样的一个整数有可能（碰巧）是一个指向一个极
大垃圾数据结构的根结点的指针，从而导致这个极大的垃圾数据结构不会被回收。因此，保守

收集偶尔也会遇到损失惨重的内存泄露。Boehm【1993】介绍了几种使得这类损失不会发生的技

术。例如。如果收集器发现—个整数指向的地址 X不是当前分配对急的地址，它就应该将该地

址加入到黑色表中，使得分配器决不会在其中分配对象。Bochm【1996】指出，即使是保守收集
器也需要一定的编译器辅助∶如果一个导出指针能够指到一个对象的边界之外，那么只要这个
导出指针还存在，就要认为它的基指针是活跃的。

第 21章的"推荐阅读"对若干关于改善垃圾收集系统Cache性能的文献进行了讨论。

Cohen【1981】全面地综述了最初 20 年关于垃圾收集的研究;Wilson【1997】描述并讨论了一
些更新的工作。Jones和Lins【1996】出版了一本全面论述垃圾收集的教科书。
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习题
'13.1 分析比较标记-清扫式收集和复制式收集的代价。假设每个记录恰好为两个字长，并且

记录的每个域都是指针。有些指针可能指向可收集的堆之外的空间，这种指针将保持

不变。
a.分析算法13-6 以估计c，即深度优先标记的代价（以每个可到达字的指令条数为

单位》。
b.分析算法13-3以估计 c2，即清扫的代价（以堆中每字的指令条数为单位）。

c.分析算法13-9 以估计c，即复制式收集的每个可到达字的代价。
d.存在着某个比值y，使得对于 H=浓，复制式收集的代价等于标记-清扫式收集的代
价。找出γ。

e.对于H>水R，标记-清扫式收集和复制式收集哪一种方法的代价更小?
13.2 对图 13-1的堆运行算法 13-6（指针逆转）。给出第一次标记含有59的结点时，堆、

done标记以及变量 t、x和y的状态。
*13.3 假设main调用f时，所有被调用者保护的寄存器全都为0。接着f保存它要使用的那[297]
些被调用者保护的寄存器;将一些指针存放到某些被调用者保护的寄存器中。将一些

整数存放在另外一些被调用者保护的寄存器中，对其余的寄存器不做改动;然后调用

g。现在g保存某些被调用者保护的寄存器，将一些指针和整数赋给这些寄存器、然后

调用函数 alloc，此时 alloc启动垃圾收集。
a.写出符合上述描述的函数 f和函数 g。

b.举例说明函数f和函数g的指针映像。

c.给出收集器为恢复所有指针的确切地址而采取的步骤。

"13.4 Java语言中的所有对象都有一个 hashCode（）方法，该方法返回一个"散列码"给对
象。散列码并不是唯一的，不同的对象可以返回相同的散列码;但是每个对象在每次

调用 hashCode（）方法时都必须返回相同的散列码，并且随机选择的两个对象返回相同

散列码的可能性应当比较小。

Java语言规范指出;"hashCode（）的典型实现是将对象的地址转换为一个整数，但

这种实现技术并不是Java 语言要求的。"

解释在一个具有复制式垃圾收集的 Java系统中，用这种方法实现 hashCode（）遇到

[298 的问题，并提出一种解决方法。
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反感（ob-ject）∶不喜欢某事物。

韦氏词典

软件工程中一个有用的原则是信息隐藏（information hiding），也叫封装（encapsulation）。

一个模块可以提供一种给定类型的值，但是这个类型的具体表示则只有这个模块才知道。模块

的客户只有通过模块提供的操作才能操纵其中的值。用这种方式，模块可以保证它所提供的值
总是满足它自己选定的一致性要求。

面向对象的程序设计语言是为了支持信息隐藏而设计的。因为"值"可以具有一些内在的
状态，操作可以修改这些状态，所以在这个意义上称这种值为对象（object）。典型的"模块"

只操纵一种类型的对象，因此我们可以去除模块的概念，并（在语法上）将这些操作当作对象

的域来对待，在对象中称这种域为方法。

面向对象语言的另一个重要特征是扩展（extension）或继承（inheritance）的概念。如果某

个程序的上下文（例如一个函数或方法的形式参数）期望有一个支持方法 m;、m;、m，的对

象，那么它也能够接受一个支持方法 m、ma、m。、m 的对象。

14.1 类

为了举例说明面向对象语言的编译技术，我将使用一种简单的基于类的面向对象语言，其

名字为Object-Tiger。 299
我们用下面这些新的用于声明类的语法来扩充 Tiger语言∶

dee → classdec
classdee → class class-id extends class-id { {classjeld}]
classfeld→> vardec
classfeld→merhod
method → method id(ryfields)= exp
method → method id(yfields): ype-id= esp

calss Bextends A丨⋯!声明一个由类A扩展而来的新的类 B。这个声明必须位于声明 A的
let表达式的作用域之内。所有属于A的域和方法隐含地都属于B。B中可以重载（重新声明）A

的某些方法，但是不可以重载A的域。这个重载的方法的参数和结果的类型必须与被重载的方

法的参数和结果的类型相同。

有一个预先定义的不含域和方法的类，其标识符为Object。

方法与函数很相似，它有形式参数和方法体。但是，属于B的每一个方法都有一个隐含的类

① 英文中object既有"对象"的含义又有"反感、反对"的含义。作者在这里选用的解释是"to fcel distaste for

something"，它表达了作者的一种观点，即面向对象的程序设计语言也有不受欢迎的一面。——译者注
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型为B的形式参数 self。但 self不是保留字，只是一个在每一个方法中自动绑定的标识符。
初始化对象的各个数据域的责任由这个类自己承担，而不是由客户承担。因此，对象域的
声明看起来更像变量声明而不像记录域的声明。

我们用一种新的表达式语法来创建对象和调用方法;

exp→ new class-id
→ lvalue.id()
→ vualue. id(expl, exp)

表达式 new B 创建一个新的类型为B的对象;这个对象的各个数据域的初始化是通过计算 B

的类声明中与这些域对应的初值表达式来完成的。

左值b.x表示对象b的域x，其中b是一个类型为B的左值;这种表示与记录域选择的表示

相同，因而不需要新的语法。
表达式b.f（x，y），其中b是一个类型为B的左值，表示以显式的实参x和y;以及f的隐含
参数 self 的值b调用对象 b的方法f。
程序14-1举例说明了 Object-Tiger 语言的使用。每一个Vehicle是一个Object，每一个Car300]
是一个Vehicle，因此每一个Car也是一个Object。每一个 Vehicle（例如每一个 Car 和 Truck）

有一个整型域 position 和一个方法 move。

程序14-11 一个面向对象程序

let start:=10

class Vehicle extends Object {
var position := start
method move(int x)=(position := position ＋ x)

class Car extends Vehicle{
Var passengers!:= 0
method await (v:Vehicle) =
if(v.position < po8ition》
then v.move(position - v.position)

else nelf.move(10)

class Truck extends Vehicle{
method move(int x)=
if x <= 55 then position ;= position +x

var t:= new Truck
var c:= new Car
var v:Vehicle := c
in
C,passenger8:= 2;
c.move(60):
v.move(70):
c.await(t)
end

此外，Car有一个整型域 passengers和一个方法 await。在 await方法的人口起作用的变量
如下。
·start，根据正常的Tiger 语言作用域规则。
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·passengers，因为它是 Car 的一个城。
·position，因为它是Car的一个（隐含的）城。
·v，因为它是 await的一个形式参数。
·self，因为它是 await的一个（隐含的）形式参数。

在主程序中，表达式 new Truck 的类型为Truck，所以t的类型是 Truck（按 Tiger中变量声明

的标准方式）。变量c的类型为 Car，变量v的类型显式地声明为Vehicle。在要求类型 Vehicle

的上下文中（v的初始化）使用c（其类型为Car）是合法的，因为类 Car是Vehicle的子类。 301
类Truck重载了Vehicle 的方法 move，使得任何使一辆货车移动速度大于55的 move 企图都

不会起作用。
在调用c.await（t）时，货车t与 awai方法的形式参数v结合。当调用v.move时，它激活

的方法体是Truck_move，而不是 Vehicle_move。

我们用记号Am表示类A中声明的一个方法的实例m。它不是 Obiect-Tiger 语法的组成部分，

而只是用来讨论 Object-Tiger程序的语义。一个方法的每一种不同的声明是一个不同的方法实例。
两个不同的方法实例可以有相同的名字。例如。当一个方法重载了另一个方法时就是这种情况。

14.2 数据域的单继承性

为了计算表达式v.position，其中v属于类Vehicle，编译器必须生成代码从v指向的对象

（记录）中取出域 posiion 的值。

实现这一点似乎很容易∶变量v的环境登记项（除了有其他信息外）包含一个指向 Vehicle

类型（类）描述的指针，这个类型描述包含一张描述各个域及其位移的表。但是在运行时，变
量v也可能会包含指向 Car或者 Truck的指针，那么域 position 应当是 Car中的域，还是Truck

中的域呢?
单继承（single inheritance）。在单继承语言中，每个类只能由一个父类扩展而来。对于这种

语言，可以用简单的前缀技术来处理。如果B由A扩展而来。则将 B中那些从A继承过来的域安

排在记录B的开始处，并保持它们在A记录中相同的顺序;而B中那些不是从A继承过来的域都
排在后面，如图14-1所示。 302]

class A extends Object( 过只 CVar a := 0} Oe =e鑫class B extende A{var b:-0
工序 pvar c:= 0} 6。(var d := 0]clas9 C extends A 幻9{var e 1= 0)cla9s D extend8 B

图14-1 数据域的单继承

方法
编译一个方法实例很像编译一个函数;它被转换成驻存在指令空间中一个特定地址处的机器

代码。让我们举个例子，比如方法实例Tuck_move的人口点的机器代码标号是Truck_move。在编

译器的语义分析阶段，每个变量的环境登记项有一个指向其类描述字的指针;每个类的描述字有

一个指向其父类的指针和一张方法实例的链表;每一个方法实例有一个机器代码标号。
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静态方法。有些面向对象语言允许将一些方法声明成静态的（static）。调用c.f（）时执行的
机器代码取决于变量c 的类型，而不是存放在c中的对象的类型。为了编译形如 c.f（）的方法
调用，编译器要找到c的类，假设它是类C。于是编译器将在类C中搜索方法 f;若在C中搜索

不到，则要在类C的父类，即类B中搜索;若还找不到，则需进一步在类B的父类中搜索;依此

类推。假设在某个祖先类A中发现了静态方法f。编译器就能将这个方法编译成对标号Af的函

数调用。
动态方法。上面的技术不适用于动态方法。如果A中的方法f是一个动态方法，则该方法

可以在C的某个子类D中被重载（见图14-2）。但是在编译期间，无法确定变量c指向的是类D

的一个对象（这时应该调用D_f）还是类C 的一个对象（这时应该调用A_f）。

clasg A extends Object{
var x :=0 ×XXXmethod f () -/{method g() 人rclass B extends A
(method g()class C extends B

Bvar y :=0class D extends C LA团 [AfA [A f D[D7噪

method f()] CgB3 [Cg

图14-2 用于动态方法搜索的类描述字

为了解决这一问题，类描述字必须包含一个向量，在此向量中每个（非静态的）方法名对

应有一个方法实例。当类B继承类A时，其方法表的开始是A的所有方法名的登记项，然后才是
B中用new 声明的新方法。这种安排很像继承对象的各个域的安排。

303 图14-2 说明了类 D重载方法F时发生的情况。尽管此时f的登记项和它位于祖先类A的方
法表的开始一样，也位于D的方法表的开始，但它指向的是一个不同的方法实例标号，因为f
已经被重载了。
为了执行c.f（），其中f是一个动态方法，编译好的代码必须执行如下一些指令。
（1）在对象c的位移0处取出类描述字d。

（2）从d的位移f（f是常量）处取出方法实例指针p。
（3）转移到地址 p，并保存返回地址（即调用 p）。

14.3 多继承

在允许一个类D继承多个父类A、B、C（也就是说，A不是B的子类，B也不是A的子类）的

语言中。要找出域的位移和方法实例会更困难。不可能做到既将 A的所有域都放在 D的开始，

又将B的所有域也都放在 D的开始。

全局图着色。解决上面这个问题的一种方法是静态地一次同时分析所有的类，找出每个域

名的某个位移，使得这个位移能够用于每一个包含此域的记录。我们可以将这个问题建模为图

着色问题∶每一个不同的域名"对应一个结点，共存于同一个类的（可能是通过继承而存在的）
任意两个域之间存在一条边，位移0，1，2，⋯是不同的颜色。图14-3给出了一个例子。

① 不同的域名并不是指简单的字符串上的不同。域或方法x的每一个新的声明（它没有重载父类的x）实际上是

-一个不同的名辛。
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BA DCclass A extends Object{var a:= 0}
革e单dla8B B extends Object {var b:= o ebvar c :"0}
包同class C extends A {var d := 0]

class D extends A,B,C {var e:= 0} O人 e
图14-3 数据域的多继示

采用这种方法的一个问题是，在各个对象之间会留下一些空单元，因为不可能总是用前 N
种颜色对每个类中的N个域着色。为了消除对象之间的空单元，可以将每个对象的域紧凑地安

304]排在一起，让类描述字来指出每个域的位置。图14-4给出了一个例子。我们仍像以前一样对所

有的域名进行着色，但是现在这些"颜色"不是对象中域的位移，而是描述字中的位移。为了

读取对象 x中域a的内容，必须从x的描述字中取出与a对应的那个字，那个字中包含了一个
小的整数指出 x中a的数据的真正位置。

下b 国己a
一占一c o
砷e

B D4 。
而司 a|

叫占。
了0 ， 3

[e 46
础e

图14-4 用于多继承的描述字中的域位移

用这种策略，空单元只出现在类描述字中，而不会出现在对象中。这种情况是可以接受的，

因为一个具有成千上万个对象的系统中很可能只有几十个类描述字。但每次读取（或存储）域

中的数据会需要三条指令而不是一条指令。

（1）从对象中取出描述字指针。
（2）从描述字中取出域位移值。
（3）在对象的适当位移读取数据（或存储数据）。

实际上，这个对象上所进行的其他操作很可能已取出了描述字指针，并且同一个域所进行

的多个操作可以不需要重新从描述字取出位移值。公共子表达式删除可以删除大部分这种冗余

开销。

方法查找。找出多继承语言的方法实例与找出域位移一样复杂。全局图着色方法可以实现

对方法实例的查找∶方法名可以同域名混在一起构成冲突图中的结点。描述字中域的登记项给

305]出域在对象中的位置∶描述字中方法的登记项则给出方法实例的机器代码地址。

动态连接问题。任何一种全局方法都受到着色（及类的描述字的布局）只能在程序连接时

才能进行的困扰;这一工作实际上应由专用连接器来完成。
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但是，许多面向对象的系统都具有往运行系统中加载新类的能力，这些新加载的类可能是

系统中正在使用的类的扩展类（子类）。对于一个允许动态增量连接的系统，连接时的图着色会
引起许多问题。

散列。我们可以不使用全局图着色方法，而是在每个类描述字中增加一个散列表，它将域

名映射到位移，将方法名映射到方法实例。这种方法可以很好地适应分开编译和动态连接的

情况。
域名的字符不是在运行时散列的，而是在编译时。每一个域名a在编译时被散列到一个位

于范围【0.N—1】之内的整数。另外，对于每一个域名，还为每个域创建唯一的运行时记录（指

针）ptra。
每个类描述字有一个大小为 N 的域位移表 Ftab，此表中包含域位移和方法实例，并日（为

了冲突检测的目的）与之并行地还有一个包含域名指针的键值表Ktab。如果一个类有一个域x，

则在域位移表编号为 hash，的单元中含有x的位移，键值表编号为hash，的单元中将含有指针

ptr..
为了取出对象 c 的域x的值，编译器要生成以下代码。

（1）从对象c的位移0处取出类描述字d。
（2） 从地址位移为 d+Ktab+hash，处取出域名f。

（3）测试f=ptr，是否成立;如果成立。则
（4）从地址位移为 d+Ftab+hash，处取出域位移k。

（5）从c+k处读取域的内容。

尽管这个算法有4条指今的开销，但仍然是可忍受的类似的算法也可用于动态方法实例

的查找。
上面描述的算法没有说明当步骤3测试失败时应该如何做。我们可以使用任何一种散列表

冲突处理技术。

14.4 测试类成员关系

有一些面向对象的语言允许程序在运行时测试一个对象是否是某个类的成员，表 14-1概括

了这种测试。
表14-1 用于类型测试和安全类型转换的实用函数

Jav维Modul-3
ISTYPE(X,C) 文 instanceof C测试对象 x是否属于类C或类C的任何子类。

(D)xNARROW(×D)给定类C的一个变量x，其中x实际指向从C扩展而来的类D

的一个对象，产生一个编译时类型为类D的表达式。

因为每个对象都指向它的类描述字，所以类描述字的地址可以作为"类型标志"（type-306
tag）。但是，如果x是D的一个实例，并且D扩展C，那么x也是C的一个实例。假设没有多继
承，实现x instanceof C的一种简单的方法是生成运行时执行下面循环的代码∶

r14x.descriptor
L1:if1=C goto true
1←-1.super
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if 1= nil gotofalse
gotoL1

其中1.super是类1.的超类（即父类）。
不过，还存在一种更快的方法，这种方法使用父类的嵌套层次显示表。假设限制类的嵌套

深度为某个常数，比如说20。我们在每一个类描述字中保留一块 20 字大小的空间。对于一个嵌
套深度为i的类D.我们在它的描述字的第j个单元中放置一个指向描述字D的指针，在第j一1

个单元中放置一个指向 D.super的指针，在第j—2个单元中放置一个指向D.super.super的指
针，依此类推，直到在第 0个单元放置一个指向 Object的指针。在所有编号大于j的单元中均

放置nil。
现在，如果x是D的一个实例，或者是D的任何子类的实例，那么x的类描述字的第j个单

元将指向类描述字 D∶否则就不会指向 D。所以实现× instanceof D需要执行下面的步骤。

（1）从对象c的位移0处取出类描述字d。

（2）从 d中取出第j个类指针单元的内容。

（3）与类描述字D相比较。
之所以可以这样做是因为 D的类嵌套深度在编译时是已知的。

类型强制（type coercion）。已知一个类型为C的变量c，总是可以合法地将c看作C的任

307意一个超类的类型。例如，如果C继承于B，并且变量b的类型是B，则赋值 b←-c是合法且安

全的。
但是反之不然。仅当b确实是C的一个（运行时的）实例时，赋值 c←b才是安全的，但
这个条件并不总能满足。例如，如果在 b*-new B，c-b之后紧跟着一个读取c 的某个域的操
作，而此域属于类C但不属于类B，则这个取值操作就会导致不可预测的行为。

因此，安全的面向对象语言（比如 Modula-3和 Java）在强制任何超类到子类的转换时，会

伴随着有运行时的类型检查;当运行时的值不是这个子类的一个真正的实例时（例如，不是b

instanceof C），这种检查便会产生一个异常。
下面是常见的程序设计习惯用语∶

Java:Modula-3:
if(b Instanceof C)IP ISTYPE(b,C)

f((c)b)THEN f(NARROW(b, C))
else..gLSE .

这两个例子中都接连有两个相同的类型测试∶一个是显式的（ISTYPE或 instanceof），一个是
隐式的（出现在NARROW中或通过类型强制）。—个好的编译器会进行充分的流分析以便能够

注意到只有当b确实是C的一个实例时，才有可能到达 then子句。因此在这种情况下。可以消

除向子类转换运算的类型检查。
C十是一种不安全的面向对象语言，它具有一种不需要运行时检查的静态类型强制转换

（static cast）机制。粗心地使用这种机制可能会导致程序出现不可预测的错误。C十也有一种

具有运行时检查的动态类型强制转换（dynamic_cast）机制，这种机制与 Modula-3和Java中的

机制非常类似。

typecase语句。先显式地进行 instanceof 测试，然后再通过向子类的转换将一个类转换成子
类，这不是一种合乎 "面向对象"的风格。程序员期望使用能正确适应每一个子类的动态方法而

不是这种习惯用法。尽管如此∶先测试然后再转换成子类的习惯用法仍然非常普遍。
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Modula-3提供了一种类型分情形语句——typecase，它使得这一习惯用法更加美观、更加高
效（但并不更"面向对象"）∶

TYPECASE expr
OF C:(w)=> SI
IC2(2)-S2

C,(b)-S.
ELSE S
END
如果计算出expr 是类C，的一个实例，则有一个类型为C;的新变量v，将指向expr的结果，308]
并且将执行语句S。v的声明隐含在 TYPECASE中，它的作用域只局限在S中。
如果匹配的C，超过一个（这种情况会发生，比如，一个类是另一个类的超类），那么只执

行第一个相匹配的子句。如果没有一个 C;可匹配，那么执行 ELSE子句（执行语句 S。）。

typecase 能直接转换成一系列的 else-if子句，其中每一个i子句执行一个实例测试和一个子

类转换，并声明一个局部变量。但是，当有太多的子句时，要遍历所有的elseif子句就需花很
长的时间。因此有吸引力的做法是将它看成一个基于整数的分情形语句（或 switch语句），并使

用变址转移（即计算goto）。

一条普通的基于整数的分情形语句;

ML: C.Java;
gwitch (1){case 1

of 0-> 50 case 0:s0;break;
case 1:51;break:1■> 51

2  2 case 2:52;break:
3=>33 Case 3:53;break;

case 4:S4;break;4 => 54
default: siw

将被编译成∶先进行范围测试比较，以保证i处在 case 标号的范围内《这个 case 子句中为

0～4）;然后从一张表的第i个单元中取出第i条语句的地址，并将控制转移到s。
由于有子类的原因，这种方法不适合于 typecase。也就是说，即使我们能够将类描述字变成

一个小整数来替代指针，也不能根据对象的类来进行变址转移，因为这样做会遗漏那些与这个

类的超类相匹配的子句。因此 Modula-3的 typecase 仍然是用一系列的 else-if子句来实现的。

给类指派整数并不是一件简单的事，因为每一个分开编译的模块都可以定义自己的类，并
且我们不希望这些整数发生冲突。不过高级连接器能够在连接时给各个类无冲突地指派整数。
如果出现在 typecase中的所有类都是 final类（在 Java中它们是不能再被扩展的类），则不

会有这种问题。Modula-3中没有 final类，而 Java中没有 typecase 语句。但是一个明智的 Java
系统应当能够认别出对这种 final类集合进行 instanceof 测试的else-if子句序列，并且将它们

转换成变址转移。309

14.5 私有域和私有方法

真正的面向对象语言能够保护对象的域不被其他对象的方法直接操纵。私有域是不能被对

象之外声明的任何函数或方法读取和更新的域;私有方法是不能在对象之外调用的方法。
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私有性是由编译器的类型检查阶段来保证的。在类C的符号表中，同每个域的位移和方法的
位移在一起的，还有一个布尔类型的标志，它指出这个域是否为私有的。当编译表达式c.F（）

或者c.x时，只要简单地检查这个域并且拒绝对象之外声明的方法对此私有域的任何访问即可。

私有性和保护有各种形式，不同的语言允许∶
·域和方法只可由声明它们的类来访问;

·域和方法可由声明它们的类来访问，并且也可由这个类的子类来访间;

·域和方法只在声明类的同一个模块（包、名字空间）内是可访问的;

·域在类声明之外是只读的，但对本类的方法是可写的。
一般而言，对于基于类的语言，这些不同形式的保护机制可以通过编译时的类型检查静态

地实现。

14.6 无类语言

有一些面向对象语言根本不使用 class 的表示。在这种语言中，每个对象能够实现任意一种

方法，能够拥有它想要的任何数据域。这种语言的类型检查一般是动态的《运行时完成），而不

是静态的《编译时完成）。

许多对象是通过克隆来创建的，即复制一个已存在的对象（或模板对象），然后修改其中的
某些域。因此，即使在无类语言中，也会有一些由相似对象组成的组（称为"伪类"），这种伪

类中的对象可共享描述字。如果b是通过克隆a而创建的，则它可以与a共享一个描述字。只
有当b加入了一个新的域，或者更新（重载）了一个方法时，它才需要一个新的描述字。

编译无类语言所使用的技术与具有多继承和动态连接的基于类的语言所采用的技术类似∶[310]
伪类的描述字也包含能产生域位移和方法实例的散列表。

适用于基于类的语言的全局程序分析和优化，如找出在（动态）方法调用点调用的是哪一

个方法实例的技术，也同样适用于无类语言。

14.7 面向对象程序的优化

对于面向对象语言特别重要的一种优化《作用于一般程序设计语言的优化也能使面向对象

语言受益）是将动态方法调用转换为静态方法实例调用。

与普通的函数调用相比，为了确定调用的是哪个方法实例，在每个方法调用点都需要动态

地进行方法查找。对于单继承的语言，方法查找只需要两条指令。这看起来似乎代价不大，但
是请注意以下两点。

·现代机器直接转移到常量地址比转移到从表中取出的地址更具效率。当在指令流中明显

地给出了地址时，处理机能够从目的地址中将指令预取到高速缓存中，并指挥指令发送
机制从转移目标处取出指令。不可预测的转移指令会导致指令发送和执行流水线停顿若

干个时钟周期。

·对于具有内联扩展或过程间分析的优化编译器而言，如果它不知道在给定点调用的是哪
一个方法实例，就不能很好地对调用的结果进行分析和推测。

对于多继承和无类的语言，动态方法查找的代价会更大。
因此，面向对象语言的优化编译器要执行全局程序分析，以确定出那些总是调用同一个方
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法实例的方法调用点，这样就可以用静态的函数调用来取代动态的方法调用。

对于方法调用c.f（），其中c是类C的实例，类型层次分析（type hierarchy analysis）可用来

确定C的哪些子类中包含可重载C f的方法f。如果没有这种方法，则这个方法实例一定是C f。

这种思想可以和类型传播（type propagation）结合起来。类型传播是一种与到达定值相似

的静态数据流分析形式（见17.2节）。在赋值 c←-new C之后便可确切地知道c属于哪个类。这311]
一信息可通过赋值 d←c 等进行传播。当遇到 d.f（）时，类型传播信息限制的类型层次范围使得

有可能确定出方法实例为d。

假设类C中定义的方法f用self调用方法g。但是g是一个动态方法并且可能被重载，因此

这个调用需要进行动态方法查找。优化编译器可以为每个从C继承的子类（例如 D、E等）创建

方法实例C f的一个不同的副本。这样当（新的副本）D_f调用g时，编译器不需要进行动态方

法查找就能知道应调用实例 D_g。

程序设计∶Object-Tiger

在你的 Tiger 编译器中实现Object-Tiger 关于面向对象的扩充。

本章对Object-Tiger 语言的介绍还遗留了许多内容未加说明。例如，如果方法F的声明先于
方法g的声明，f可以调用g吗?一个方法可以访向该类的所有变量，还是只能访问在它之前声

明的变量?一个类的变量（域）的初值能否调用该类的一个方法（并且这个方法能否因此而看
到一个未初始化的域）?因此你需要细化Object-Tiger 语言的定义并给出相应的文档。

推荐阅读

Dahl和 Nygaard的 Simula 67语言【Birtwistle et al.1973】介绍了类、对象、单继承、静态方
法、实例测试、typecase 等概念，以及实现静态单继承的前缀技术。另外，Simula 67语言也支

持协同程序（coroutine）和垃圾收集。

Cohen【1991】提出了用于类成员关系测试的嵌套层次显式表，这种方法的测试时间是常数。
动态方法和多继承出现于 Smalltalk 语言中【Goldberg et al.1983】，但是在它最初的一些实

现中，为找出方法实例所使用的是一种较慢的查找父类的方法。Rose【1988】和 Connor 等人

【1989】讨论了用于多继承的基于散列的访问域和访向方法的快速算法。在实现多继承中使用图

着色方法的做法应归功于 Dixon等人【1989】。Lippman【1996】说明了如何实现C十+风格的多

继承。312]
Chambers等人【1991】描述了使得无类的、动态类型语言的执行更有效率的几种技术，如伪

类描述字、多版本方法实例和其他优化技术。Diwan等人【1996】描述了静态类型语言的优化∶

这种优化可以用静态函数调用代替动态方法调用。

传统的面向对象语言为调用a.f（x，y）选择方法实例时，只根据方法 receiver（a）的类而不考

虑其他的参数（x.y）。具有多方法【Bobrow et al.1989】 的语言允许依据所有参数的类型来查找
动态方法。Chambers 和 Leavens【1995】说明了如何实现多方法的静态类型检查∶Amiel等人

【1994】与 Chen 和 Turau【1994】说明了如何实现高效的动态多方法查找。

Nelson【1991】描述了Modula-3语言，Stroustrup【【1997】描述了C十—语言，Arnold和 Gosling

【1996】描述了Java语言。
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习题
*14.1 用嵌套层次显式表技术（见14.4节的解释）来测试类成员关系的一个问题是，必须预

先确定类的最大嵌套深度 N，并且每个类描述字需要有N个字大小的空间，即使大部

分类的嵌套深度并没有这么大也必须如此。设计一种不受此问题限制的嵌套层次显式

表技术;与14.4节介绍的嵌套层次显式表相比，它可能有多几条指令的代价。

14.2 14.3节最后介绍的、用于在有多继承的情况下查找域位移和方法实例的散列表技术是不
完整的——它没有解决 f≠ptr，的情况。选择一种解决冲突的技术，解释它的工作原理，

并分析在 f=ptr，（没有冲突）和f≠ptr，（有冲突）的情况下要付出的额外代价（以指

令为单位）。
14.3 考虑下面的类层次，其中包含5个方法调用点。说明哪些方法调用点调用的是已知的
方法实例，并说明（每种情况下）调用的是哪个方法实例。例如，你可以说"方法实

313例X_g总是调用Yf;方法2_g可以调用f的多个实例"。

method f ()= print(*1"))class A extends Object
method g()=(f();print("2"))cla38 B extend8 A

method f()=(g():print("3"))class C extends B
method g(>■(f();print("4"))clas8 D extendis C
method g()=(f();print("5"))clasg E extends A
method g()(E();print("6"))claBs P extends E

根据下面的每一个假设来进行这种分析。

a.这是一个完整的程序，并且这些模块没有其他的子类。
b.这是一个大程序的一部分，并且这些类中任何一个都可能在其他地方被扩展。
c.类C和类E局部于这个模块，并且不能在其他地方被扩展;其他的类可以被扩展。

"14.4 使用方法复制（method replication）来改善你对习题14.3中程序的分析，也就是说，
使得每一个类都重载 f和g。例如，在类B中（它还没有重载 f）加人方法AF的一个

副本，在D中加入C_f的一个副本∶

{... method f()=(print("1*)))clas8 B extends A

cla8s D extends C ..method f()=(g(); print("3"))]

类似地，增加新的实例E_f、F_f和C_g。现在，对于习题14.3中a、b、c 的每一组假

设，说明哪个方法调用会转到这些已知的静态实例。
*14.5 为只涉及final类的任意 typecase 设计一种高效的实现机制。final类是指不能再被扩
展的类。（在Java中，有一个final关键字;但是在其他的面向对象语言中，不是从模
块中导出的类实际上也是一个高效的 final类，并且连接时的全程序分析能够发现哪些

类从没有被扩展，不论这些类是否被声明为final）

你可以做出下面任意一种假设，但必须指明你需要使用的是哪一种假设。

a.连接器可以控制类描述字记录的放置。
b.类描述字是由连接器管理的整数，它起作描述字记录表索引的作用。

c。编译器显式地标记出 final类（在它们的描述字中）。

d.typecase 的代码可以在连接时生成。
314]c.程序开始运行后，不会有其他的类和子类被动态连接到该程序中。
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函数（func-tion）;将集合中的一个元素确定地映射到同一个集合或另一个集合中一个元素

的数学对应关系。

韦氏字典

函数的数学概念是∶如果"这次"f（x）=a，则"下次"仍有f（x）=a;f（x）不会等于其
他值。这样我们就可以使用类似于代数中的等式推理（equationalreasoning）;如果 a=f（x），

则g（f（x），f（x））等于g（a，a）。使用纯函数式（pure functional）程序设计语言就可以像在数学

中一样进行等式推理式的程序设计。

命令式（imperative）程序设计语言有着相似的语法∶a←-f（x）。但是如果这条语句之后接
有 b←-f（x），则不能保证有 a=b;函数f可能会对全局变量具有副作用，这种副作用会使f的

返回值每次都不同。此外，程序还可能在两次调用f（x）之间给变量 x赋值，因此f（x）实际上每

次都表示不同的值。

高阶函数（higher-order function）。函数式程序设计语言也允许将函数作为参数传递给另外

的函数，或者作为结果返回。使用函数作为参数的函数称为高阶函数。

如果语言既支持嵌套函数，也支持词法作用域【lexical scope，也称为块结构（block struc-

ture）】，高阶函数会变得特别有用。例如在 Tiger 中，词法作用域意味着每个函数可以访问嵌套
它的任何函数的变量和参数。高阶函数式语言《higher-order functional language）是具有嵌套

作用域和高阶函数的语言。

315 那么函数式程序设计的本质是什么呢2是等式推理还是高阶函数? 这个问题没有一致的答
案。在这一章，我们将讨论3种不同特色的"函数式"语言。
·Fun-Tiger 具有高阶函数的Tiger 语言。由于仍旧允许副作用（这也就意味着等式推理不

能工作），它是一种不纯的高阶函数式语言，其他这样的语言还有Scheme、ML 和 Small-

talk。
·PureFun-Tiger 具有高阶函数并且没有副作用的语言，它本质上是一种严格的纯函数式
语言（类似ML的纯函数式子集）。

·Lazy-Tiger 一个非严格的纯函数式语言，它使用与 Haskell语言类似的懒惰计算。非严

格的纯函数式语言能够很好地支持等式推理（见第 15.7节）。

一等纯函数式语言（first-order，pure functional language），例如 SISAL，支持等式推理，

但是不支持高阶函数。

15.1 一个简单的函数式语言

为了构造新语言 Fun-Tiger，我们在 Tiger语言中加入函数类型∶
ty →ty ->Iy
→(ry1,tyl->9
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()->y
类型 int->string是一个函数类型，它有一个整型参数，并返回字符串类型的结果。类型

（int.string）->intarray描述了有两个参数（一个整型，一个字符串）并且返回一个 intarray
结果的函数。getchar 函数具有类型（）->string。
任何变量都可以具有函数类型;函数可以作为参数传递，也可以作为返回值。因此，类型

（int->int）->int->int是完全合法的;->操作符是右结合的，因此这是一个以int->int为参

数，返回结果是 int->int的函数类型。
我们也修改了Tiger 语言的 CALL表达式的形式，这样，被调用的函数可以是任意表达式，

而不只是一个标识符∶

exp→exp(exp l.expl)
exp-exp() 316
程序15-1举例说明了函数类型的用法。函数 add有一个整型参数n，并返回一个函数 h。因

此，addFive是h的一个版本，它的变量n是5，而 addSeven是函数h（x）=7+x。要求h的每个

不同实例"记住"非局部变量n的正确值促使了闭包（closure）实现技术的产生，我们稍后会
介绍这种技术。

程序 15-1一个 Fun-Tiger程序

1et
type intfun =int->Int
function add(n: int):intfun =
let function h(m:int)!int= n+m

in h
end
var addFive:intfun := add(5)
var addSeven :intfun := add(7)
var twenty:= addPive(15)
var twentyTwo := addseven(15)

function twice(f:intfun) : intfun =
iet function g(x: int):int = f(f(x))
in g
end
var addTen:intfun := twice(addPive)

var seventeen :=twice(add (5))(7)
var addTwentyFour := twice(twice (add(6)))

in addTwentyPFour(seventeen)
end

函数twice 的参数f是一个类型为 int->int的函数，twice（f）的结果是应用f两次的函

数g。因此，addTen是函数g（x）=addFive（addFive（x））。与h的每个实例都需要记住 n一

样，g（x）的每个实例都需要记住正确的f值。 317
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15.2 闭包

在没有嵌套函数的语言（例如 C）中，函数值的运行时表示可以是函数的机器代码地址。

这个地址可以作为参数传递，或者存储在一个变量中，等等;当调用该函数时，这个地址被取

到机器的寄存器中，然后使用"调用寄存器中所含地址"的指令。
用树（Tree）的中间表示很容易表达这一点。假设函数从标号L言开始，我们可以使用
MOVE指令将此地址赋给变量t。;

MOVE(TEMP(ra)NAME(L1))

然后用类似下面的指令调用该函数∶

CALL（TEMP（1s）⋯参数⋯）

但是对嵌套函数而言，这样做则行不通;如果我们用一个地址来表示函数h，那么h在外层

的哪一个栈帧中能够访问到变量n呢?同样，函数g又如何访问变量 f呢?

解决的办法是将函数变量表示为闭包（closure）;闭包是一个记录，它包含指向函数机器代码的

指针及访问必需的非局部变量的途径。一种简单的闭包可以只包含代码指针和静态链;非局部变量
可以通过这个静态链来访问。闭包中给出对变量值的访问途径的部分通常称为环境（environment）。

闭包不一定需要基于静态链，它可以是其他任何能够给出非局部变量访问的数据结构。使
用静态链有几个严重的缺陷∶为了访问最外层的变量，它需要对指针链进行多次间接访问，并

且即使程序只打算使用最外层的变量，垃圾收集器也不能沿着这条链回收中间的链。但是，为
了简单起见，本章仍在闭包中使用静态链。

堆上分配的活动记录

在闭包中使用静态链意味着当add 返回时，不能销毁 add的活动记录，因为它的活动记录还

要作为h的环境。为了解决这个问题，我们应当在堆上而不是在栈上创建活动记录。同时，我
们不是在 add返回时就显式地撤销 add 的栈帧，而是要等到垃圾收集器判断出可以安全地回收
该栈帧时;当所有指向 h的指针都消失之后，add的栈帧便可以安全地被回收。318
我们可以进一步改进这种技术∶只将逃逸变量（被内层嵌套函数使用的变量）保存在堆上。
栈帧将保存溢出的寄存器、返回地址等，此外还将保存一个指向选逸变量记录（escaping-variable

record）的指针。这个逃逸变量记录保存着∶（1）内层嵌套过程可能需要使用的所有局部变量;

（2）一个指向外围函数提供的环境（逃逸变量记录）的静态链，见图15-1。

对Tiger 编译器的修改。在每个 Fun-Tiger 函数中，我们构造一个指向逃逸变量记录的临时

变量，称之为逃逸变量指针（escaping-variables pointer）或者EP。所有静态链的计算，不管是
访问非局部变量，还是计算要传递给其他函数的静态链，都将基于 EP，而不是 FP（帧指针）。
EP本身是一个非逃逸的局部临时变量，它和其他临时变量一样，也可根据需要而溢出到栈帧
中。传递给该函数的静态链形参是逃逸变量（和普通 Tiger 函数的静态链一样），因为内层嵌套

函数需要访问它。因此，静态链存放在逃逸变量记录中。
Tiger编译器的 Frame模块中创建形参和局部变量的接口 函数（newFrame 和 allocLocal）也

必须进行修改，使得所生成的（逃逸变量的）访问是基于 EP的位移，而不是基于 FP的位移。
逃逸变量记录的存储空间必须由 procEntryExit1 中生成的指令来分配。
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返回地址ma主n的栈帧
保护的寄 SL: main 的逃逸变量存器和临
时变散
EP:
RV:
返间地址ad的栈帧 add的逃逸变量SL:保护的寄 n武存器
EP:

（a）在ada内

返向地址main的栈帧保护的寄 SL: main 的逃逸变量存器和临
时变量
EP:
RV:

add的逃逸变量SL:5n:
h的 h 的机器代码 EP: 闭包MC:（b）回到main 内

返回地址 SL: main 的逃逸变量main的栈帧
保护的寄
存器和临
时变量
EP: add 的SL: RV: 逃逸变量。n:返回地址twce的栈帧EP:

twice 的逃逸变量sL:eEP: h的机器代码MC:（c）在twice 内

图15-1 twice（add（5）执行时使用的闭包。SL=静态链，RV=返回值，
EP=逃逸变量指针或者环境指针

15.3 不变的变量

Fun-Tiger语言有着具有嵌套作用域的高阶函数。但是仍旧不能对 Fun-Tiger 程序使用等式推

理。也就是说，f（3）每次可能返回不同的值。为了解决这个问题，我们禁止函数的副作用;当调
用一个函数时，该函数必须返回一个结果，并且不能以任何可见的方式对外部"世界"造成改变。

为此，我们创造一种新的纯画数式程序设计语言 PureFun-Tiger。在 PureFun-Tiger语言中，
禁止下列情况。
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·给变量赋值（除了在 var 声明中被初始化）。

·给在堆上分配的记录的域赋值。

·调用具有可见效果的外部函数∶print、flush、getchar、exit。

319 程序该如何完成工作呢?这似乎过于苛刻。在函数式风格中，为了在没有赋值的情况下编
写程序，可以产生一个新值而非更新旧值。例如，程序15-2给出了使用命令式和函数式两种风
格的二叉搜索树的实现。正如 5.1节解释的一样，命令式语言更新树结点，但是函数式程序通

过复制从根到"新的"叶子结点的路径，返回一棵和老树非常相似的新树。如果t1 是图5-3a中

的树，我们可以有∶

var t2:= enter(t1,"mouse",4)

并且现在t1和 t2 对程序都是可用的。另一方面，如果程序返回 t2作为函数的结果并丢弃 t1，

则t1的根结点会被垃圾收集器回收（因为t2仍需使用t1的其他结点，所以t1的其他结点不会

被回收）。
程序15-2 用两种方式实现的二叉搜索树

type key = stringtype key= string
type binding= inttype binding= int

《key:key,type tree ={key: key, type tree 
binding:bindinq, binding: binding,

left;tree,left:tree,
right: tree}right: tree)

function look(t: tree,k; key) function look(t: tree,k: key)
:binding = :binding =

if k <t.key if k <t.key
then look(t.left,k) then look(t.left,k)

else if k >t.Kkeyelse if k>t.key
then look(t.right,k) then look(t.right,k)

else t.bindingelge t,binding
function enter(t:tree,k;key, function enter(t:tree,k: key,

b: binding): tree =b: binding)= if k <t.keyif k <t.key
thenthen if t.left=nil
tree{key=t.key,then t.leftt=

tree{key=k, binding=t,binding,
binding=b, left=enter(t.left,k,b),
left=ni1, right=t.right)
right=nii}

else if k >t.keyelse enter(t.ieft,k,b)
thenelse if k>.key
tree{keyet.key,then if t.right=nil
binding=t.binding,then t.right :=
leftat.left,treelkey=k,
right=enter(t.right,k,b)}binding=b,

else tree key=t.key,left=nil
binding=bright=nf1]
left=t.lefE,el8e enter(t.right,k,b)
right=t.right)else t.binding ;= b
（b）函数式（a）命令式

类似的技术使函数式程序能够表达的算法的范围和命令式程序的一样宽，并且常常更清晰、
更具有表现力，也更简明。

15.3.1 基于延续的I/O

产生新的数据结构，而不是更新旧的数据结构，这使得语言有可能服从"无赋值"的规则，
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但是程序如何进行输入/输出呢?基于延续的I/O（continuation-based I/O）技术可以在函数式框

架内表示输人/输出。程序15-3 展示了PureFun-Tiger 语言的预定义类型和函数，这些类型和函

数都依赖于一个称为答案（answer）的概念∶ answer是整个程序返回的"结果"。

程序15-3 PureFun-Tiger的内建类型和函数
type angwer
type stringConsumer = string-> answer
type cont =()->answer

function getchar(c: etrfngConsumer): answer
functon print(s: string,c: cont): answer
function flush(c: cont):anewer
function exit():answer

内建函数 getchar并不（像在 Tiger 中一样）返回一个字符串，而是以一个 stringConsumer
类型的使用者作为参数，并将最近读人的字符传递给这个使用者。该使用者产生的任何答案也

都将是 getchar的答案。 322]
同样，函数 print以一个要输出的字符串和一个延续（cont）作为参数;它输出一个字符

串，然后调用cont 产生一个答案。
这些安排的目的是为了在保持等式推理的同时允许输入/输出。有趣的是，现在输入/输出

323对类型检测器是"可见的"∶任何进行输入/输出函数的结果类型都为 answer。

15.3.2 语言上的变化

对 Fun-Tiger进行以下修改后，就可以构造出新的语言PureFun-Tiger。
·增加预定义类型 answer、stringConsumer和 cont;如程序15-3 所示，修改预定义I/O函

数的类型。
·"过程"（未显式给出返回类型的函数）现在被认为有返回类型 answer。
●·从 Fun-Tiger中删除赋值语句、while 循环、for 循环和复合语句（带分号的语句）。

程序15-4展示了一个完整的 PureFun-Tiger程序，该程序循环读取整数，输出每个整数的

阶乘，直到输人的整数大于12。

程序15-4 PureFun-Tiger程序∶读人 i，输出i!

1et
type intConsumer= int-> anGwer
function isDigit(s:string):int =

ord(s)>=ord("0")& ord(s)<=ord("9)

function getInt (done: intConsumer)=
let function nextDigit(accum: int)=
let function eatChar(dig: string)=
if isDigit(dig)
then nextDigit(accum*10+ord(dig))
else done (accum)

in getchar(eatChar)
end

in nextDAgit(0)

end
function putInt(i: int,a: cont)=
if i=0 then c《}
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（续）
else let var rest;=1/10
var dig:=i- rest·10
function doDigit()= print(chr(dig),c)
in putInt(rest,doDigit)
end

function factorial(i:int);int =
if i-0 then 1 else i*factorial(i-1)

function loop(i)=
if 1>12 then exit()
else let function next()= getInt(loop))
in putInt(factorial(i),next)

end
in
getInt(loop)
end

15.3.3 纯函数式语言的优化

由于我们仅仅从 Fun-Tiger中删除了一些特征，并没有增加新的东西（除了改变了一些预定义的

类型），所以我们的 Fun-Tiger 编译器能够马上编译 PureFun-Tiger程序。并且，通常函数式语言编译
器能够使用和命令式语言编译器相同的优化;如内联扩展、指令选择、循环不变量分析、图着色寄

存器分配、复写传播，等等。但是，由于函数式语言中许多控制流是通过函数调用表示的，而且这
些调用中有一些可能是函数变量而不是静态定义的函数，所以控制流图的计算要稍微复杂一点。

PureFun-Tiger 编译器还能够利用等式推理进行 Fun-Tiger 编译器不能进行的几种优化。
考虑这样一个程序片断，它先创建一个记录r，稍后从r中读取记录的各个域∶

type recrd = [a:,b:⋯.

var al :=5
var b1:·7
var r:= recrd{a ;= al,b:= bi}

var x := f(E)

324 var y;=r.a+r.b
在纯函数式语言中，编译器知道当y的计算引用r.a和r.b时，它要取的值是 a1和b1。在命令

式（或者非纯函数式）语言中，计算f（r）时可能会给r的域赋新值，但是在 PureFun-Tiger 语
言中不会发生这样的赋值。
因此，在r的作用域内，r.a的每次出现都可以用a1替换，同样r.b也可以用 b1替换。另

外，因为程序的其他部分不能给 al 赋予任何新值，al 的值始终是相同的值（5）。因此，所有的

al都可以用5替换，b1可以用7替换。优化后，我们有var y∶=5+7、这条语句可进一步转换

为 var y∶=12;这样，在y的作用域内，y可以用12替换。

对命令式语言也可使用同样的替换;只是命令式语言的编译器常常不能确定一个域或变量
在其定值点和使用点之间是否曾被更新过。因此，命令式语言的编译器必须做出保守的估

计——假设变量可能被修改，故在大多数情况下都不能执行这种替换（见17.5 节的别名分析）。325
ML语言具有纯函数式的记录，这种记录不能被更新，因而针对它们的这种替换转换总是
合法的;ML也有可更新的引用单元（cell），程序可以对这种单元赋值。其行为类似于传统的命
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令式语言中的记录。

15.4 内联扩展

因为函数式程序往往会使用许多小函数，尤其是会在程序中将函数从一个地方传递到另一
个地方，所以一种重要的优化技术是函数调用的内联扩展（inline expansion）;即用函数体的副

本替换函数调用。

例如，在程序15-5中，observeInt是任意一个这样的函数;"观察"一个整数，然后继续。
（该函数类似于程序15-5中的 putInt。）函数 doList将观察者f作用于列表l，然后继续。此时，
观察者不再是 putInt，而是 printDouble;printDoable 首先打印i，然后接着打印 2i。这样，

printTable 打印的是一个整数表，表中每行顺序包括一个整数和该整数的两倍值。

程序15-5 用 PureFun-Tiger编写的 printTable

1et
type list ={head: int, tail:1ist)
type obaerveInt =(int,cont)->answer

function doList(f: observeInt,1:list,c: cont)=
it 1=nil then c ()
else let function doRest()= doLis《f,1.tail,c))
in f(1.head,doRest》

end

function double(j:int):int=j+j

function printDouble(i:int,e:cont)=
iet function again()=putInt (double(i),c)
in putInt(i,again)
end
function printTable(l:list,c: cont)
doList(printDouble,1,c)

var mylist ∶画..

in printTable (my1ist,exit)
end

为了便于比较，程序15-6a是一个具有同样功能的普通的 Tiger程序。 326
程序15-5使用了一个通用的列表遍历器 doList，任何函数都可以作为插件函数插入到

doList中。尽管在这里插入的是 printDouble 函数，但是同样的程序也可以将 doList 重用于其
他目的，例如打印或"观察"列表中的所有整数。但是程序15-6a缺乏这种灵活性——它直接调

用了 printDouble，因为普通的 Tiger语言不具备将函数作为参数传递的能力。
如果这个纯函数式程序（它将printTable作为参数传递）以不加优化的方式来编译，则它

的函数调用会比命令式程序多出很多。通过使用内联扩展和尾调用优化（见15.6节），可以将

程序15-5优化成效率和程序 15-6b 相同的机器指令。

避免变量捕获（variable capture））。在 Tiger（或C）程序中进行内联时，我们必须小心地处
理变量名，因为在这种语言中，局部声明有可能会在外层变量的作用域内创建一个"洞"①。

CD即外层变量名被内层变量名遮盖。--译者注
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程序15-6 用普通 Tiger编写的printTable

1et
type list=(head: int,

tail:liat}

letfuncton double(:int);int=
type 1ist={head: int,3+

tafl:1ist)
function printDouble{i; int)=

function printTable(1:list)=(putInt{1);
putInt (double(1))) while 1 <> nil

do let var 1 := 1.head
function printTable(1;list)= in putInt(i);

putInt(i+i);while 1 c> nil
] :=1.tai1do (printDouble(1.head);
end1;=1.tafl)

var myli8t:=var my1ist :=.. ：

in printTable(mylist)in printTable(mylist)
endend

（a）编写的初始程序 （b）优化后

Llet var x :=5
e4 function g(y: int):int =:

y+x
function f(x: int):int =， g(1)+x

6 in E(2)+x
7 end
第4行的形参x在第1行声明的变量x的作用域内创建了一个洞，因此第5行的x指的是形参x，
而不是第1行声明的变量x。如果我们想要内联扩展第5行的调用g（1），将其替换成g的函数

体，则不能将其简单地写为1+x。如果这样写，就会有∶

function t(x: int):int =Vv (1+x)＋x

现在第5行的第一个x没有引用第1行声明的变量，而是错误地引用了f的参数。

为了解决这个问题，我们可以首先对f的形参进行重命名，或者g转换，然后再执行替换;

let var X t= 511et var x :5e function g(y:int):int=function g(y:int):int=
y+x y+x

function f(a:int);int=function f (a:int);int=
g(1)+a (1+x)+a

6 in f(2)+x in f(2)+x
7 end end327
另一种可选的方法是用实参来重命名形参，并定义一个替换函数，以避免在新定义的这个 x的

作用域内替换x。
在所有避免变量捕获的方法中。最好的方法是在编译器的早期阶段重命名所有的变量，使

相同的变量名决不会声明两次。这可以简化程序的推理和优化。

内联的规则。算法15-1给出了可以用于命令式或函数式程序的内联扩展规则。函数体 B被

用来替代函数f（⋯）的调用，但是在 B的这个副本内，已用每个实参替换了对应的形参。当实参

恰好是变量或常数时，替换非常简单（算法15-1a）。但是如果实参是一非平凡的表达式，就必
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须先将表达式的结果赋给一个新变量（算法15-1b）。

算法 15-1 函数体的内联扩展。假设不存在声明同一个名字的两个声明

（b）当实参是非平凡的表达式，不是变量时。（a）当实参是简单变量 i，，i。时。
在如下作用域内;在如下作用域内∶
function f(ai,⋯,a.)= Bfunction f（ai⋯，a会）= B

将表达式f（E∶⋯.E.）重写为将表达式了（1.⋯。i。）重写为
B[aj→1:.⋯.aa→i。] let var 行∶=Ei：

var i:=E。
in B[ai→i;⋯,a.→i.]

end
其中i，，⋯.i。是以往没有使用过的名学。

例如，程序15-5中的函数调用 double（i）可以用函数体j+气的副本替换，在这个副本中，

每个了都用实参i替换。这里我们使用的是算法15-la，因为i是一个变量，不是一个比较复杂328
的表达式。
假设我们希望内联扩展 double（g（x））;如果不正确地使用了算法15-1a∶就会得到

g（x）+g（x），它计算了两次g（x）。即使等式推理的原则可以保证两个g（x）都得到相同的结果，
我们也不希望由于重复计算g（x）（可能是费时的）而降低执行速度。为此改用算法15-1b.生成;

1et 1:= g(×)in i1 end

它只计算一次g（x）。

在一个命令式程序中，g（x）+g（x）不仅仅是比下面的语句慢∶

let i:=g(x)in i+i end

由于g可能具有副作用，它还可能会计算出不同的结果!同样，算法15-1b对这种情况也可以进

行正确的内联。
死函数删除。如果一个函数（例如 double）的所有调用都已经被内联扩展，并且该函数没

有作为参数被传递或者以其他方式被引用，那么可以删除这个函数本身。

内联递归函数。将 doList 内联到 printTable 后，产生printTable 的一个新版本;

function printTable(l;1ist,c; cont)=
if1=nil then c ()
else let functfion doRest()

doList(printDouble,1.tai1,c)
in printDouble(1.head,doRest)
end

这个新版本不是很好;printTable 对1.head调用printDouble，但是为了处理1.tail，它和以前

一样调用doList。因此内联扩展的只是循环的第一个迭代，而我们本来想要的是一个完全内联

扩展了的 doRest版本;因此，不能采用这种方式。

对于递归函数，我们使用循环前置头（loop-preheader）转换（算法15-2）。转换的思想是
将f分裂成两个函数∶一个从外部调用的序曲函数（prelude），一个在内部调用的循环头函数
《loop header）。除了序曲函数中有一次对循环头的调用外，循环头的每次调用都是它自已内部

[329的递归调用。对 doList 进行循环前置头转换后得到
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function dotist(fX: observeInt, lX: list,cx: cont)=
let function doListX(f: observeInt,l: list,c: cont)=
if 1=ni1 then c()
else let function doRest()= doLLstX(f,1.tail,c)
in f (1.head,doRest)
end

in doListX(fX,1X,cx)
end

其中，新的函数 doList是序曲函数，doListX是循环头函数。值得注意的是，序曲函数将整个

循环作为内部函数包含在内，这样，任何对 doList的调用被内联扩展时，也就同时具有了 do-
ListX的一个新副本。

算法 15-2 循环前置头转换

[function f(4⋯,d)=
let function f(aj,,aa)=

function f(a),.,a)
BU→ 作b in f(a.,a)
end

循环不变量参数。在这个例子中传递给函数 doListX的值f和c是不变量——每次递归调
用，它们的值总是不变的。在每一次迭代中，f是 fx，c是cx。循环不变量外提转换（算法 15-3）
可以将f的每个使用替换为fX，c的每次使用替换为cX。

算法 15-3 循环不变量外提

如果日中了的每次使用都具有形式/（E.⋯.E-，a，E-⋯·E.），其中第i个参数总是a，则可以重写为;

function f(a{,,d}_j,a,d7,,⋯·,4)=function f(a{,,a,)=
1et functon f'(aj,,aq-1,q41.⋯,an)= B1et function f'(a1,,a,)=B

in f'td.⋯,) inf'(a},,a-1,d41.⋯,a)
endend

其中，B中的每次调用厂'（E.⋯，E-1a;，E产1.⋯，E。）重写为∶
f（E⋯，E，一1，E+1·⋯，E，）。

对函数 doList 进行循环不变量外提转换，得到∶330
function doList(f: observefnt,1X:list,c: cont)=
let functfon doListX(1:ligt)=
if l-ni1then c()
else let function doRest()= doListX(1.tail)
in f (1.head, doReat)
end

in doLiatX(1x)
end
最后，将调用doList（printDouble，1.c）内联到 printTable 中，我们得到;

function printTable(:1ist,c: cont)=
1et function dolietX(l:list)=
if 1=ni1 then c()
else let function doRest()= doListX(1.tail)
in printDouble(1.head,doRest)
end

in doListX(1)
end
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层叠式内联。在 printIable 的这个版本中，我们让printDouble 函数作用于参数（而不只是将

printDouble传递给 doList），因此可以对 printDouble 的这个调用也进行内联扩展，得到

function printTable(1:list,c: cont)=
let function doListX(1;list)=
if 1=nil then c()
else let function doRest()= doListX(1.tail)
in let var i ;= 1.head
in let function again()= putInt(i+i,doRest)
in putInt(1,again)
end
end
end

in doListX(1)
end
避免代码爆炸。内联扩展复制函数体，通常会使程序变大。如果不加选择地进行内联，会
发生程序代码爆炸。事实上，很容易构造一个程序，对它的一个函数调用进行内联扩展将创建

331]一个仍可以被继续扩展的新实例。并可无限地扩展下去。

有一些启发式策略可以对内联进行控制。
（1）只扩展那些执行非常频繁的函数调用;可通过静态估计（循环嵌套深度）或者根据执

行部面分析器反馈回来的信息。判断出函数的执行频率。

（2）扩展函数体非常小的函数，使得被复制的函数体不会比直接调用多出很多指令。

（3）扩展只调用一次的函数;然后死函数删除将删除函数体的原始副本。

解开嵌套的let。由于 Tiger 表达式

let dec in let dec2. in eqp end end

完全等价于
1et dei de2 in eg end

所以我们最终得到的printTable 见程序 15-7。

程序15-7 自动特例化后的 printTable
function printTable(1:1iet,C: cont)=·e let funetion doLietX(l;list)=
引 if 1=nil then c()

守 else let function doRest()

5 doiistX(1.tail)e, var 4;=l,head： function again()=
害一 putInt(i+i,doRest)O in putInt(i,again)
10 end

in doLis龙X（111
12 end
这种优化方法能将一个抽象的程序（例如通用的 doList）转换为一个更高效的、专用的程
序（直接调用putInt的专用 doListX）。

15.5 闭包变换

作为参数传递的函数用闭包（closure）来表示;闭包由一个指向机器代码的指针和一种访

332]问非局部变量（也称为自由变量）的方法组成、
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第6章解释了访问自由变量的静态链方法，静态链直接指向外围函数的栈帧。图15-2说明
了自由变量可以保存在堆上分配的记录中，它们是独立于栈帧的。现在，为了便于编译器后端

的处理，我们希望在程序中显式地表示出这些自由变量记录的创建和访问。
函数式语言编译器的闭包变换（closure conversion）阶段对程序进行转换，使得所有的函

数看起来都不访问自由（非局部）变量。这种变换是通过将对每个自由变量的访问转变为对形

参的访问来实现的。
给定一个嵌套深度为d的函数f（a，⋯，a.）=B，其逃逸的局部变量（和形参）为x1，x;，⋯，

x。，非逃逸的变量为 y⋯，y.。可以重写为∶

f（ao， a，·，an）=let varr ;= {lao.x】，42，，工）in B'end

新参数a。是静态链，静态链现在成为了一个显式的参数。变量r是一个记录，它包含了外围函数

的静态链和所有的逃逸变量。当调用嵌套深度为d＋1的函数时，这个r就变成了静态链参数。

在 B中，任何对非局部变量（来自于嵌套深度一d的函数的变量）的使用（在重写的函数
体 B'中）都必须转换为对记录a.的某个位移的访向。

函数值。函数值可以表示为一个包含代码指针和环境的闭包。当一个函数作为参数传递时，

编译器并不在堆上分配一个两字记录保存代码指针和环境，而是将它们作为两个相邻的参数来

传递。
程序15-8是程序15-7 闭包变换后的结果。我们可以看到每个函数都创建了一个显式的记录

来保存逃逸变量。事实上，函数 doListX创建了两个不同的记录r2和r3.因为在必须创建记录
r2时，变量i和doRestC都是不可用的。在闭包变换后的程序中。函数都只访问局部变量，，这

样，编译器的后续阶段就不需要关心非局部变量的访问和静态链了。

程序 15-8 闭包变换后的printTable

type mainLink =(...}
type printTableLink=(SL: mainLink,cPunc: cont,cSL;?}
type cont =?-> answer
type doListXLink1 {SL:printTableLink,1:1ist)
type doListXLink2=[SL: doLiatXLink1,1;int,

doRestFunc: cont,doRestSL: doListXLink1}

function printTable(SL: mainLink,l:1ist,cFunc: cont,csL:?)-
let var r1 := printTableLink{SL-SL,cPunc=cPunc,cSLecSL}
function doListX(SL:printTableLink,1:llat) =
let var r2:= doListXLink1{SL: printTablelink,l=1}
in if r2.1=nii then SL.cPunc (8L.cSL)
else let function doRest(SL: dotietXLink1)-

doiistX(SL.SL,SL.1.tal1)
var 1;= r2.1,head
var r3;= doListXLink2(SL-r2,i=i,

doRestFunc=doReat,doRestSL=r2)
function again (SL: doListXLink2)=
putInt (8L.SL.SL, SL.i+SL.i,

SL.doRest.func,SL,doRegtSL)
in putInt(SL.SL,1,again, r3)
end

in doListX(r1,1)
end

333 闭包中静态链的未知类型。所有逃逸变量记录的类型都是由程序15-8顶部的记录声明给出的。
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但是 cont 函数的静态链参数的类型是什么呢?它必须是包围 cont 函数的逃逸变量记录的

类型。
但是 printTable 函数中有几个类型为cont 的不同函数∶

·printTable的参数c，它来自于主函数 main（仔细查看程序 15-5可发现函数c事实上是
函数exit）;
· doRest;
·以及 again。

其中每一个函数的静态链记录都各不相同。因此，contClosure 的域 SL的类型会发生变化，并

且调用者不总是能知道 SL 的类型。如程序15-8 所示，我们用"?"来标记 cont类型的静态链参

数的类型。也就是说，尽管可以用 Tiger语法写出闭包变换后的 Fun-Tiger 程序或者 PureFun-

334Tiger程序，但是这些程序不能按传统的做法来进行类型检查。

15.6 高效的尾递归

函数式程序用函数调用来表示循环和其他控制流。程序 15-6b 中的 while 循环在程序15-8中
用函数调用doListX来表示。程序15-6b中的 putInt 只是简单地返回到它在 printTable 中的两

个调用点的地方，程序 15-7有两个连续的函数。Fun-Tiger 编译器编译函数 doListX、doRest 和

again 的调用必须和 Tiger 编译器编译循环和函数返回一样高效。
程序15-7中的许多函数调用都处在尾位置（tail position）。如果对函数f（x）的调用位于另
一个函数g（y）的函数体内，并且"调用厂是g返回前做的最后一件事"，那么这个对f（x）的

调用就是处于尾位置。更形式化的说法是，在下面的每个表达式中，B 处于尾上下文中，但

C不是∶
1.let var x:=Ciin B)end
2.C1(Ca)
3.if C1then Belee B2
4.C1+C2
例如，表达式4中C，即使看上去像是"最后一个"，但是由于C，完成之后，仍需要一条 add指

令，所以C，不在尾上下文中。但表达式3中的 B在尾上下文中，即使在句法上它不是"最后

一个"。
如果函数调用f（x）处在包围它的表达式的尾上下文中，该表达式又处在包围它的表达式的

尾上下文中，等等，直至到达包含函数定义 function g（y）=B的函数体都是这样，则f（x）是一

个尾调用。
尾调用的实现可以比普通调用的实现更高效。对于如下的函数∶

g(y)= let var x:=h(y) in f(x) end

h（y）不是尾调用，但是f（x）是。当f（x）返回结果z时，z也作为g的返回结果。这时，g可以

不为f压入新的返回地址，而只是将g 自己的返回地址给f，f 直接从该地址返回。

也就是说，尾调用的实现与其说是调用，不如说更像跳转。尾调用的实现步骤如下。

（1）将实参传送到参数寄存器。
（2）恢复被调用者保护的寄存器。

（3》如果调用函数有裁帧的话，弹出它的栈帧。
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335 （4）跳转到被调用者。
在许多情况下，第1项（传递参数）可以通过编译器的复写传播（合并）阶段而删除。第2项
和第3项经常由于调用函数没有栈帧也能被删除——任何函数，只要它的所有计算都能在调用

者保护的寄存器中完成，便可以不需要栈帧。这样，一个尾调用就可以用一个代价低的跳转指

令来实现。
在程序15-8中，每个调用都是一个尾调用!并且，程序中没有一个函数需要栈帧。但这种

情况并不总是能成立，例如程序15-5中对 double 的调用就不是在尾位置，这个非尾调用只是由

于内联扩展才见不到了。

作为跳转实现的尾调用。程序15-8和程序15-6b的编译具有指导意义。图15-2说明了纯函

数式程序和命令式程序执行的几乎是完全相同的指令!图中没有给出函数式程序通过静态链记

录进行的读取，也没有给出命令式程序中被调用者保护的寄存器的保护和恢复。

printTable:allocate record r1printTable: allocate stack frame
jump to whileLjump to doListX

doListX: whileL:allocate record r2
if 1-nil goto doneLif1-nll goto doneL
1:1.head1;= r2.1.head

allocate record r3
cal putInjump to putrnt
add 1+fagain: add SL.1+8L.1

jump to put.int call putrnt
doRest: jump to whileLjump to doListX

doneL:doneL: returmjump to sL.cFunc

（b）命令式程序（a））函数式程序
图15-2 编译 printTable

函数式程序中剩下的低效之处在于，它创建了3个在堆上分配的记录r1、r2和 r3，而命令

式程序只创建了一个栈帧。但是，更先进的闭包变换算法可以只创建一个记录（在 printTable

的开始）。如此一来，这两个程序之间的差异只在于创建的是堆记录还是栈帧。

336 在有垃圾收集的堆上分配一个记录可能比压栈帧和弹出栈帧的代价高。函数式语言的优化
编译器可以用不同的方法来解决这个问题。

·编译时的逃逸分析能够识别出哪些闭包记录在创建它们的函数中是出口不活跃的。这些

记录可以分配在栈帧中。在 printTable 的例子中，这样做可以使"函数式"的代码和

"命令式"的代码几乎完全相同。

·可以将堆分配和垃圾收集的代价降到极低。创建（和垃圾收集）一个在堆上分配的记录只

需要 4～5条指令，从而使函数式的printTable 几乎和命令式的一样快（见 13.7节）。

15.7 懒惰计算

等式推理有助于对函数式程序的理解。等式推理的一个重要原理是β替换（β-substitution）∶
如果 /（x）=B，函数体为B、则任何施加于表达式 E的f（E）等价于在 B中用E替换B中x的每

次出现∶
（x》=B蕴含f（E》= B【x→E】
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但是，考虑下面这两个PureFun-Tiger程序片断∶

let let
function loop(z:int);int= function loop(z:int):int=
if z>0 then 艺 if z>0 then z

else loop (z)else loop(z)
function f(x:int):int= function f(x:int):int=
if y>8 then x if y>8 then x
else -y elge -y

1n in if y>8 then loop(y)
F(1oop(y)) else -yendend

如果表达式 B是if y>8thenxelse-y，表达式 E是loop（y），则很明显，左边的程序包含f
（E），右边的程序包含 B【x H→E】。使用等式推理可得，这两个程序是等价的。

但是，上面的两个程序并不总是具有相同的行为!如果 y=0，则右边的程序将返回0，但

是左边的程序会由于先调用了loop（0）而阻滞不前，因为loop（0）是一个死循环。 337
显然，如果我们想声称两个程序等价，那么它们就必须具有相同的行为。在 PureFun-Tiger

中，如果我们通过对程序 B进行替换得到了程序A，那么当 A和B 都会停止时，它们绝对不会

给出不同的结果;不过对于相同的输入，A或者B有可能不会停止。

为了解决等式推理的这种（部分的）失效，我们在程序设计语言中引入了懒惰计算（lazy
evaluation）。Haskell 和 Miranda是两种使用最广泛的懒惰语言。使用懒惰计算编译的程序不计

算任何一个表达式，除非计算的其他部分需要该表达式的值。相反，在严格语言中，例如 Tiger、
PureFun-Tiger、ML、C和Java，当程序的控制流到达一个表达式时，就会计算该表达式。

为了探究懒惰函数式语言的编译方法，我们将使用Lazy-Tiger 语言。除了编译时使用了懒

惰计算外，它的语法和 PureFun-Tiger一样，语义也几乎相同。

15.7.1 传名调用计算

大多数程序设计语言（Pascal、C、ML、Java、Tiger、PureFun-Tiger）采用传值方式传递

函数参数∶计算 f（g（x））时，首先计算g（x），然后将计算得到的值传递给f。但是如果f实际
上不需要使用它的参数，则计算 g（x）就是不需要的。

为了避免在需要表达式的结果之前计算表达式，我们使用传名调用计算。每个变量本质上

不是简单的一个值，而是一个形实转换函数（thunk），即根据需要计算值的一个函数。编译器

将每个 int类型的表达式替换成类型为（）->int的函数值，其他类型的表达式也同样处理。

在创建变量的每一个地方，编译器创建一个函数值;在使用变量的每个地方，编译器都放

置一个函数调用。
这样一来，Lazy-Tiger程序

let var a:=5+7 in a 4 10 end

将被自动地转换为

let function a()=5+7 in a()＋ 10 end

那么，变量是在哪里创建的呢?它们是在 var 声明中和在函数参数绑定时创建的。因此，
每个 var将转变成一个function，并且在每个函数调用点，我们需要为每个实参表达式声明一

个 function。 338]
程序15-9举例说明了对程序15-2a中的 look 函数进行的这种传名转换。
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程序15-9 对程序 15-2a施加的传名调用转换

type tree ={key:()-skey,
binding:()->binding,
left:()-stree,
right:()-stree)

tunction look(t:()->tree,k:()->key):()->binding =
if k() < t().key() then look(t().left,k)
else if k()>t().key() then look (t().right,k)
else t().binding

传名调用的一个问题是，每个形实转换函数可能会执行多次，每次都（冗余地）生成相同的

值。例如，假设有一棵由形实转换函数 t1表示的树，每次调用look（t1，k）时，都会计算t1（），

而 t1（）的每次计算都要重构这棵（相同的）树!

15.7.2 按需调用

懒惰计算也称为按需调用（call-by-need），是传名调用的一种修改，但绝不两次计算同一个
形实转换函数。每个形实转换函数配备一个用来保存备忘值的备忘槽（memo slot）。第一次创

建一个形实转换函数时，该函数的备忘槽为空。形实转换函数的每次计算都先检查备忘槽∶如
果是满的，则直接返回所保存的备忘值;如果是空的，则调用形实转换函数。
为了简化这一过程，我们用一个包含两个元素的记录来表示懒惰的形实转换函数，其中一
个元素是形实转换函数，另一个是备忘槽。一个没有计算过的形实转换函数可以包含任意的形

实转换函数，它的备忘槽是在调用该形实转换函数时要使用的一个静态链。一个已经计算的形

实转换函数在它的备忘槽中有以前计算得到的值，它的形实转换函数只是返回备忘槽中的值。

例如，编译 Lazy-Tiger 的声明 var twenty∶= addFive（15）（在程序15-1中）时，其环境指
针 EP指向包含 addFive 函数的记录。addFive（15）的表示不是一个马上计算答案的函数调用，
而是一个记录稍后如何按需计算它的形实转换函数。我们可以将这个 Lazy-Tiger程序片断转换
成如下的 Fun-Tiger程序∶

/★EP已经指向包含addF1ve 的记录*/

339 var twenty:= intThunk{funC=twentyFunc,memo=EP}
它有下面一些辅助声明的支持∶

type intThunk ={func:?->int,memo:?}
type intfunc ={func:(?,intThunk)->int,SL:?}
type intfuncThunk ={func:?->intfunc,memo:?)

function evaluatedFunc(th: intThunk):int =
th.memo

function twentyPunc(mythunk; intThunk):int =
let var BP := mythunk.memo
var addsthunk:intfuncThunk := EP.addFive
var add5:intfunc := addsthunk,func (add5thunk》
var fifteenThunk:=intThunk{func=evaluatedPunc,memo=15}
var result:int:= add5,func(add5.SL,fifteenThunk)
in mythunk.memo;= reeult;
mythunk.funC := evaluatedFunc;
result
end
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为了建立一个懒惰的形实转换函数t，我们只需要计算t.func（t）。对于t=twenty，第一次建
立t时，会执行twentyFunc（twenty），使 twenty.memo 指向由 addFive（15）计算得到的一个整数，

并使 twenty.func 指向专门的函数 evaluatedFunc。随后每一次涉及 twenty时，evaluatedFunc
都将简单地返回 twenty.memo 域（该域包含整数20）。

15.7.3 懒惰程序的计算

下面的程序使用程序 15-2b中的enter函数创建一个树映射{threeM→3!，minusOne →（-1）!;

let function fact (1:int):int =
if i-0 then 1 elee i* fact{i-1)
var tl:= enter (nil,"minusOne",fact(-1))

fact(3))var t2:= enter(tl,"three",出

in putInt(look(t2,"three"),exit)
end
这个程序一个奇怪的地方是，fact（-1）是没有定义的。因此，如果使用（严格的》PureFun-

Tiger编译器来编译它，它将会陷入死循环（或者会由于对一个负数不断地减1而最终导致机

器算术溢出）。
但是，如果该程序用Lazy-Tiger编译器来编译，则它能成功地返回3的阶乘!变量 t1 首先[340
被定值;但是这个定值并不真正地调用enter——它仅仅创建一个在以后会根据需要计算的形实
转换函数。接着，变量 t2 被定值，它也只是创建一个形实转换函数。再接下来，创建 look

（t2."three"）的形实转换函数（但 look 实际上并没有被调用）。

最后，创建表达式 putInt（⋯，exi）的形实转换函数，这就是该程序的结果。但是之后运

行时系统会"需要"该程序的一个答案 answer，该答案只能通过调用最外层的形实转换函数才

能计算出来。这样会执行 putInt的函数体，从而马上就需要它的第一个参数的整数值;而这又
导致要计算 look（t2."three"）的形实转换函数。

look的函数体需要比较k和t.key。由于k和t都是形实转换函数，我们可以通过计算k（）

得到一个整数，通过计算t（）得到一棵树。我们可以从树上抽取 key域，但是每个域又是一个
形实转换函数，因此为了得到这个整数，我们实际上必须计算的是（t（）.key）（）。

t.key的值最终将变成-1，于是look（t（）.right，k）被调用。这个程序永远不会计算在
minusOne结点绑定的形实转换函数，因此fact（-1）不会有导致死循环的机会。

15.7.4 懒惰函数式程序的优化

许多严格的函数式程序的优化，，甚至命令式程序的优化，同样适用于懒惰函数式程序。例
如循环的识别（简单的尾递归函数就是循环），归纳变量的识别，公用子表达式删除等。

另外。懒惰编译器可以利用等式推理进行一些严格函数式或命令式编译器不能做的优化。

不变量外提。例如，给定循环

type intfun = int->int
function f(i:int):intfun =
1et function g(:int)= h()*j
in g
end

优化器很可能会将不变量计算h（i）提升到函数g之外。毕竞g可能会被调用上千次，因此最好
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不要每次都重复计算h（i））。外提后，循环变成341
type intfun ·int->int

functfon f(1: int):intfun =
Iet var hi :h(i)
function g(j:int)= hi ·]
An g
end

这样，g的每次调用都可以运行得更快。

这种转换在懒惰语言中是合法的，但是在严格语言中是非法的!假设在 var a∶= f（8）后，

函数a根本不会被调用;并且假如 h（8）是死循环;在"优化"前程序原本可以成功结束，但是

"优化"后，我们得到了一个不可终止的程序。当然，在非纯函数式语言中，这种转换也是非法
的，因为h（8）可能具有副作用，而且我们还改变了h（8）的执行次数。

死代码删除。严格程序设计语言的另一个敏感的问题是死代码删除。假设我们有

function f（生∶int）∶int=
1et var d;= g(x)
in +2
end
变量 d从未被使用过;在其定值点它就是死代码。因此，应当删除对g（x）的调用。在常规的程

序设计语言中，例如 Tiger 或 Fun-Tiger，我们不能删除g（x），因为它可能会具有程序运算需要

的副作用。
在严格的纯函数式语言中，例如 PureFun-Tiger，删除对g（x）的计算可能会将一个原本不可
终止的计算优化成一个可以终止的计算!尽管看上去优化像是有益的。但是却会使程序员感到

迷惑。我们不希望用不同的优化级别编译时，程序的输人/输出行为会有所不同。
在懒惰语言中，完全可以安全地删除诸如 g（x）这样的死计算。

森林砍伐。在任何语言中，一种常见的做法是将一个程序划分为两个模块，一个模块产生数
据结构，另一个模块使用该数据结构。程序15-10 就是这样的一个简单例子;range（i.j）生成从

到j的整数列表，squares（1）返回此列表中每个数的平方;sum（1）求此列表中所有数的和。342]

程序 15-10 平方求和

type intList ={head:int,tail:intLiat}
type intfun = int->int
type int2fun =(int,int)- int

function sumSq(inc; intfun,mul:int2fun,add:int2fun);int=
1et
function range(i:int,j:int):intList
if i>j then nil else intList(head=i,tail=range(inc(i),))

function 8quarea(l:intLiat):intLiet =
if 1=nil then nil
else intList{headamul(1.head,1.head),tail-squares(1.tail))

function gum(accum:int,l:intList):int=
if l=nil then accum else aum(add(accum,1.head),1.tail)

in sum(0,squares (range(1,100)))
end
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首先，range 构建一个由100个整数组成的列表;然后 squares构建另一个由100个整数组
成的列表;最后 sum 累加此列表。

每次都构建这些列表是一种浪费。一种称为森林砍伐（deforestation）的转换可以删除中间

的列表和树（因此，可以删除它们的名字），并且只需要一遍就可完成所有的事情。被砍伐后的

sumSg程序和下面的程序相似∶

function sumSq(inc:intfun,mul:int2fun,add:int2fun):int=
let function f (accum:int, i:int, j:int);int =
if i>j then accum else f <add(accum,mul(i,i)),inc(i)}
in f(0,1,100)
end
在非纯函数式语言中（函数具有副作用）），森林砍伐通常是不合法的。例如，假如函数 inc、

mul 和 add修改全局变量，或者打印一个输出文件。森林砍伐转换重新安排了这些函数的调用顺
序。原来的调用顺序是∶

inc(1), ine(2)。··:inc(100),
mu1(1.D), mul(2.2),.·mul(100,100),
add(0.1), add(1,4).·ada(328350, 10000)

[343
而转换后，函数的调用顺序是∶

in(1).add(0,1);ma1(1.1.4
ine(2),add(1,4).mt1(2,.2).：

mu1(100,100),ada(328350, 10000), ine(100)

只有在纯函数式语言中才能总是合法地使用这种转换。

15.7.5 严格性分析

尽管懒惰性允许实施某些新的优化，但是创建和计算形实转换函数的代价仍非常高。如果

对这个问题不加关注，不管进行了其他什么优化，懒惰程序都会运行得很慢。
解决的方法是只在需要的地方才放置形实转换函数。如果能够确定函数 f（x）一定会计算它

的参数x，则没有必要传递x的形实转换函数;我们可以简单地传递计算后的x。这种做法是以
现在就进行的计算来换取一个最终肯定会进行的计算。
严格性的定义。如果函数f（x）的形参x对应的某个实参a不能终止，则f（a）也不能终止，

我们就说函数f（x）在x上是严格的（strict）。如果多参数函数f（x;，⋯，x。）中参数 x，的某个实
参a不能终止，则不管其他b是否能够终止，f（b;，，⋯，b，-1，a，b-.⋯·b.）也不能中止，我们
就说函数f（x，⋯，x。）在x，上是严格的。

例如∶

function  (x: int,y: int):int= x＋x+y

function g(x:int,y: int):int=if x》0 then y else x

function h(x: atring,y: int): tree 
tree(keyx,binding-y,left*nil,right=ni1}

function (x:int):int = 3(0)
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函数f在参数x上是严格的，因为如果需要 f（x.y）的结果，f必然会要调用x（需要x的值）的

形实转换函数。同样，f在参数y上也是严格的，g在参数x上也是严格的。但是g在它的第二

个参数上不是严格的，因为有时不调用y的形实转换函数也可以计算g的结果。344
函数h在两个参数上都不是严格的。即使它看上去既"使用"了x又"使用"了y，但是它

不需要它们的（字符串或者整数）值;它只是将它们放入一个数据结构中。而且，程序的其他

部分也不曾需要那个特定 tree 的 key或者binding域的值。
奇怪的是，根据我们的严格性定义，函数在x上是严格的，即使它从未使用x。但是严格
性分析的目的是为了判断在将x传递给函数j之前，计算x是否安全;这样做会不会使一个可以

终止的程序变成不可终止的?在这个例子的情况下，只要打算调用j，无论我们是否预先执行了

（可能是不可终止的）x的计算，它都会死循环。

利用严格性分析的结果。程序15-11展示了利用严格性信息对 look 函数（程序15-2a）进行

转换后的结果。和程序 15-9 一样，这里也使用传名调用转换，但是转换的结果和按需调用相
似。函数 look在参数t和 key上都是严格的。因此，在比较k<t.key时，它不需要调用 k和t
的形实转换函数。但是，t.key 域仍旧指向一个形实转换函数，因此，它必须调用这个形实转换

函数。
由于look是严格的，我们希望look 的调用者传递计算后的值，而不是形实转换函数。递归
调用的例子可以说明其道理;递归调用必须显式地建立t.left和 t。right的形实转换函数，才

能将它们从形实转换函数转变成值。

程序 15-11 使用严格性分析的结果的部分传名调用，与程序 15-9 对比

function 1ook(t: tree,k; key):()->binding =
if k < t.key() then look(t.left(),k)
else if k > t.key()then look(t.right(),k)
else t.binding

近似的严格性分析。在某些情况下，例如上面的函数 f、q和h，函数的严格性或者非严格

性是显而易见的，优化编译器可以很容易判断出它们是否是严格的。但是通常。精确的严格性

分析是不可计算的——就像精确的动态活跃分析（见10.1.5节）和许多其他数据流问题一样。

345 因此，编译器必须使用一种保守的估计∶如果不能确切地判断出函数参数的严格性，则必
须假设其参数为非严格的。我们需要为这种参数建立形实转换函数;虽然这样会降低程序的执

行速度，但是至少优化器不会将一个可终止的程序转变为死循环的程序。

算法15-4给出了一个计算严格性的算法。该算法维护着一个形如（f.（b..⋯.b。））的元组集

合日，其中n是f的参数个数，b，是布尔量。元组（f，（1，1，0））的含义是∶使用三个参数（形实

转换函数）调用f，如果前两个参数可以停止，但第3个参数不会停止，则f可能会停止。346
如果（f，（1，1，0））属于集合H，则f在它的第三个参数上可能不是严格的。如果决不会将

（f，（1，1，0））放人 H中，则f在它的第三个参数上一定是严格的。

我们还需要一个辅助函数来计算一个表达式是否可能终止。给定表达式 E 和变量集合a，

M（E，a）表示"如果。中的所有变量都可能终止，则E也可能终止"。如果E1是i+，并且
i和j的形实转换函数都有可能会停止，则 E，也有可能会停止∶即 M（i+j，|i，）为真。但是

如果E。是 迁fkthen ielsej，其中i和j可能停止，但是k不会停止，则E，肯定不会停止，因
此 M（E。，1i，1）为假。
算法 15-4不能处理作为参数传递或者作为结果返回的函数，因此不能作用于Lazy-Tiger 语
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言的全集。但是对于一等程序（没有高阶函数）;该算法可以很好地计算（静态）严格性。功能

更强的严格性分析算法能够处理高阶函数。

算法15-4 一等严格性分析

函数A∶
M(7,o)=1
M(x,0)=x Eo

M（E1+E2，a）=M（E1，a）入 M（E2，o）
M(record(E1..E,), a)=]
M(ifEI then E2 else E3.a)= M(E1,a)A(M(E2,a)vM(E,a))

M（E（E1.⋯，E）， a）=（f，（M（Ei.σ）.⋯.M（E..σ）））eH

日的计算∶
n--0
repeat
done ← true
for每一个函数f（x·，2）=B
for布尔量组成的每一个序列（b.⋯，b。）（它们都是2）

if（E，（b1.，b，））要H

a←【x|bj=1} （a是x在b向量中与1
f M（B，σ） 对应的集合）
done -false
H←HU{（f，（by，⋯·，b））1

untl done
严格性（H的计算终止后）∶
如果下面的条件成立，E在它的第i个参敷是严格的

(f,1,1..1,0.1.1.,D)gH
4-1 #-

推荐阅读

Church【1941】开发了入演算，一种可以将函数作为参数传递和作为结果返回的嵌套函数"程
序设计语言"。但是，当时他受困于没有机器进行这种编译。

闭包。Landin【1964】说明了如何使用堆上分配的闭包在一个抽象机器上解释执行入演算。

Steele【1978】使用了一些专门用于不同函数使用模式的闭包表示，使得在许多情况下可将非局部
变量作为一个额外的参数传递给内层的函数，从而避免在堆上分配记录。Cousineau 等人
【1985】说明了如何将闭包变换表示为一种转换回源语言的转换，从而可以清晰地将闭包分析与
代码生成的其他阶段分离开来。
静态链事实上不是闭包变换的最佳基础;基于许多原因，最好是单独考虑每个非局部变量，

而不是总将同一嵌套层的所有变量成组地一起考虑。Kranz 等人【1986】通过执行逸逸分析来判

断哪些闭包在创建它们的函数中不是出口活跃的。因而可以将其分配在栈上。该文献中还将闭

包分析和寄存器分配结合起来，以构造高性能的优化编译器。Shao 和 Appel【1994】将闭包和被

[347调用者保护的寄存器集成在一起，以尽量减少局部和非局部变量引起的对存储器的取/存访向。
Appel【【1992，第10和12 章】对闭包转换进行了很好的概括。
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延续。尾调用特别高效且易于分析。Strachey 和 Wadsworth【1974】说明了任何程序（即使

是命令式程序）的控制流都可以利用延续的概念表示为函数调用。Steele【1978】在编译的较早阶

段将程序转换为延续传递风格（continuation-passing style），将所有函数调用都转变为尾调用，
简化了编译器的所有分析阶段和优化阶段。Kranz等【1986】 使用延续传递风格为Scheme 构建
了一个优化编译器;Appel【【1992】描述了 ML的基于延续的优化编译器。

内联扩展。Cocke 和 Schwartz【1970】描述了函数体的内联扩展;Scheifler【1977】说明了内联

扩展对支持数据抽象的语言特别有用，这种语言的程序中有许多在抽象数据类型上实现的小函

数。Appel【1992】描述了若干用于控制代码爆炸的实用启发式策略。

基于延续的输入/输出。Wadler【1995】描述了原子个体（monad）的使用，用以推广基于延

续交互的概念。

懒情计算。Algol-60【Naur et al.1963】 对函数参数使用传名调用计算，传名调用是用形实转
换函数来实现的——但 Algol-60同时也允许副作用，所以程序员需要弄清楚自己的程序到底会
怎样执行!大多数 Algol-60 的后续版本都使用传值调用。Henderson 和 Morris【1976】与 Fried-

man和 Wise【1976】各自独立地发明了懒惰计算（按需调用）。Hughes【1989】给出了证据，认为
懒惰函数式语言的程序设计比命令式语言的更清晰，模块化程度更高。
20世纪 80 年代开发了几种懒惰的纯函数式语言;这一领域的研究团体设计和采纳了

Haskell语言【Hudak et al.1992】作为标准。Peyton Jones【1987;1992】介绍了许多用于懒惰函数式
语言的实现技术和优化技术。Peyton Jones 和 Partain【1993】描述了一个实用的高阶严格性分析

算法。Wadler【1990】描述了森林砍伐转换。

程序设计∶编译函数式语言

348 a.实现 Fun-Tiger。可以将函数值作为一个在堆上分配的包含两个元素的记录进行分配，其
中一个元素是函数的地址，另一个是静态链。
b.实现 PureFun-Tiger。PureFun-Tiger和 Fun-Tiger类似，但删除了几个"不纯的"特征，

而且预定义的函数有不同的接口。

c.实现 PureFun-Tiger的优化。这需要修改Tree中间语言，使它能够以机器无关的方式表

示整个程序，包括函数入口和出口。在内联扩展（和其他）优化后，程序可以转换为第

7章的标准Tree 中间表示。

d.实现Lazy-Tiger。

习题
15.1 画出一个示意图，表示程序15-1中即将调用 add24（a）的地方的 add24和 a的团闭包数据

结构。标记出所有的成分。

*15.2 图15-2总结了用函数式或者命令式风格实现 printTable的必要指令，但是它省略了给

此调用传递参数的 MOVE指令。按照图11-1的程序风格，用伪汇编语言补充所有被省

略的指令，完成函数式和命令式两个版本的程序。说明你希望通过复写传播删除哪些

MOVE指令。



245第15章 函数式程序设计语言

"15.3 解释为什么在 PureFun-Tiger程序的闭包和记录图中没有环。评论对这样的程序采用引
用计数的垃圾收集的适用性。提示∶在什么样的环境下，记录或者闭包在它们被初始化
后还会被更新?

15.4 a. 对程序15-2a中的函数look 执行算法15-2（循环前置头转换）。

b.在 a的结果上执行算法15-3（循环不变量外提）。

c.对下面的look 的调用执行算法15-1（内联扩展）（假设前两次的转换已经生效）;

look(mytree,a+1)

15.5 对下面的程序执行算法15-4（严格性分析），给出repeat循环的每一遍的集合H。

function f(w:int,x:int,y:int,z:int) =
if z=0 then w+y else f(x,0,0,z-1)+ f(y.y,0,z-1)

349在哪些参数上，F是严格的?
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多态的（poly-mor-phic）;能够呈现不同形式的。

韦氏宇典

有些函数的执行方式和它们所操作的数据类型无关。有些数据结构可以不考虑它们的元素
类型而按照相同的方式来组织。

以Tiger中联结两个链表的函数为例。我们首先定义一个链表数据类型，接着定义一个

append函数∶
type elem =int
type intlist=(head: elem,tail: intlist)

function append(a: intlist,b:intlist): intli8t =
ifa=ni1
then b
else intlist(head= a.head,tail= append(a.tail,b)}

如果将elem类型改为string或者 tree，intlist数据类型和 append 函数的代码不会有任何的不

同。我们希望 append 函数能够处理所有类型的列表。

一个函数如果能够操作不同类型的参数，这个函数就是多态的（polymorphic，从希腊语
many十shape 得来）。多态性主要有下面两种。
·参数多态性（parametric polymorphism）。如果一个函数不管它的参数是什么类型，都遵
循相同的算法，我们就说这个函数是参数多态的（parametrically polymorphic）。Ada 或

者 Modula-3的泛型（generic）机制、C—中的模板（template）或者 ML的类型配置
（type scheme）都是参数多态性的例子。

350 ·重载（overloading）。如果一个函数标识符能够根据其参数类型的不同而代表不同的算
法，则该函数标识符是重载的。例如，在大多数语言中，＋操作符是重载的，对于整型
参数，＋表示整型加法;对于浮点参数，十表示浮点加法（和整型加法的算法完全不

同）。许多语言中，包括Ada、C++和 Java，程序员可以根据自己的需要构造重载函数。

这两种多态性截然不同几乎毫无关系，它们需要不同的实现技术。

16.1 参数多态性

多态函数f（x;t）的参数x的类型为1，其中t可以是不同实际类型的实例。在显式风格的

参数多态性中，我们将类型作为参数传递给函数，于是函数定义可写成类似f<t>（x;t）.函数
调用看起来类似厂<int>（3）或者f<string>（"three"）。在隐式参数多态性语言中，函数定义

可以简单地写为f（x），函数调用可以是 f（3）或者 f（"three"）——不需要说明类型参数1。可以
采用其中任何一种设计方式设计出合理的程序设计语言。

即使编译的是隐式类型语言，使用显式类型语言作为中间表示也是有意义的，如图16-1所
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示。显式类型中间语言的一个最大好处是，对中间表示可进行类型检查，不像第7章描述的
Tree语言。这意味着在每个优化阶段后都可以再次运行类型检查器——不是为了调试被编译的

程序，而是为了调试编译器!

轴象语祛
显式类型 词法分析

带类型的中帕商详显式类型的抽象瑞述
类型

带类型的中间诵诣
语法分析的源语言 检查(Poly-Tiger) 抽象语法

谊编化码指令规范化，语义分析， IJR客表示转换 选择优化

批象语浓
隐式类型 词法分析 类型的源语言 语法分析 推论（1mplicitPoly-7iger 抽象语法

图16-1 多态语言的各个编译阶段

信任，但是要验证。采用带类型的中间形式就能够检查一个尚未完全编译（和优化）好的

[351程序的正确性和安全性。这是 Web 小应用程序（Web applet）的一个重要的原理。例如，Java

程序可以编译成称为 Java虚拟机字节码的中间形式，这个半编译好的程序传输到用户的机器上

后，用户机器上的字节码验证器（byte-code verifier）仍旧可以对其进行类型检查。然后，字节
码程序或者被解释执行，或者被转换为本地机器代码。对字节码（或者所传输的其他中间表示）

的类型检查意味着 Java 小应用程序的用户不能完全信任这个程序不会因为违反了类型系统而破
坏安全性。但是 Java没有参数多态性，在这一章，我们将展示一个适用于多态程序设计语言的

具有类型的中间形式。
为了研究多态性，我们构造一个显式多态语言 Poly-Tiger和一个隐式多态语言 ImplicitPoly-

Tiger，这两种语言都基于第 15 章描述的函数式语言Fun-Tiger，其显式带类型的抽象语法和

Poly-Tiger 相似。

16.1.1 显式带类型的多态语言

除了具有不同的声明和类型语法以及两种新的表达式外，Poly-Tiger 和附录描述的 Tiger 语
言一致，如文法16-1 所示。和 Fun-Tiger一样，Poly-Tiger有函数类型1y->1y（见文法16-1中

的函数类型、多参数函数类型和无参数函数类型的规则）和函数调用语法exp/（exp ，⋯，exp。），
其中 exp除了可以是一个标识符外，也可以是一个表达式。

在 Poly-Tiger中，我们增加了几种新的类型ty。对任何 a，多态类型（polymorphic type）
poly<a>T都可以有类似于类型T的行为。例如，对任何a。poly<a>a->a都是一个函数类
型，该函数类型有一个类型为a的参数并且返回类型为 a的结果。

我们还需要有一种构建多态数据结构的方法。因此，语法中增加了两条关于参数类型构造器

（parametric type constructor）和类型构造（type construction）的新规则∶声明 type id tyvars=

ty声明了一个参数化的类型 id;它右边的 ty中出现的任何类型变量都必须来自显式的类型
参数1ywars。
有了这种方法，我们便可以构建"任何事物的列表"∶

type 1ist<e>= {head;e, tail:1ist<e>}

值得注意的是，list不是一个类型——它是程序员声明的一个类型构造器（type constructor，
简写为 tycon）。但是对于任何类型 T，list<T>是一个类型。 352]
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文法16-1 Poly-Tiger 的语法规则

类型标识符ty →id
函数类型ry →1y->ty
多参数函数类型ry →（b【岁1）->b
无参数函数类型ry →()->ty
多态类型ty → poly tyvars y
类型构造ty → y nyargs
类型形参rovars →<id [, id}>
无类型形参ywars → 6
类型实参tyargs →<ty [, ty)>
无类型实参tyargs → e
带类型的变量声明vardec→ var id:ty:= exp
参数类型构造器tydec → type id tyvars = ty
数组类型表达式tyulec → type id ryvars = array of ty

tydec → type id ryvars ={ ryhelds} （这些花括号代表它们自己）
这” 空记录类型
ryfields→ id:ry{, id:ty] 记录类型域
fundec → function id rywars(tyfields)= exp 多态子程序声明一
fundec →function id tywars（tyfields）∶id=exp 多态函数声明
限制∶禁止 odec 嵌套在fiundec体内
5P 所有的Tiger表达式，外加⋯⋯一→..
→ exp ryargs(esp {, exp)) 带实例的函数调用eyp
exp → ype-id tyargs[id=epl,id=expl} 带类型实例的记录创建

为了从一个多态的记录类型构造器构造一个记录，类型实例化的记录创建规则要求在记录

域初值符之前放置一个类型实参。例如，我们可以通过list<int>{head=4.tail=nil|来创建

一个list <int>记录。
实例化的函数调用允许我们调用一个多态函数。现在，我们准备写一个多态的 append

函数∶

type liast<e>={head: e,tail:1iet<e>)

function append<e>(a: list<e>,b:list<e>):liat<e>=
if a=ni1
then b

[353 else ligt<e>(head= a.head, tai= appendce>(a.tail,b)}

函数 append 的类型是 poly<e>（list<e>list<e》）->list<e>。
接下来，我们构建一个由两个4组成的列表∶

var one4:listeint>:= list<int>(head=4,tail=nil)
var two48:list<int>:= appendeint>(one4,one4)

我们甚至可以构建整数列表的列表∶

list<list<int>>(head=two4s,tail=nil)

16.1.2 多态类型的检查

多态语言的类型检查没有单态语言的类型检查那么直接。在着手实现类型检查之前，我们

必须清楚类型规则是什么。
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在 Tiger中，我们用Types模块（见程序5-5）来描述单态类型。为了描述 Poly-Tiger的类
型，我们要用一个新的Types模块。图16-2对其进行了总结。

y→Nry → Nl |Int |String| Void
ry →App(ycon,ty lisr)ty →Record((symt, ty)list, unique)
by→ Var(tyvar)ty →Array(ty, unique)

ty→ Name(sym,y) ty → Poly(ryvar list,ty)
tycon →Int | String| Void | Arrow
rycon → Array | Record(fieldname lis)
rycon →TyFun(tywar list, ty)
tycon → Unique(tycon, unique)

（）单态 （b多态

图16-2 Types模块。（a）程序5-5的总结;Record和 Array类型中的unique 指出我们使用指针

相等测试来区别不同的类型。（b）增加了新的类型 App、Var、Poly，以及类型构造器

这两个Types 模块有一些重要的区别。我们现在要让作用于 tycon（例如 list）的 App类型作

用于类型实参（例如<int>）。为了简化类型的内部表示，我们将 int看作一个有0个类型实参的

类型构造器;即使没有按照 Poly-Tiger 的语法来书写 int，在内部也会将其表示为App（Int，【】）。

354]具有两个参数的Arrow类型构造器表示函数，因此 a→b将被表示为 App（Arrow，【a，b】）。

置换。类型构造器TyFun（【a1，⋯·a.】，1）表示一个类型函数（type function）。类型t可能涉

及a，⋯，a。，并且任何使用这个类型构造器的 App类型的含义都可以通过扩展t（即用实际类
型参数置换形参a）而获得。算法16-4给出了置换的规则。

置换的基本思想是;用I.置换类型表达式t中的3.是指将r中β.的所有出现都用t替换。

但是置换必须服从作用域规则，以避免变量俘获。如果类型t是 Poly（【【3，list<β>】），则Poty的

形参【【3】是一个新的变量，其作用域是Poly的类型体（例如 l1ist<β>），并且在这个作用域内
不能出现对β的置换。

表达式的变量俘获问题已在15.4 节做了描述。类型置换需要的α变换所采用的方式和项（即

表达式）的置换相同。为了避免俘获，我们在算法16-1的 Pov规则中引入了新的变量【Y，⋯，y。】。

算法16-1 类型变量的置换规则。第3条规则说明了当我们遇到TyFun时，需要先扩展它，然后再
继续进行置换;假如考虑到了作用域，我们本来有可能像 Poly 规则展示的一样将置换

代人到TyFun的体内。在Poly 规则中，通过将两次置换组合成一次，我们可以避免两次
应用subs1;见习题16.4

satot（Vato），【7-→1⋯A一 4）-17ara） 其他ifα=β
subs（Nilσ）= NIl
subsr(App(TyFun(α1,αl.7),[u;⋯,u,D)。a)=
subsr(substr(t, {a e→ u1..a, →u)),a)

其中，tycon不是一个TyFansubsr(App(ycon, [u1.,u,]),a)=
App(tycon, [subst(ur.a)⋯⋯,subsr(un,a)D)

subsr（Poly（【a1.⋯，anl，u），a）= Poly（Iy.⋯.y】. subst（ul，σ））
其中YL.·⋯.》是未在σ或者u中出现的新变量，
并且n'=subsr（u.{a1→ Var（Y）.⋯.a，→ Var（ya）））
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类型的等价。给定声明
type number =int

[355 type transformer<e> = e -> e
则 number 的含义与 int一样，transformer<int<的含义和 int->int相同;我们可以为了不同

的用途自由地置换这些类型的定义。这称为类型的结构等价（structural equivalence of types）。
这些类型构造器的内部表示是∶

→) Intnumber
trzansformer → TyFun(te]. App(Arrow,[Var(e), Var(e)])

在 Poly-Tiger中，我们希望保留 Tiger语言中的"记录各不相同"规则（见 A.2节），即每个记
录类型声明创建一个"新"类型。这称为类型的出现等价（occurrence equivalence of types）中。

也就是说，给定声明

={firat:a,gecond: a)type pair<a>
type twosome<a>{firet: a,gecond: a}

类型 pair<int>和 twosome<int>是不相同的。使用结构等价还是出现等价是语言设计者必须做

的选择，例如 ML中的记录类型使用的是结构等价。
在普通的 Tiger中，Record类型是通过Ty_record 结构的指针值来区分的，Ty_record结构

是记录类型的内部表示。但是在多态语言中，当我们将记录类型作用于实参时，则需要复制记

录描述。在下面的程序中，

let type pair<z>(firet: z; second:z}
functAon f(a:pair<int>):pailr<int>=a

in f
end
第一行创建的是一个新的类型构造器 pair，而不是一个新类型。我们希望 pair< int>（参数类型）

和 pair<int>（结果类型）是同一类型，但是必须将 pair<string>识别为不同的类型。

为了表示 pair类型构造器的内部结构，我们可以将它写成

nycon,= TyFun([z], App(Record(first,secondl),TVar(z),Var(z))

但是这还不能使 pair有别于 twosome。因此，我们使用一个 Unique类型构造器对其进行包装;

tyxompir = Unique(tycon,qn3)[356 tyconaome= Unique(yconp (324)

标签 qu和 g;区分了 pair类型和 twosome类型（实际上，我们可以用 Ty_unique 结构的指

针地址来标识这两个出现）。

测试类型等价。在类型检查中，我们常常需要测试一个类型是否和另一个类型等价。为了

测试包含App（TyFun·.⋯）的两个类型的等价性，我们可能需要用实参置换形参来扩展TyFun。

但是为了比较包含App（Unique（tycon，z）⋯））的类型，我们不应该扩展类型构造器，而是应该测[357
试唯一性标记z。函数unify（算法16-2）测试类型的等价性。在此算法执行到 error 时，需要

向用户输出类型检查报错消息。

④有时也称为名字等价，但是实际上它是"生成"这个新类型的一种定义出现，而不是与它绑定的类型名，
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算法 16-2 类型等价性测试。这个函数可能会打印一个报错信息，但是对全局状态没有其他
副作用。这个函数之所以叫作unify是因为当我们对它进行扩展、实现对隐式类
型语言的类型推论时，不仅检查两个类型是否相同，如有可能，还会修改全局状
态，将这两个类型标记为同一类型

umif(App(rycon,[t.⋯..t]),App(tycon,[u1.,u,))= ifrycom;isInt.Strimg. Void.
unify(ri,uj);.. unify(t,u) Arrow. Array.or Record(idj,id)
unify(App(TyFun(q⋯,α,].4),[1,⋯,1]),t)=
unify(subst(u, [ai → t,.-,α, → I]),7)
unify(7,App(TyFun([α1,,α,l,u),[tj.⋯.,tD)=

unify(7,subsr(u, (ai → 1,⋯⋯,α,→ Im))
mify(App(Unique(u,z),[tr..D)。App(Unique(u',2'),[r1...t'D)=
if z ≠zthen error;
unify(t1,1);· unify(tm,)
unify(Poly(a.⋯,a].u),Poly([a'...α,].u))=
unify(u,subsr(u',{ay→ Var(a;).⋯,a, → Var(αa)))
unifv(Var(β).Var(B))=OK
unify(Nil, App(Record(..),..))= OK
unify(App(Record(...),..), Nil) =OK
unify（t，u）= error 其他所有情况

Unique类型的扩展。当某个操作需要 Unique 类型的内部结构时，我们就需要仔细查看
Unique类型定义的内部结构。对于 Array类型，这意味着下标处理;对于Record类型，这意味
着域的选择或者记录的构建。函数expand（算法 16-3）用例子指出了必须在哪儿扩展TyFun类

型和 Unique类型以暴露它们的内部结构。 358
算法16-3 扩展一个类型，以了解其内部结构

expand(App(TyFun([α1.⋯,a.l.u),[1...t.D)=
expand(subsr(u, (ai →ti,,0m → t}))

expand(App(Unique(tycon,2),[.,I]))= expand(App(tycon,In,,ID)
expaund（u）= t 其他所有情况

类型的翻译。算法16-4 说明了如何将 Poly-Tiger类型声明的语法翻译为新 Types 模块的
内部表示。除了类型变量标识符被映射为ty外，类型环境a将标识符映射为 tycons;对于

多态函数的显式类型参数、poly类型以及参数化的类型构造器，我们需要将类型变量引入

到环境中。
和5.4.2节的C代码一样，算法16-4 不能处理递归类型。处理递归类型声明的方法与

5.4.4节描述的方法一样∶首先处理类型头。然后处理类型体。对于普通 Tiger，递归声明处理
的第一遍只创建类型的 NAME，此类型的右端要到第二遍才填充。对于Poly-Tiger，这个在第二遍

才填充的"空穴"必须位于Unique类型构造器中，不能在 Tyfun 中。

类型检查。算法16-5给出了与声明和表达式的类型检查有关的一些规则。为了检查函数

function f<z>（x∶t）∶t，=e;的类型，我们创建一个新的类型变量β、并且将绑定z→β插入到
用于处理函数参数和函数体的类型环境中，这样便能正确地识别z的使用。接下来，我们创建

一个形参为β的Poly类型。
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算法 16-4 非递归的类型声明。这里给出的是转换规则中的几个规则

ransdec(a,o,type id = array of ry)=
z e newunique()
(a,o,+{id→ Unique(TyFun(1].App(Array,[transty(G,ty)),2)))

transdec(a。,o,type id ca> = array of n)=
β←newtyvar（）
z ←newunique（）
tye ←TyFun（Iβ1.App（Array，【transty（a，+【a → Var（）。b）】））
(a, a,+(id →> Unique(rye,2))

transdec(an, a,, type id = ry)=

(a, a,+[id → TyFun(0], transty(a,,t)))
Iransdec(a,,0,type ld <a> = ty)=
β ←-newtyvar（）
(ay,a,+[id→ TyFun([61,transy(a,+(a → Var(β)],ry))

transry（a，id）= 如果可（id）是一个无参数的 pecon
App(o;(id).[D)

ransty（a，id）=如果可（id）是一个y（即，id是一个类型变量）
o,(id)
transty(o,ideu1,..,ue >)= 味（id）必须是有★个参数的teon
App(a,(id),[ransty(un)⋯, transty(ua))

App(Arrow,[transy(a, ty),transty(a,ty)])transty(o,ty->ty)=
transty(a,polyea> ty)=
β ÷newtyvar()
Poly(Iβ]. ransty(a,+ {a → Var(B)].ty))

算法 16-5 对 Poly-Tiger 表达式进行类型检查。这里只展示了部分类型检查规则;
不包括递归或者多参数函数、多类型参数或者多记录域的情况

00={int → App(Imt,[).. 初始的类型环境

函敷声明tmansdec(a,a,function f<x>(x:1):1=e)=
β ←newtyvar（）
a'←o，+{z→ Var（6）】
t←transty（a'，1）;l←-transty（a}h）
g'←a。+【 → Poly（I6】.App（Arrow，Ij，4）}
已十氏十需言还
1← transexp（o"，o，e1）
uniy（4，专）
(r,a)

变量声明transdec(o,or,var id:ty = exp)=
t ←ransty（a， ty）
unify(t, transexp(a,a,,ep)
(a,a+lid→ t

标识符表达式transep(a,a,id)=a,(id)
整型加transexp（a，0r，e1十e2）=

unify(transexp(a,a,e),App(Int,I]));
unify(transexp(a,,o,e2),App(Int,[D);
App(Int,[D)

带实例的函数调用transexp(a,o,ei<ty>(e))=
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（续）
t ← transty（a，ty）
Ir ← transexp（a，o，e）
t，←- transep（a，o，ea）
check that expand(tj)= Poly([β],App(Arrow, t,tl))
unify(t.. subst(1,[β → I))
subst(2,{β→1)

记录创建transexp(a,or,rcrdety>tfld = ei))=
1， ←App（o，（rerd）， 【transty（o，， ty）】）
check that expand(tr.)= App(Record(UidD),[ty])
unify(tr, transexp(a, 0;,e1))

I-

为了对函数调用f<int>e，）进行类型检查，我们首先在变量环境a.中查找f，获得Poly
（【8】，App（Arrow，【t1，1∶】）），再用int替换t，和12中的β。然后检查e，是否具有类型t，并且

返回类型1.作为整个函数调用的类型。
为了对一个记录创建list<int>{head=x，tail=y进行类型检查，我们首先在类型环境a

中查找list，得到一个类型构造器 tycon，再转换a，中的 int 得到t，然后创建新记录的类型

t，=App（tycon，t）。于是，我们可以从t，中得到 head 域的类型，并确认这个类型和x的类型
一致（tail的类型也一样）。

16.2 类型推论

为了使多态程序设计更容易，有些多态语言（特别是 ML 和 Haskell）不需要程序员写下所
有类型，而是由类型检查器推断类型。例如，16.1.1节的 append 函数就没有写出所有的

<types >——但多态记录类型声明仍必须完整地写下所有的类型参数; 359
type list<e>={head: e, tall:1iat<e>)

function append (a,b)=
ifa=n11
then b
else list{head= a.head,tall= append(a.tal1,b)}

这种风格写起来更简练，可能更具可读性，但是编译器是如何推断出它们的类型的呢?首
先，在需要类型的地方，编译器会插人占位符a、β、γ、δ∶

function append (a: α,b:f):y =
if a=nl1
then b
else 1ist<8>{head= a.head,tail= append(a.tail,b)}

现在，从表达式a.head和a.tall，编译器知道 a一定是一个列表"，因此对某个 7，有a=
1ist<7>。因为b可以作为 append 的结果返回，所以编译器知道β=Y。else 子句返回list<δ>，

因此y=list<δ>。最后，因为 head=a.head，所以8=7。将这些等式作用于append的代码，
编译器得出∶

①仅当没有其他的记录类型具有 head或者ta且 域时这个推断才成立;本节稍后会讨论这个间题。
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function append(a:1ist<6>,b: 14st<6>):1ist<e8>=
if a=nf1
then b
else list<6>{head- a.head,tail=append(a.tail,b)}

这段代码从头至尾一直没有依赖于δ的任何特定属性，因此这个 append 函数适用于任何类
型的δ。我们通过使δ通用化（generalizing）——也就是说，使δ成为append 函数的一个显式

类型参数，来表示这一点∶

function appended>(a:list<d>,b: list<d>):list<d> =
if a=ni1
then b
else 1ist<d>{head= a.head,tail- append<d>(a.tail,b)}

现在，我们就得到了和16.1.1节所示的函数一样的函数（用d重命名了e）。在接下来的几页

中，我们会详细解释这种类型推论和通用化算法。361
16.2.1 一个隐式类型的多态语言

Hindley-Milner类型推论算法作用于一个没有显式指明类型的多态程序，并将它转换为一

个显式类型的程序。为了解释该算法，我们可以使用 ImplicitPoly-Tiger语言，该语言和 Poly-

Tiger类似，但是函数的参数没有明显地给出类型（见文法16-2）。我们打算用这种语言来模仿
ML程序设计语言中的一些重要概念。

文法16-2 ImplicitPoly-Tiger 的语法规则

ty, tyvars, byargs,tydec 和Poly-Tigar的完全一样（见文法16-1），但没有poly类型
不带类型的变量声明vandee → var id := exp

fundec →function id（formals）= exp 函数声明
限制∶禁止tvde嵌套在fundlec体内

不带类型的形参列表formals → id{,id]
空参数列表formals →
所有Tiger表达式，加⋯⋯eyp →..

ep → esp (exp [, ep)) 带隐式类型实例的函数调用
ep → type-id {id=exp[,id=expl)] 带隐式类型实例的记录创建

和 Poly-Tiger不同，在 ImplicitPoly-Tiger中，函数声明没有列出参数类型，也不带有
tyargs列表。此外，在ImplicitPoly-Tiger 中，尽管类型推论算法能够在内部推断出 poly类型，
但用户不能显式地写出它们。最后，函数调用和记录创建也不需要给出任何类型参数列表。

但是，类型声明（例如 list<e>的声明）中必须指明参数的类型和记录域的类型。

ImplicitPoly-Tiger的转换。尽管我们不需要最后一条规则（用于 poly类型的规则），转换

Poly-Tiger类型和类型声明的算法16-4同样可适用于ImplicitPoly-Tiger。但是函数声明和表达

式的类型检查就不大相同了，我们不能使用算法16-5，而要使用算法16-6。

算法 16-6 用于 ImplicitPoly-Tiger 语言表达式类型检查的 Hindley-Milner算法

a, = (int → App(Int, ID.] 初始的类型环境
函数声明ransdec(o,ar,function f(x)=ei)=

1，←Meta（newmetavar（））
1←Meta（newmetavarO））
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（续）
Iy←App（Arrow.【t，1
h←transexp（o+（→t，x→ t）.8.e）
tuniy(2, )
r，←generalize（or.t）
(o,+{→r).a)

隐式类型的变量声明ransdece(a,g,var id:=exp)=
t ← transexp（o，on，exp）
检查t不是Nit
ir id在它的作用域内曾被赋值
r'←Poly（】.n）

else t'4- generalice(t)
(a,o。+{d→1))

变量的出现transexp(ap, a,id)=
instantiate(,(id))

和Poly-Tger 的相同transexp(a,,or,e1+e)=
unif(transexp(o-a.e).App(Int.[D
unify(transexp(o.o.e2),App(nt.[D)

App(Int. [l)
函数调用transexp(a,G, f(e))=

tr ← transep（anar.f）
l←transeyp（as，o，e）
12←-Meta（newmetavar（O）
unify(t7,App(Arrow.L.1D)

力2

16.2.2 类型推论算法

类型推论使用的类型的内部表示和图16-3b 所示的相似，但是有两个额外的ry类型，其中

第一个是类型元变量（type metavariable）∶

ty →+ Meta (metavar)

和普通的Var类型变量不同，元变量没有与Poly 绑定，它只是需要推断的未知类型的一个

占位符。在16.2节开头的append程序中，希腊字母a、β、γ和8就是类型元变量。我们已经解
决了a、β、y的值，但是没有确定δ。这意味着我们可以将8转换为普通的变量d.它是一个由

append 的类型中的Poly 绑定的普通变量。
正如算法16-6所示，检查 function （（x）=e 的类型时，我们创建两个新的元变量t。（代

表x的类型）和 t。（代表f的返回类型）。然后，按下面的方式，使用 unify 函数推导出这两个

元变量之间的关系。 362
类型检查器维护着一个全局的环境a-，这个全局环境将元变量映射成它们的实例。在前

面，当了解到α=list<n>时，我们要将绑定a→App（list，【Meta（n）】加人到 a中。
大多数实现并不将σ.实现为查询表;而是让每个 Meta（a）有一个初始为空的附加域;当一

个实例化完成后，我们不将绑定a→t加入到表中，而是将一个指向t的指针保存在 Meta记
录中。
算法16-2中的 unif函数需要加入一些新的子句来处理Meta类型;下面这些子句用来访问

和更新全局环境 sigma_m∶
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unify(Meta(α),t)=
if α ∈ domain(am)
then unify(om(α).1)
else if 1=App(TyFun...)
then unify(Meta(a),expand TyFun type as usual)
else if t= Meta(y)and y E domain(am)
then unifjy(Meta(α), Om(y))
else if t = Meta(α)
then OK
else if Meta(a) ocurs in r
then eror
else am ←-am +{a → 1）; OK

unijy（1，Meta（α））= 其中，1不是一个Meta
umify(Meta(α),t)

如果元变量α已经被实例化为某个类型u，则我们只需要将μ和t 结合起来。否则，将g实

例化为1，但是决不会将a实例化为a。363
条件"if Meta（a）occurs in t"叫作存在性检查（occurs check），它的作用是避免创建循环的类

型∶我们不想将a实例化为a=list<a>，因为在 ImplicitPoly-Tiger类型系统中，这是不允许的。

处理类型的其他函数（例如 subst 和expand）需要进人被实例化元变量的内部;

expand(Meta(a))=subst(Meta(a),a)=
if a ∈ domain(⑦m)if ae domain(Cm)
then erpand(a(a))then subsr(a(a), a)
else Meta(a)celse Meta(a)

通用化和实例化（generalization and instantiation）。在转换 function f（x）=e的过程中，

我们可能在得到一个自由元变量（free metavariable）后就结束。换句话说，类型 t，可能是一个
像 App（Arrow.，【Meta（a），Meta（a）】）这样的类型，其中a没有在o.中被实例化。在这种情况下，

我们可能会想将这个类型通用化为∶

Poly(a]. App(Arrow,[Var(a)。Var(a)D)

使得f可作用于任何类型的参数。但是我们也必须小心。例如，程序∶

function randomzap (x) =
let function f(y)= if random()then y else x
in f
end

在对 randomzap 进行类型检查时，我们递归地调用 transexp处理let表达式，transexp 会对f的
声明进行类型检查。此时，a，中x的类型是 Meta（a），f的类型将变成App（Arrow，，【Meta（a），
Meta（a）】）。但是我们却不能实施通用化，因为f的参数不能是任意类型，而只能是与x相同的

类型。其原因是在x的类型描述中，α出现在了当前环境σ、中。

因此，通用化的算法是∶

8eneraliz(a,1)=
let αi⋯.，αe是出现1中，但不出现在 ay中的元变量
（搜索o。时，我们必须通过在am中查找元变量
和搜索查询结果来解释这些元变量）

fori ←1tok
let a;-newtyvar()
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σm ←Om+【a; → Var（a）】
return Poly(a1....,asl, ) 364
值得注意的是，所有函数都将具有Poly类型——但是单态函数的类型将是Poly（【】，⋯·），
这是一种没有实质意义的多态类型。

365通用化的反面是实例化。在使用多态变量的地方，我们用元变量来替换绑定的类型变量∶

instantiare(Poly([a,..,aj]。 ))=
fori 41tok
let aj ←- newmetavar（）
return subsr(r, (a1 →Meta(a1),..,an → Meta(qa)

在多态函数的每一个使用点，我们都要执行实例化。在一个调用点，可能用一个和 int结
合的元变量α来替换绑定的变量a1;在另一个调用点，又可能用和 string结合的元变量β来替

换同一个a1。但是在某个特定的调用点，a的所有使用必须相互一致。
例如，randomzap 函数具有类型 poly<a>a->（a->a）。可以按下面的方式来使用它∶

let var 10 := randomzap (0)
var s0 := randomzap ("zero")
in i0(3)+size(80("three"))

end
这段代码可能返回以下任何值∶3+5、0+5、3+4或0+4。randomzap的第一次出现是用
类型a→（α→a）实例化的，其中a是一个元变量。但是所有的α都必须结合∶对 randomzap（0）进

行类型检查时，我们将a和 int结合，这导致实例化a;对 i0（3）进行类型检查时，将a和 int
结合，但是由于a已经实例化为int，这里只需要检查α的使用是否一致;接着检查i0（3）+ ⋯

的类型时，再一次将α和 int结合。同样，randomzap的第二次出现被实例化为β→（β→β），并
且所有的β都和sring结合（分别是"zero"、"three"以及 size的参数）。

可更新的变量。给定一个变量声明 var a;= exp，在确定a的类型时，我们需要将 exp的类
型通用化。只要 a 除了这个初始赋值外，不再有其他的赋值，这样做就是合理的。但是对于多
态引用（polymorphic reference，即可赋值的多态类型变量）会有问题。例如，下面的程序不应

当通过类型检查∶

let functlon ldentity(x)= x
function increment(i)=i+1
var a:= identity
in a:= increment;a("oops")
end
保证不让它通过类型检查的一种方法是，避免将可更新变量的类型通用化;在算法16-6中隐式

366类型的变量声明子句中实现了对多态引用的这种限制。

16.2.3 递归的数据类型
在 Tiger 和它的变体中，记录类型可以递归;一种语言必须有某种形式的递归类型才能构建

列表和树。递归类型由于自身的特点给变量推断带来了挑战，例如，我们可能会问∶下面的参
数化的类型是否等价?

。{head:a,taf1:1igt<a>)type 1ist<a>
type sequence<a>=(head: a,taill: sequence<a>)
我们已通过记录各个不相同规则（record distinction rule）回避了这个问题，记录各个不相
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同规则假定在不同位置声明的记录类型是不同的——这是一种总体上简单而巧妙的解决方法。

如本章较早时所解释的，我们使用Unique类型构造器来建立这种区别。367
全局记录域。在 Tiger语言中，不同的记录类型可以使用相同的域名;编译p.x时，在查找

域x之前，p的记录类型是已知的。

但是在ImplicitPoly-Tiger 中，诸如 p.x的表达式必须能够在还不知道 p的类型时进行类型

检查—此时，我们所知道的可能只是代表 p的类型的元变量。因此，需要使域的名字（例如

x）具有全局作用域。
算法16-7给出了记录声明、记录创建表达式和域选择的类型检查规则。我们需要有一种新

的 ry（和 Meta类型一起加入到图16-2b中）∶

r → Field(ry;)

其中，Field（t，t）表示类型为t。的记录中一个类型为!的域。域名的全局化会使人感到不愉
快，因为这意味着不容易在两个不同的记录类型中使用相同的域名（一个域名会隐藏另一个）;

但这是使Tiger的域选择具有自动类型推论能力而必须付出的代价。ML 语言采用了不同的方法

来解决这个问题，它没有在记录类型中使用全局域名，而是在它的数据类型中使用了全局数据

构造器。因此，在 ML中，相同的数据构造器名字不能用于两个不同的类型（否则一个类型会
隐藏另一个）。
一个Field（例如 head） 是多态的，意味着它的类型是

Poly([β]. Field(App(liet,[β1).B))

这个类型表明它从类型为list<β>的记录中选择一个类型为β的值。当在表达式中使用域时，

和在多态函数中一样，必须将这个域实例化。

算法 16-7 ImplicitPoly-Tiger 语言的记录和域的类型检查

参数的记录声明transdece(o,,o,type it <a> = Uld:ry])=
z- newunique()

β-newtyvar()
σ'←a+la → Var（3）】
t←iransty（o，fty）
ta ← Unique（TyFun（【β】， App（Record（UfdD），【0】）），z）
t，←Poly（B】，Field（a.D））
(a a,+{id → ta,Jld→t))

记录创建transexp(a,a,rerdtd,= e))=
核实 a，（rcnd）= Unique（TyFun（lα1⋯，αa】.1r）.z） （k多半为0）
fori←I tok letx，← Meta（newmetavarO））
t，←subsr（r，【ay→ x，⋯，ay→Xl）
核实expand（r'）= App（Record（Uld;D）.【/】
unify(1',transexp(ap,or,e))

城选择干
transexp(a, o,e.id) =
le← transexp（ap，o，e）
I? ←Meta（newmetavar（O）
ty ←- instantiate（o.（id））
unify(ty,Field(r.1))
订
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16.2.4 Hindley-Milner类型的能力

多态的 append 函数可以用ImplicitPoly-Type 语言编写，也可以用 Poly-Tiger 语言编写。
ImplicitPoly-Type 语言使用 Hindley-Milner类型系统，Poly-Tiger 的类型系统和二阶λ演算等

价。但是事实上，Poly-Tiger 的表达能力确实比 ImplicitPoly-Tiger 更强;下面的 Poly-Tiger 函

数就无法用 ImplicitPoly-Tiger 等价地表示∶ 368
function mult(m: poly<a>((a->a)->(a->a)),

n:polysb-((b->b)->(b->b)))
:polyec>(c-》c)->(c->c) =

let function ged>(f: d->d):à->d-
m<d->d> (n<d>(f))

in g
end

ImplicitPoly-Tiger不能表示函数 mult的原因在于该函数的形参m和 n都是显式多态的。但
是算法 16-6引入 poly类型的唯一地点是在通用化中，而通用化只出现在函数声明中，不会出现

在形参中。
另一方面，所有的 ImplicitPoly-Tiger程序都能直接转化成 Poly-Tiger。我们可以扩展算法
16-6，使它在类型检查的同时执行这种转换。这样，该算法就可以作为图16-1中的"类型推论"
方框的内容。
对于类Poly-Tiger的类型系统（可以处理诸如 mult 函数的类型系统），不存在或者不可能存

在 Hindley-Milncr 风格的类型推论算法。如果希望使用二阶入演算的全部能力，就必须完整地写

出我们的类型。我们还不清楚 Poly-Tiger 的这种额外的表示能力是否有必要，也不清楚它是否

比隐式类型语言可用的类型推论所带来的方便更重要。隐式多态类型的语言 ML 和 Haskell已作

为通用函数式程序设计语言在研究团体中获得了相当成功的应用。还没有显式带类型的多态语

言有如此的成功。但是显式带类型的语言作为多态语言的中间表示正在成为一种主流。

16.3 多态变量的表示

类型检查后，程序可以转化为结构上和 Poly-Tiger相似的显式带类型的中间语言。对这种
带类型的中间表示可以执行规范化（转化为19.7节描述的函数式中间形式）和优化《例如

第 17~19章描述的优化）。

最后，我们必须为指令选择做准备。多态语言必须解决的基本问题是编译器无法知道保存

图在多态变量中的数据的类型和大小。

我们可以重写 append 函数，用变量×和y模拟编译器生成的临时变量;

function append<e>(a:liet<e>,b:list<e>):liet<e>=
if a=ni1
then b
else let var x: e :=a.head
var Y:li9tee>;= a.tall
in list<e>{head=x,tail=append<e>(y,b)}
end

①确切地说，应谈是几半所有的程序，见习题16.7。
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x的类型是什么呢?如果它是一个指针（即记录或者数组类型），则应当将它用作垃圾收集的一
个根;但如果它是一个整数，就不应该用作垃圾收集的根。如果它是一个双精度浮点数（在
Poly-Tiger中增强了浮点类型）。它的字长是8字节;如果它是一个指针，则字长（典型情况下）

为4字节。
编译器需要知道一个值的字长，其原因是显而易见的。例如在值为 a.head 的情况下，它

必须将记录 a中的这个数据复制到一个新创建的list记录中，并且需要知道复制多少位。除

此之外，垃圾收集问题也很重要∶如果创建这个新 list的存储分配调用发现有必要进行一次
垃圾收集，那么append的所有局部变量和编译器生成的临时变量都是垃圾收集的根（见13.7

节）。但如果 a.head是整数 i，则试图从堆地址 i开始跟踪可到达数据就会导致致命的错误。

但是在编译时 a.head 的类型还只是一个类型变量e，在 append 的不同的调用点e将被实例

化成不同的类型。那么机器代码怎样才能处理这种具有不同类型和字长的 a.head呢?
解决这个问题有以下几种方法。

·扩展∶不生成通用的 append<e>函数，而是为实例化e 得到的每一个不同的类型生成一
个专门的 append 函数。
·装箱，贴标签;确保每个值有相同的字长（典型情况下为1个字），并且能够用作垃圾收

集的根。
·强制;允许不同类型的值的字长不同，但是当将它们传递给多态函数时，强制地将它们
转换成字长统一的表示。

·传递类型∶允许不同类型的值的字长不同，并且将类型信息和值一起传递给多态函数，

使得多态函数知道如何处理它们。370]
上面每一种方法都是能够处理全部情况的完整的解决方法——有一些编译器只使用扩展，

另一些编译器只使用装箱/贴标签，等等。但是一个编译器可以通过如下途径实现程序的最佳优

化;对某些类型使用贴标签。对其他类型使用强制，用类型传递来处理其他情况。在方便的地

方使用扩展等。
下面几节将更详细地描述这些技术。

16.3.1 多态函数的扩展

处理多态的一种简单方法是内联扩展所有的多态函数，直到每一个函数都是单态的。Ada

的泛型（generic）和C+的模板（template）就是这样工作的。这种方法的优点是编译模式简

单高效;缺点是函数复制会导致代码膨胀。
15.4节描述了函数的内联扩展，即复制函数体，并用调用时的实参替换函数定义中的形参。

当参数是类型而不是值时，这种技术同样能很好地工作。

给定一个函数定义

function fez.⋯,z>(xi:.⋯,:t);1,=e

和一个函数调用f<u，⋯，u。>（a ，⋯.a。），我们可以用

let function f(x:.⋯.x:():'=e'in f(a,·,an)end

① 只有保守的收集器（见第 13章"推荐阅读"）不需要知道哪些域是指针。
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替换这个调用;其中，1'=subst（t，【z;→u.⋯，z→u.】），e'是用u替换e中z的所有出现

而获得的。
这种方法可以非常直接地用于非递归函数∶我们只需要自底向上地进行替换，使得在处理

函数f时，表达式e是已经处理过的，这样它就既不包含多态函数定义也不包含对多态函数的

调用。但是如果 e包含对f的递归调用，那么我们还要考虑下面两种情况。

（1）在e中调用厂的形式是f<z，⋯·za>（⋯），其中的实际类型参数和f定义中的形式类
型参数是相匹配的。这种情况下，我们只需像上面描述的那样，用let 引入的单态函数f重写
e，从而删除这些参数。实际上，这是非常普遍的情况;由算法16-6 引入的所有递归函数调用都
属于这种模式。

371]（2）对f的递归调用有不同的实在类型参数。

后一种情形称为多态递归（polymorphic recursion）。下面的程序举例说明了多态递归的情形∶

1et function blowup<e>(1:int,x:e):e=
if i=0 then x
else blowup<list<e>(4-1,1ist<e>(head-x,tail=nl1}),head
in blowup<int>(N,0)
end
blowup 函数会以 N种不同的类型被调用∶int、list<int>、list<list<int >>，等等。
对 blowup 进行有限次数的内联扩展不可能覆盖 N 的所有可能值。

因为ImplicitPoly-Tiger（和类似 ML 和Haskell的语言）不允许多态递归，这种函数爆炸的
情况不会出现，因此有可能完全将多态函数扩展为单态代码。但是全部内联扩展的做法不适用

于 Poly-Tiger;并且在可以全部内联扩展的语言中，在分开编译的情况下，其处理也仍存在着困
难;我们常常希望在声明函数的地方编译该函数，而不是在它的每一个调用点重新编译它。

16.3.2 完全的装箱转换

解决多态变量问题的另一种方法是使用完全装箱（fully boxed）的表示。在这种表示中，所
有值的字长大小都相同，并且每个值都向垃圾收集器描述自已。通常，我们将每一个值放在一

个字中;如果值的自然表示太大不能放在一个字中。我们就为其分配一个记录，并用指向这个
记录的指针作为这个字。这种技术称为装箱（boxing），这个指针是装箱的（boxed）值。和

13.7节描述的一样，表示装箱的值的记录通常以一个描述字开始，描述字指明记录的大小以及

记录是否包含指针。
第 2～12章描述的那个基本的 Tiger 编译器表示所有事情都是用一个字长，但是数据对象没

有向垃圾收集器描述自己。第13章末尾介绍的垃圾收集描述字格式可以更好地做到这一点，但

是也不能支持多态。

装箱和贴标签（tagging）。一个整型值可以放在一个字中，但是它没有向垃圾收集器描述自

己，因此也必须将它装箱。在这种情况下，我们创建一个一个字长的记录（和通常一样，它的

前面也有一个描述字）来存放这个整数，装箱后的值是指向这个记录的指针。

编译一个装箱的值上的算术运算，如 c  a＋b，需要从 a的箱子中取出a（称为开箱，

unboxed），同样取出b，然后执行加法，分配一个新的记录保存c 的装箱的值。这一过程的代

价相当高。 372
对于自然表示小于一个字的值（例如字符），可以使用称为贴标签的技术来代替装箱。例

如，假如在一个按字节寻址的机器上所有记录指针都按4的倍数边界对齐;则可以认为任何一
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个最后一位为1的字不是指针。因此，我们可以这样来表示字符值∶将它们左移1位然后加1∶

Ec
编译一个贴有标签的值上的运算 c a＋b、需要右移a（去标签），右移 b，再执行加法，

然后左移c，并加1（贴标签）。这比分配一个（可以垃圾回收的）新记录的代价小得多。实际

上，许多移位操作可以相互抵消（见习题 16.8）。

贴标签的代价比装箱的代价小得多，因此许多多态语言的实现对普通的整型变量使用贴标

签的方法。这种方法的缺点是必须为标签保留专门的一位，导致整数不能使用一个机器字的所

有位。

16.3.3 基于强制的表示分析

完全装箱的问题是整个程序都使用（代价昂贵的）装箱表示，即使是在程序员没有使用任何

多态函数的地方。基于强制的表示分析（cocrcion-based representation analysis）的思想是;单态变

量中保存的值使用没有装箱（也没有贴标签）的表示，多态变量中保存的值使用装箱（或贴标签）

的表示。这样，程序的单态部分可以非常高效，仅在调用多态函数时才需要额外的代价。

在 Poly-Tiger 或者一个已经被类型检查器转变为 Poly-Tiger 的 ImplicitPoly-Tiger程序中，

每次调用多态函数时，都一定会发生从未装箱到装箱的值的变换。例如，考虑如下函数广的定
义
functionf<a>(x;a);a =..x...x.

以及调用f<int>（y）的某个调用点，其中y是一个整型变量。y的类型是 int，x的类型是a，

a是一个多态类型变量。在这种情况下，我们能够通过将 y装箱使其从 int变换成"多态的"。

形参的类型总是要比实参的类型更通用化;换句话说，实际的类型可以通过替换从形式的

类型中导出。基于这种替换，编译器总是能够构造一种适合于此任务的装箱函数。373
表16-1展示了如何通过装箱或者贴标签来包装基本类型（int、char、string）的值。

表16-1 基本类型的包装和解包

表 示类 型 如何包装和解包

32 仪的字 分配含1个字的记录wrapmnint
取一个字unwrapan
左移并且加18位 wrap-auarchar
右移unwrapshanv

wrapout 分配8字节的记录64位floa
取8字节unwraPnne

(T·:) 分配（n十m）字的记录wrapupite1（n个字）和13（m个字）
取 n十m个字的联结 unwrapunek

wrapomars 分配含 2个字的记录2个字的闭包∶一个代码a→b
取2个字unwrapibinue指针和一个环境指针
保持不变多当宁量指向记录的指针la::1,b:r:l 保持不变unwrapsone
保持不变wFapantnenstring 指向字符的指针

保持不变unwraPurine
记录是传值还是传地址?和Java 对象或者C中指向结构的指针一样，Tiger 语言的记录允
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许有下面几种操作。
（1）查看记录中是有值还是为空（nil）。

（2）查看它和另一个记录是否为相同的记录（根据指针相等性）。

（3）查看记录域的值是什么。

（4）修改其中的某个域。
但是C的结构或者 ML的记录值没有指针，并且不能为"ni"。因此，只有操作3可以使
用。本质的不同是引用（reference）和纯值（pure value）之间的不同。对于表示分析而言，这
一区别的重要性在于我们能够利用操作3，尤其是当1、2 和 4 不妨碍这样做时∶我们可以将记

录复制到一个不同的格式中——如果我们愿意的话，可以将一个两字的C结构或者 ML记录放

在两个寄存器中，并且将这个记录作为在寄存器中传递的函数参数来传递。也就是说，对纯值

374的表示分析能够做的事情比对引用的多得多。

为了给出记录风格语言的一个纯值结构的例子，我在表16-1中引入了元组（tuple）类型。

例如，类型（t;，1。）是一个两个元素的元组，其中第一个元素的类型是t，第二个元素的类型
是t。。元组类似于没有城名的记录。

但是，我给这些元组赋予了一种纯值的语义;不能测试一个元组是否为空，不能更新一个
元组值的某个域，也不能对两个元组测试指针相等性。这只是一种设计上的选择;记录有域名

而元组没有域名的事实实际上与引用和纯值之间的区别无关。

递归包装。对于诸如（int，char）或者（int→char））这样的结构化的类型，基本包装（如表 16-1

所示）能够将值转变为单个装箱的字。但是仅做到这一点还不够，例如∶

let function get (1)=1.head.1
function dup (x)= 1ist{head=x,tall=1ist{head=x,tail=nil}}
var tuple =(3,'a')

in extract (dup(tuple))

end
如果我们通过构造装箱元组来对 tuple进行基本包装，并且此元组包含一个未装箱的整数

和一个未贴标签的字符，那么多态函数 get就会直接处理这个未装箱的整数———这是不允许的。

为了解决这个问题，我们可以采用递归包装;首先包装元组成员（自底向上），然后构造一

个由包装后的类型组成的元组。当包装一个函数时，我们必须递归包装它的参数和结果。
表16-2总结了递归包装。注意，在递归包装一个类型为（int→char）的函数f时，我们构造一个
带有已装箱参数的新函数f，然后对这个参数解包，并对它施加 f，最后包装结果。因此，wrap

的递归定义依赖于对函数参数的解包 unwrap，反之亦然。

表16-2 结构化类型的递归包装和解包

类 型 如何包装和解包

(f1.5) wrapi，为（Co） wrappe(wrap,(x.1),wrap, (x.2))
unwrtLc)(r) y = unwrapugnle(x);(unwrap, (y.1), unwrp, (y.2))
多类吗1→h wrpclonne(1et functon tw(a)-

wraP,(f(unwrap,(a) in fw end)
unwrap-(f) let function fu(a)=

unwmp,(unwrapeionue(f)(wrap,(a)))
in fu end

审“于宁“马 wrapia7，E动为）（r） 三当引合
unwrapreon(r)unwraPlat.bo()
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当实参是多态变量时，这种对函数进行原始包装的方法能够满足需要。但是当形参的类型

类似 a→int或者（int，a）（其中a是多态类型变量）时，就不能简单地将整个实参装箱。我们
必须构造一个未装箱的函数（或者元组），并且此函数的参数（或者元组的成员）是装箱的。
我们用符号·表示一个保存装箱的值的类型变量，之所以可以这样做是因为基于强制的分

析不关心使用的究竟是哪一个类型变量∶所有类型变量都具有相同的装箱的表示。375
为了将变量y从类型（int，char）转换为（int，·），我们必须创建一个新的记录，该记录的第一

个成员从y的第一个成员复制而来，第二个成员是对y的第二个成员施加函数 wrapa后得来的。
为了将函数f∶1;→t;包装成一个装箱的·，我们必须递归地将f包装成一个指针，如表

16-2所示。但是当厂的形参是x∶·→t;时，就不能这样做了∶被调用的函数需要的是一个函数
闭包，而不是一个箱子，并且返回值必须是t∶，而不能是一个箱子。编译器必须如表16-3所示

构造一个新的函数。

表16-3 部分多态形参的包装

形鑫的实参的
转换类型 类型 ，y:· ：

wrpmC)步∶int ，
乏岩言它y:char
子号子芝三y:04,t)

y∶（，在） (y.1.wrap,(y.2)(1·)
y:(1,2) (wrp,(y.1).wrp, (y.2))(●.·)

wrap，一（）h→h
”子合 1et function tw (a)= f(unwrap, (a))in fw end12

:1→t 1et function w(a)=wrp,(f (unwran,(a)))in fw end。

376 当多态函数将一个结果返回到单态上下文中时，返回的值必须是解包后的值。如果这
个结果完全是多态的，那么可以使用表16-1或者表16-2 的解包器。但是如果返回值类似于

（t1，t→·），我们就必须将它挑选出来，对它的某些成员进行解包。然后重建返回值。表16.3
所示的内容是对这种处理的补充。

性能优点。基于强制的表示分析依赖于这样一个事实;在典型程序中，多态变量（必须插

入强制的变量）的实例化比普通的执行少得多。对于大量使用浮点数（在完全装箱的转换模式
下需要大量的装箱/开箱）或者（贴标签/装箱代价昂贵的）其他数据类型的程序来说，表示分

析尤其有益。

16.3.4 将类型作为运行时参数传递

实现多态的另一个途径是总按数据的自然表示保存数据。一个具有多态形参 x的函数f可

根据实参的类型容许x的不同表示。为了做到这一点，必须告知f每个实例的实际类型。

Poly-Tiger（或者等价的二阶入演算）用于传递类型参数的地方正好可以用来传递实参的类

型描述。以 randomzap 函数为例，在 Poly-Tiger 中，它的表示是

function randomzap<a>(x:a):a =
let function f (y:a) a =if random()then y else x

in f
end
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使用它的一个例子是∶

let var i0 := randomzap<ints(0)
var s0:= randomzap<string>("zero")
in 10(3)+size(80("three"))

end
到目前为止，我们已经看到了三种处理参数<a>的方法;替换它（多态函数扩展），忽略它（完

全的装箱转换），或者将它作为黑箱处理（基于强制的表示分析）。但是，我们能够做的最明显

377]的事情是，将它作为值来对待;也就是在运行时传递类型 a的描述。

我们这个编译器能够构建运行时的类型描述，这种描述和图16-2b 总结的数据结构相似。

基本类型可以静态地和特殊标号（例如 L_int_type）绑定。这样函数randomzap<a>（x∶a）实际
上可以转换为∶
function randomzap (a;type,x:a); a =
let function f(y;a):a =
let var 8= 8izeof(a)
in if random()
then从y中复制s个字节到结果
else 从x中复制8个字节到结果

end
in f
end

类型描述a是内层函数f的一个自由变量，并且必须用15.2 节描述的闭包来处理。f中将类型a
的值从参数y复制到返回寄存器的那个then 从句的代码必须检查 a，以了解需要复制多少个字，

以及源寄存器是哪一种寄存器。

类型传递的一个有意思的方面是，垃圾收集器的接口也可使用类型描述。数据不需要使用
装箱来描述自己，因为每个函数都知道它的所有变量的类型——并且多态函数知道哪些变量描

述了其他变量的类型。类型传递也使 typecase 机制成为可能（见表14-1）。

类型传递的实现有一定的挑战性。类利描述必须在运行时构建，例如 append 函数（16.1.1

节最后），该函数接收一个类型描述e，并且必须构建描述1ist<e>。需要小心的是这些描述的

构建代价不能太大。此外，多态函数必须根据类型参数的不同采用不同的方法处理它的变量，

这样做的代价可能较大。

16.4 静态重载的解决方法

有一些语言允许重载，即具有不同参数类型的不同函数允许有相同的名字。编译器必须根

据实参的类型来选择函数体。有时候也称这种情形为特定多态（ad hoc polymorphism），以便和

前几节描述的参数多态（parametric polymorphism）相区别。 378
静态重载不难实现。处理重载函数广的声明时，新的绑定b。一定不能隐藏老的定义b.⋯，
b，而是应将f映射为一个由不同实现组成的列表f→【b1，⋯·，b.】。根据语言的语义，如果

b，的参数类型和其中的某个b，相同，编译器可能需要报告一个错误消息。

然后，当在使用实参调用f的地方查找 f时，实参的类型将决定应当使用哪一个绑定b。
某些语言允许重载参数类型相同（但结果类型不同）的函数，一些语言允许动态重载形式，

见本章的"推荐阅读"。
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推荐阅读

最早的"多态"语言之一是Lisp【McCarthy1960】，它根本没有静态（即编译时可检查的）

类型系统。因此，它使用的是数据完全装箱的实现，以便数据能向运行时类型检查器和垃圾收

集器描述自己。

Hindley【1969】（针对组合逻辑）和 Milner【1978】（针对 ML 程序设计语言）发明了 Hindley-
Milner类型系统。与此类似，Girard【1971】（针对逻辑）和 Reynolds【1974】（针对程序设计）

发明了二阶入演算。Harper 和 MitchelI【1993】说明了如何将使用Hindley-Milner类型系统的程序
转换为二阶入演算（例如，ImplicitPoly-Tiger 如何能够自动地转变为 Poly-Tiger）。Mitchell
【1990】解释了多态类型系统理论方面的问题。

第一个使用隐式参数多态的程序设计语言是 ML。ML 最初是 Edinburgh 定理证明器的元语
言（MetaLanguage）【Gordon et al.1978】，后来发展成为了通用的程序设计语言【Milner et al.
1990】。Cardelli【1984】描述了 ML的一个完全的装箱实现。Leroy【1992】描述了基于强制表示的
分析，Shao 和Appel【1995】描述了仅在必需时才执行递归包装的一种变体，Shao【1997】展示了

一个更通用的模式，该模式结合了基于强制的风格和类型传递风格，也能在显式类型语言（例
如 Poly-Tiger）上工作。Harper 和 Morrisett【1995】与Tolmach【1994】描述了类型传递风格。379
ML的类型推论在最坏情况下需要指数时间【Mairson 1990】，但是在实践中，它运行得很

快∶在真实的程序中，还没看到造成最坏行为的特定 arrow类型（arrow-type）结构。允许多态

递归时，类型推论不再是一个可计算的问题【Henglein 1993;Kfoury et al.1993】。

在 Ada程序设计语言中【Ada1980】，泛型机制允许一个函数（事实上，整个包）具有参数

化类型;但是在每个调用点，当—个泛型函数作用于实参之后，要进行完全的类型检查，并且

必须使用扩晨技术来实现。

重载。Ada 允许重载参教类型相同的不同函数，只要这些函数的结果的类型不同。当这样

一个函数的输出是另一个被重载的标识符的实参时，表达式可能有 0种、1种或者许多种解释;
Ada语义认为仅当恰好只有一种解释时，表达式才是合法的。Aho 等人【1986，6.5节】讨论了这
个问题，并给出了一种解决算法。但是也许是因为它会使程序员感到迷惑，Ada 风格的重载在

最近的语言设计中并没有得到广泛的仿效。

动态重载允许根据实参运行时的类型来选择一个函数的不同实现;它的另一个名字是过载
（（overriding），过载是面向对象程序设计的一个基本概念（见第14章）。Haskell语言中的类型类

（type class）允许重载和参数多态以一种有用且有表现力的方式而互相影响【Hall et al.1996】。

习题
16.1 给出使用算法16-5 对16.1.1节的 append 函数声明进行类型检查的每个步骤。

'16.2 算法16-5说明了如何对声明、单参数函数调用和单域记录进行类型检查。（用相同风格的记
法）完善此算法，使其能够覆盖多类型参数、多值参数和多记录域;也就是完成以下子句∶

transdec(g,g,tunction f<i1..4>(x1:t⋯.。;t):t,=eay)=
tramnsexp(ap,ar,e <1,...,t>(et....,en))=

380 ransexp（au，0r，rcrde1，⋯，在>tid =e1，..fld，= e）=
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16.3 使用下列成对参数调用函数 unify，说明;结果是 OK还是 error?a.中加入了什么绑

定?符号a，β.⋯代表 Meta类型，所有情况下σ_都初始为空。

a.（a，int→）和（int→γ，β）。

b.a→+α和a。
c.（list<β>，a→string）和（list<a>，β→string）。
d.a→a和 int→string。
e.（a，a，a，8，3）和（δ，int，7，7，δ）。

*16.4 给出组合两个替换的算法。即，给定a和a，构造a，使得对任何类型t有 subst（t，o）

=subst（subst（1，σ1），σ，）。然后，说明怎样写算法16-1才能更高效。

*16.5 给出使用算法16-6 对跟有表达式 randomzap（0）的 randomzap 声明（见16.2.2节的"通
用化和实例化"）进行类型推论的步骤。

16.6 将下面的ImplicitPoly-Tiger 声明转换为Poly-Tiger 声明∶
a. type list<e>={head:e,Eail:1ist<e>}
function map (f,1)-
if 1=nil then ni1
else list{head-f(1.head),tail-map(f,1.taill)}

b.type list<e>={head: e,tail:list<e>}
function fold(f, z)=
let function helper(l)=
if 1=nil then z else t(1.head,helper(1.tail))
in helper
end
function add《1,j)=i+j
var x;= fold(add,0)(list{head-3,tail=

1ist{head=5,tail=nil})

'16.7 将下面的ImplicitPoly-Tiger 程序转换为Poly-Tiger程序时存在着困难∶

let function f《B)=let function g(y)= y
in print(s):g
end

var f1 ;=f("beep")
in size(f1("three"))+f1(3)

end
381a.这个表达式返回的是什么整数，在表达式计算过程中会打印出什么?

b.对这个程序运用算法16-6，证明该程序是一个已经很好地类型化了的 ImplicitPoly-

Tiger程序。（注意，print的参数是一个字符串，它不是多态的。）提示;f的类型是
Poly([z],App(String,[])→(Var(z)→Var(z)))。
c.说明如何将函数声明 f（s）= ⋯转变为 Poly-Tiger。提示∶因为 f 的类型是
Poly（【z】，⋯），所以显式类型的函数应该以function f<z>（s;string）=⋯开始。
d.转换 var f1∶= f（"beep"）。提示∶在转变过程中的某处，你将得到 f<t>（"beep"）;
但是 t 从何而来呢?通常的解决方法是构造一个新函数

var f1: ?= let functlon het>():?=fet>("beep") in h end

但是需要你填充其中省略的这两个类型。函数h有一个类型参数，但是没有值参数!
e.转换表达式size（f1（"three"））+f1（3）。
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f.在转换后的这个表达式的计算过程中，会输出什么?提示;不同于a部分的输出。

避免该问题的一种方法【Wright 1995】是限制隐式多态语言（例如 ML或者 ImplicitPoly-

Tiger），禁止含有顶层作用（例如函数调用f（"beep"））的表达式是多态的。
16.8 在 32位的机器上，我们用最后两位为00表示指针（因为它们指向按字对齐的数据），

最后一位为1表示整数。31位的整型值 x将表示为x'=2x+1。说明在普通机器上，对
贴有标签的值实现下列表达式的最佳指令序列。在每种情况下，与在 32位未贴标签的

值的情况下实现相同表达式需要的指令长度进行比较。

a. c'+-a'+b"。
b.e'-a'+3。
e.e'-a'×b1。
d.以 a'<b'为条件的转移分支。

e.基本块c'-a'× b';s'一s'+c'。c'在该基本块之后是死去的。
f.假设你希望当计算所得的值超出了31位有符号整数能够表示的范围时，设置计算机

的滥出标志。但是你的计算机只能对 32位的计算产生溢出。分析上面各个指令序
列，看它是否在每一种情况下都恰当地设置了溢出标志。382]
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分析（anal-y-sis）∶对复杂事物、复杂事物的元素和元素之间的关系的详细考查。

韦氏字典

优化编译器能够在不改变程序输出的情况下转换程序，以提高程序的性能。能够提高性能

的转换有很多种。

·寄存器分配;使两个不重叠的临时变量存放在同一个寄存器中。

·公共子表达式删除∶如果一个表达式不止被计算了一次，删除多余的计算（只留一个）。
·死代码删除∶删除其结果从未使用的计算。

·常数折叠;在编译时计算操作数为常数的表达式。

这并不是编译优化的完整清单。事实上，也从未有过完整的优化清单。

没有 "魔弹"

可计算性理论证明了总是可能发明出新的优化转换。

我们称一个完全优化的编译器是这样一个编译器∶它将每一个程序P转换为程序 Opt（P），
使得每一个Opt（P）都是和 P具有相同输入/输出行为的最小的程序。我们也可以假设编译器优
化的是程序运行的速度，而不是程序大小。这里选择程序大小只是为了简化讨论。

对于任何一个既不产生输出又决不会停止的程序 O，一个短且容易识别的 Opt（O）是

L::gotoL 383.
因此，假如能有一个完全优化的编译器，我们就应当能用它来解决停机向题。为了了解是否存

在一个能使 P停止的输人，我们只需看一下 Opt（P）是否就是这个只有一行代码的无限循环。但

是我们知道不存在总是能够告知程序是否能停止的可计算的算法，因此也不可能写出完全优化

的编译器。
我们不能构造一个完全优化的编译器，但是必须构造一些优化编译器。优化编译器将程序

P转换为和P有相同输入/输出行为的程序 P'，但是 P'可能比 P更小或更快。我们希望 P'能够

比竞争者的编译器优化后的程序运行得更快。
无论如何考虑优化编译器，总是会有另一个更好（通常也更大）的优化编译器存在。例如，

假设我们有一个优化编译器 A，则必定存在某个不能停止的程序P.，有A（P.）≠ Opt（P.）。假

如不是这样，A就会是一个完全优化的编译器，而这是不可能的。因此;存在着一个更好的编译器

B:
B(P)=i P= P, then [L:goto L] else A(P)

尽管我们不知道 P，是什么，但可以肯定的是，它只是一串源代码，并且一旦给定了这申代码，

我们就可以轻松地构建出B。

这个优化编译器 B不是很有用——像 P。这样的特殊情况，并不值得每次都处理。在实践

中，我们通过寻找能够提高多数程序性能的合理而通用的程序转换技术来改善 A，例如本章开
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始时列举的技术。我们将这种转换加人到优化器的"魔术袋"中，能得到一个能力更强的编译
器。当编译器具备了足够的优化能力时，我们就认为它是一个成熟的编译器。
对于任何优化编译器，总是存在一个比它更好的编译器，这一定理称为编译器开发者的充

分就业定理（full employment theorem for compiler writers）。

17.1 流分析使用的中间表示

本章将讨论过程内的全局优化。过程内意味着分析局限在（类似于Tiger 语言中的）单一过
程或函数内;全局意味着对过程内的所有语句或基本块进行分析。过程间优化更具有全局性，

384它能一次针对若干个过程和函数进行优化。
下面的通用做法适用于本章开始列举的各种优化转换。

·数据流分析;遍历流图，收集运行时可能发生的有关信息（这必定是一种保守的近似信息）。

·转换∶用某种方法修改程序，使它运行得更快。数据流分析收集的信息会保证程序的结
果不会发生改变。

有许多种数据流分析方法能够为优化转换提供有用的信息。与第10 章描述的活跃分析一
样，大多数方法可以用数据流方程来描述，该方程是从流图结点衍生出来的一组联立方程。

四元式
第10章的活跃分析作用于 Assem指令，该指令清楚地指明了使用（use）和定值（def），但

是它们的实际操作是用机器相关的汇编语言字符串来表示的。基于 Assem指令的活跃分析和寄

存器分配不需要知道指令执行的是什么操作，只需要了解它们的使用和定值是什么。但是对于
本章的分析和优化，我们还需要了解操作是什么。因此，我们不再使用 Assem 指令，而是使用

Tree 语言的表达式（见7.2节），并且对这种表达式作了进一步的简化，以保证每个 Exp 只有一
个MEM或BINOP结点。

我们不难将原有的 Tree表达式转换为简单的表达式。只要有一个这样的表达式∶其中一个
BINOP或 MEM嵌套在另一个BINOP或 MEM中，或者一个BINOP或 MEN嵌套在一个JUMP

或CJUMP中，我们就用 ESEQ引入一个新的临时变量∶

BINOP
BINOP ESEQ“
BINoP雪 MovE TEMPt量

e2 e3 BINOPTEMPt

e2 e3
然后使用 Canon模块删除所有的 ESEO结点。
我们还引入一些新的临时变量以保证任意一个存储 语句（即左边是 MEM结点的385
MOVE结点）的右边只有一个 TEMP或 CONST，并且它左边的 MEM之下也只有一个
TEMP或CONST。
剩下的语句都相当简单，它们的形式如表17-1所示。
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表17-1 Tree 语言表示的四元式。其中出现的a、b、c、J、L只表示TEMP、CONST或LABEL结点
MOVE
BNor LAB阻八MP

Lbihop ，6
L:a ←-bbinop c goto L

MOVMOVE
MovE MM MEt-，。和 b

Mal←ba←M【b】a←b

BxP MgVEcJuMP
cuL cAu日节riop 小

ifarelopb goto L else goto L2 f（a】，，an）b←f（aj，⋯，an）

因为"典型"语句是 a←b④c，它有4个成分（a、b、c、④），所以这种简单语句通常称

为四元式（quadruple）。我们用④代表任意一个二元操作（binop）。
效率更高一些的编译器会使用自己的数据类型（而不是使用 Tree 数据结构）来表示四元

式，并且可以只用一遍就将树全部转换为四元式。

过程内优化接受编译器的 Canon 阶段产生的四元式，并将它们转换为一组新的四元式。优化

器可能会对四元式进行移动、插入、删除和修改。然后，经过优化后的过程体必须输入给编译器
的指令选择阶段。但是，在每个表达式只含一个BINOP或 MOVE的"原子化的"树上执行树匹386
配的效率并不是很高，并且在优化完成后，会有许多定义临时变量的 MOVE语句，而这些临时变
量常常只使用一次。因此编译器必须找出这些 MOVE，并将它们重新变换为嵌套的表达式。

我们构造四元式的一个控制流图，图中每个结点（语句）n有一些引到它的后继的有向边，

也就是说，这些后继是可能直接跟在n之后被执行的结点。

17.2 各种数据流分析

以四元式为结点的控制流图的数据流分析收集程序执行的相关信息。一种数据流分析判断

定值和使用的相互关系，另一种数据流分析估计一个变量在给定点可能会具有什么值，等等。
这些分析的结果可以用来进行程序的优化转换。

17.2.1 到达定值

许多优化需要了解，对一个临时变量t进行的特定赋值是否会直接影响程序中另一点

处的∶的值。我们说t有一个明确的定值（unambiguous definition）是指程序中有一个形如
t*a田b或1-M【a】的特定语句（四元式）。给定这样的一个定值 d，如果存在一条从 d到
语句 u的控制流边组成的路径，并且该路径上不包含对 t的任何明确定值，我们就说 d到
达（reach）语句 u。
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模糊定值（ambiguous definition）是指可能给t赋值、也可能不给t赋值的语句。例如，如

果t是一个全局变量，语句s是调用函数的CALL语句，被调用的这个函数有时修改t，有时

不修改t，那么s就是一个模糊定值。但是我们的Tiger 编译器在数据流分析时并没有将逃逸变
量作为临时变量来对待，而是作为具有存储位置的变量来对待。这意味着我们决不会有模糊定

值;但不幸的是，这同时也失去了优化这些逃逸变量的机会。在本章后面的讲述中，我们假设

所有的定值都是明确的。
可以将到达定值的计算表示成解数据流方程。我们给每个 MOVE 语句标记一个定值 ID，

387并且计算这些定值 ID组成的集合。我们说语句 d∶1←-x④y生成（generate）定值 d，因为无
论到达这条语句开始的其他定值是什么，d，都到达了该语句的末尾。我们说这条语句杀死

（kil）了i的其他定值，因为无论到达语句开始的t 的其他定值是什么，它们都不能到达语句
的末尾（它们不能直接影响这条语句之后的t的值）。

我们定义 defs（t）为临时变量t的所有定值（或定值 ID）组成的集合。表17-2 总结了不同
种类的四元式的生成作用和杀死作用。

表17-2 到达定值的生成集合（gen）和杀死集合（kil）

语句 kils]Rent5]

动阈目日日目门
d50)- d}d∶1←b围c

d;1←-M【D】 defsOr)-{d)-=--eMt[a]-b
if a relopb goto L else goto la
goto L
L:
(a,,a)

des(0)-[d](dd∶1←f（a.⋯，am）

利用生成集合 gen 和杀死集合kill，可以计算出到达每个结点n的开始（和末尾）的定值集
合in【n】（和 our【n】）∶

mtn】=二 ourtp】
PPa441

ourtn] = gentn]U(in[a]- kill[nD

我们可以通过迭代来解这两个方程∶首先，对所有的 n，将 in【n】和 out【n】初始化为空集
合;然后将每个方程看作一个赋值语句，反复执行直到 in【n】和 out【n】不再有改变。

以程序17-1为例。此程序注释有语句编号，这些语句编号也可以作为定值ID。我们重复每

个迭代，依次计算每条语句的 in和 out∶388]
游若心游洁一 迭代2
in[n]i[n]程 ourtn]ourtn]in[n]our[n]sen[a] kilnl

- f 6eN 艺青一 - 1.21,2 ， 12lm 1.241.241.241.2 1.2.41.2
守寸 2.7 1,4 141.2.41412 1.2.4

t n e N 1.41,41,4 1,41,414；e 2,61.2 24.61.242.4.61,2.4
7 6.72,62.4 2,4,6 6,72.4,6 6,7

迭代3只是用来确认自迭代2以后，in【n】和 our【n】就不再改变。
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程序 17-1
1∶ 4←5
c+12:

3:L::if >a gotoL:
4: ce-C+c
5: goto L1
6∶L2∶a←c-a
7:c-0

计算出了到达定值信息后，该如何利用它们呢?到达定值分析对若干种优化都有用。例如，

一个简单的应用是我们可以做常数传播（constant propagation）;在程序17-1中，a 只有一个定
值到达语句3，因此可以将测试 c>a替换为c>5。

17.2.2 可用表达式

假设我们想做公共子表达式删除（common-subexpression elimination）∶给定一个多次计算

x④y的程序，能否删除它的重复计算呢?可用表达式（available expression）的概念能够帮助

我们找出有可能进行这种优化的地方。
如果从流图的入口结点到结点 n的每条路径上，x田y都至少被计算一次，并且在每条路径

上x田y的最近一次出现之后，再没有对 x或y的定值，那么表达式x田y在结点n是可用的

(available)。
我们可以利用集合gen 和kill，用数据流方程组来表示这种可用性，这里 gen 和kill是表达

式的集合。 389
每一个计算x④y的结点都生成|x田y!，而每一个对 x或y的定值则杀死|x④yl，如表

17-3所示。

表17-3 可用表达式的集合 gen 和 kill

语句4 ki/(s]_8ents]
14b田c 【田c-kIs】包含1的表达式
1M[D] 包含!的表达式(M[] -kills]

”目日日日日日
AM/lal ←-b 形如M【r】的表达式

0ifa>bgotoL;else goto l2
三goto L .FL:

f(a,a) 形如M|x对】的表达式
包含!的表达式t←f（a】.⋯·，a）
和形如M【s】的表达式

一般地，t-b十c生成表达式b+c。但是对于b←-b十c，由于在b+c 之后有对b的定值，

因此不会生成b＋c。语句 gen【s】=|b④c}一kill【s】考虑到了这种细节。

存储操作指令（M【a】←-b）可能修改任意存储位置，因此它杀死所有的取操作数表达式
（M【x】）。如果我们可以肯定 a≠x，则可以不那么保守，而是认为 M【a】←b不会杀死M【x】。
这称为别名分析，见17.5节。

给定 gen 和kill，可以计算出 in 和out。in 和out 的计算几乎和到达定值的计算一样，只是
在计算in【n】时，我们计算的是结点 n的所有前驱的out 集合的交集，而不是并集。这反映了

这样一个事实;仅当每条到该结点的路径上都计算了某个表达式时，这个表达式才是可用的。
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intn]]= outp]一一
如果n不是起始结点声Gprndml

outn]= gen[n]U(in[n]- Rilnl)

为了通过迭代计算 in和 out，我们首先定义起始结点的集合 in为空集，将其他所有结点

的集合初始化为全集（即所有表达式组成的集合），而不是空集。这是因为交集运算会使集合

变小，而不像到达定值计算中的并集那样使集合变大。然后，算法寻找此方程组的最大不动

点。390

17.2.3 到达表达式

如果流图中有一条从结点s到结点n的路径，且该路径不存在任何对 x和y的赋值，或者

任何对 xy的计算，我们就说结点s中的表达式t←-x④y到达结点n。和往常一样，我们能够

用 gen 和 kill来表示到达表达式，见习题17.1。

在实际中，公共子表达式删除优化需要用到的到达表达式分析只针对程序中所有表达式的

一个小子集。因此，通常这样来专门计算到达表达式;从结点 n开始向后搜索，一旦发现计算

x④y便停止搜索。我们也可以在计算可用表达式的过程中计算到达表达式，见习题17.4。

17.2.4 活跃分析

第 10章已经讨论了活跃分析，但是活跃性也可以用 gen 和kill 来表示，注意到这一点对活

跃分析会有好处。对变量的任何使用都会使该变量成为活跃的，对变量的任何定值都会杀死该
变量的活跃性∶

室语句s gen[s]

评们日日日日日凹
b,c1←b田c
运1-M[[b]

哑M|a】←b
ifa >b goto Li clsec goto L2

叫目gotoL =L:
f(a'.⋯·,an) (aj,·.,anl

←-f（ai.，an） aj.·,aml

in 和out 的方程组与到达定值和可用表达式的方程组类似，但是活跃分析是向后的（back-
ward）数据流分析，因此 in 和out 的计算也是向后的∶

inlml = gen[n]U(ourfa]-ki[n])
outn]]=U ins]397] serorx信间1

17.3 使用数据流分析结果的几种转换

利用数据流分析的结果，优化编译器能够用几种方法来改善程序。

17.3.1 公共子表达式删除

给定流图中的一条语句s∶t*-x田y，如果表达式 x④y在s处是可用的，那么可以删除s中

对x田y的计算。
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算法。计算到达表达式（reaching expression），即寻找形如n;v-x④y且满足后面条件的

语句∶在从n 到s的路径上，既没有计算 x田y，也没有对x或y定值。
选择一个新的临时变量w，将上述语句 n重写为∶

n∶w←×由y
n'∶制←-w

最后，将语句s改为∶

“”一十己
我们将依靠复写传播来删除部分或全部的多余赋值四元式。

17.3.2 常数传播

假设有一条语句 d∶1*-c（其中c是常数）和另一条使用∶的语句 n，例如 n∶y←t④x。

如果d到达n，并且没有1的其他定值到达n，那么在 n中，t是常数。

在这种情况下，我们可以将语句 n重写为y-c④x。

17.3.3 复写传播

复写传播与常数传播类似，但传播的不是常数c，而是一个变量z。

假设有一条语句d∶t*-z，以及另一条使用t的语句n，例如n;y←t④x。
如果 d到达n，并且没有t的其他定值到达n，同时任何从 d到n的路径（包括多次经过 n

的路径）都没有对z定值，那么我们可以将n重写为n∶y*-z④x。 392]
一个好的图着色寄存器分配器必须合并结点（见第11章），合并是复写传播的一种形式。
分配器在构建冲突图时，检测z的所有相冲突的定值——如果对z赋值的同时，d 是活跃的，
则形成一条冲突边（z，d），这意味着 d和z不可合并。

如果在寄存器分配之前进行复写传播，则有可能会增加寄存器溢出的数目。因此，如果我

们只是为了删除冗余的 MOVE指令而做复写传播的适，则应该等到寄存器分配之后再进行。但

是，在四元式阶段进行复写传播有可能能够识别出其他优化，如公共子表达式删除。例如，在
下面的程序中∶

ay+z
曰飞
C←-u十z

只有当对u←-y执行复写传播后，这两个+表达式才能被识别为公共子表达式。

17.3.4 死代码删除

如果有一条四元式s;a*b田c 或s;a←M【x】】，且a不在s的出口活跃集合中，则这条四元
式s可以被删除。

有些指令有隐含的副作用。例如、如果根据计算机配置，算术溢出或除以零会引发异常，

则删除一条导致异常的指令将会改变计算的结果。

优化器绝对不能做任何改变程序行为的变化，即使这种变化似乎是有利的（例如删除了一

个运行时的"错误"）。这种优化的问题在于程序员不能预测程序的行为——并且在使用优化时
已调试通过的程序在没有优化时却有可能会失败。
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17.4 加快数据流分析

许多数据流分析（包括本章描述的这些分析）能够用有限集合上的联立方程组来表示。用

于构建有限自动机（第2章）和语法分析器（第3章）的许多算法也可以这样表示。之所以建

393 立这些方程组是因为它们通常能以选代的方式来求解;将方程看作赋值语句，重复执行所有的
赋值，直到所有集合都不再发生改变。
有几种方法可以加快数据流方程的求解。

17.4.1 位向量

有限作用域上的集合 S（即，此作用域中的元素是1～N 之间的整数，或者可以放在以

1～N的整数作为索引的数组中）可以用位向量来表示。如果元素i在集合S中，则向量的

第i位为1。
在位向量表示中，两个集合S和 T的并集可以用位向量的按位或操作获得。如果计算
机的字长为 W 位，向量长度为 N位，那么用 N/W条按位或运算指令组成的序列就可以计
算出两个集合的并。当然，还必须有2N/W条取指令和 N/W条存指令，以及索引和循环

的开销。
交集可以通过按位与操作获得，集合的补集可以通过按位补操作获得，等等。

数据流分析普遍使用位向量表示。但是。如果预计集合是非常稀疏的（这样一来，位向量

中几乎全部是零），我们建议不要使用位向量表示。在这种情况下，用不同的方法实现集合有可
能更快。

17.4.2 基本块

假设流图中有一个结点 n，它只有一个前驱 p，并且p只有一个后继n。则可以合并p和n
的 gen和kill的作用，并用单个结点来代替n和p。下面以到达定值为例，但是几乎所有数据流

分析都允许类似的结点合并。
考虑有什么样的定值到达了结点 n的出口，即结点 n 的out 集合;

our{n] =8gen[n]U (in[a]- kil[7])

我们知道 in【n】恰好等于 out【p】;因此∶

out[n] = gen[n]U((gen[p]U(in[p]- kilpD)- kil[1])
根据等式（AUB）-C=（A-C）U（B-C）和（A-B）-C=A-<BUC），有∶

our[n] = 8en[n]U(gen[p]-kin]U in[p]-(killplUki[aD)

[394 如果我们希望结点 pn 合并p和n的作用，那么从最后一个方程可以看出 pn 的正确的 gen和
kill集合分别为∶

gen[pn] = gen[a]U(genlp]-kill[n])
kill【pn】 = kil【p】U kil【间】

我们可以用这种方法合并一个基本块中的所有语句，并凝聚整个基本块的 gen 和kll的作

用。基本块控制流图比单个语句的流图小得多，所以基于基本块的多遍迭代数据流分析的速度
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也要快得多。
上述迭代数据流分析算法一旦完成，我们就可以从整个基本块的 in 集合开始，计算一遍基

本块中语句 n的前驱语句的gen 和kill集合，从而重新获得基本块（例如在我们的例子中是 pn）

中各个语句（例如 n）的数据流信息。

17.4.3 结点排序

在向前数据流问题中（例如到达定值或可用表达式），一个结点的 out信息将传递给它的后

继的in 集合。如果我们能够安排每个结点的计算都先于它的后继，就有可能只通过对所有结点

的一次遍历就能完成数据流分析。

如果控制流图没有环，就有可能做到这一点。我们可以对流图进行拓扑排序（这将给出一

种顺序，每一个结点都在它的后继之前），然后按照排好的顺序计算数据流方程。但是图中经常

会含有环，因此这种简单的方法行不通。但即使这样，按照深度优先搜索顺序对有环图进行类

似的拓扑排序仍有助于藏少有环图的迭代次数∶在这种类拓扑的排序中，大多数的结点都先于

它们的后继，因此每次迭代中流经方程的数据流信息可以向前流动得相当远。

深度优先搜索（算法17-1）能够高效地对无环图拓扑排序，或者高效地对有环图类拓扑

排序。利用 sorted 数组（它给出深度优先搜索计算出的顺序），数据流方程可以按下面的方式

迭代求解∶

repeat
fori ←1 toN
n←- sored【i】
in ←Ueananour【p】
our【a】 ← gen【n】U （in-klln】）

unt在这轮迭代中 out 集合没有变化

算法17-1 按照深度优先搜索拓扑排序

function DFS(Topological-sort:
N一结点的个数 i mark[i]= false
for 所有结点 markUi]*- rue

mark【】←-jalse for结点i的每个后继
DFS(3)DFS起始结点）
sored[N] -1
N-N-1

因为 in 只是为了计算 out 局部使用，不需要将 in 设置成全局数组。 395
对于向后数据流问题，如活跃分析，我们使用算法17-1的另一个版本，此版本从出口结点
开始遍历前驱，而不是从入口结点开始遍历后继。

17.4.4 使用-定值链和定值-使用链

到达定值的相关信息可以作为使用-定值链（use-def chain）来保存，即对变量x 的每一个使

用，它的使用-定值链是一张列表，此表记录着能够到达该使用的 x的所有定值。从本质上讲，使

用-定值链并不能加快数据流分析，但是能够更高效地实现那些需要分析结果的优化算法。

使用-定值链的一种拓广是静态单赋值形式（static single-assignment form，SSA form），我

们会在第19章详细描述它。SSA形式所提供的信息不仅比使用-定值链更多，而且在它上面进

行数据流分析的效率也非常高。
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表示活跃分析结果的一种方法是利用定值-使用链（def-use chain），即每一个定值有一张

表，此表记录着该定值的所有可能的使用。SSA形式也包含了定值-使用信息。。

17.4.5 工作表算法

在迭代求解的算法中，只要 repeat-until循环的一次迭代中有任意一个 out集合发生改变，

则所有的方程都需要重新计算。这似平有点可借，因为大多数方程也许并没有受到这个改变的

影响。
工作表（work-Jlist）算法只记住必须重新计算哪些 out集合。只要结点 n必须重新计算、

并且它的 out集合发生了改变，那么 n的所有后继都将放入到工作表中（如果后继不在表中的

话）。算法17-2说明了具体方法。

算法17-2 到达定值的工作表算法

W←所有结点的集合
while W非空
从移删除结点n
old -ou(n]
in ← Ussnoutp】
ouatn】 ←gen【n】U（in -kil【n）
i old ≠ourtn]
for n的每个后继
i馆s ∈W
put s into W

每当从工作表 W中取出一个结点进行处理时，如果所选择的结点是算法17-1产生的sorted396
数组中最早出现的结点，则工作表算法将收敛得更快。

第11章描述的有合并的图着色寄存器分配器就是一个有着多个不同工作表的工作表算法的
例子。19.3节描述了一个用于常数传播的工作表算法。

17.4.6 增量式数据流分析

利用数据流分析的结果，优化器能够执行各种程序转换;移动、修改或删除指令。但是这

些优化可以具有叠加作用。
·删除死代码 a+-b④c 可能导致以前的指令b←x④y变成死代码。

·删除一个公共子表达式可能导致产生另一个可以被删除的公共子表达式。例如，程序∶

水←b+c
飞；中十六
u-b+c
D-a+u
当u←b十c被替换成u+-x后，复写传播将 a十u改变成a十x，这样就又出现了一个能
够被删除的公共子表达式。
基于数据流的优化器的一种简单的组织方法是∶先执行全局的流分析，然后做所有可能

的基于数据流的优化，接下来重复进行全局流分析，再执行优化，如此迭代反复，直到不能397
发现更多的优化为止。迭代过程最多执行两三次，因此在第三轮时可能就没有更多的转换可

执行了。
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但是毫无疑问，最坏的情况会非常糟糕。考虑包含语句 z←a十az十a，+⋯+a.的程序，
其中 z 是死代码。该语句被翻译成四元式∶

(1-a±a2
对 +x+as

为-2←X#-3＋a--1
 所-2+a、

活跃分析判断出 z是死去的;死代码删除则删除z的定值。下一轮活跃分析判断出x。是死的，

然后死代码删除再移去x。-，等等。需要 n轮分析和优化才能删除x，然后才能断定再没有更

多的优化可做了。

当程序中两次出现形如 a;+ag＋a2+⋯+a，的表达式时，同样的情况也会发生在公共子表
达式删除上。
为了避免反复地计算全局数据流信息。可以采取以下几种策略。

·设定截止期∶使分析和优化的执行次数不超过k次，k 大约等于3。因为不论做多少轮，
后几儿轮优化通常都没有多少转换可做。这是—种单纯的做法，但是至少可以在合理的时

间内结束编译。
·层叠分析;设计一种新的数据流分析，它能够预测将要执行的优化的叠加效果。

·增量数据流分析∶当优化器对程序进行某种转换时（这种转换可能会使数据流信息无

效），优化器并不抛弃原来的数据流信息，而是对它进行"修订"。

值编号（value numbering）。值编号分析是叠加分析的一个实例，它只需要一遍就能找到一
个基本块内所有的（叠加的）公共子表达式。
该算法维护一张表 T，此表将变量映射为值编号，也将形如（值编号，操作符，值编号）

的三元组映射为值编号。为了提高效率，应该用散列表表示 T。此外，算法还需要一个全局编

号N，用于统计迄今已见到了多少个不同的值。 398
利用 T和N，值编号算法（算法17-3）从头到尾扫描基本块的四元式。当看到表达式b＋c

时，它会查找b的值编号和c的值编号。然后在T中查找 hash（n;n。，+）;如果找到了，则意
味着 b+c 重复了较早时候的计算;我们将 b十c 标记为可删除的，并且使用以前计算的结果。

如果没有找到，则 b十c 继续保留在程序中，同时也将它加入到散列表中。
图17-1举例说明了在一个基本块上进行的值编号;（a）是四元式列表;（b）是（算法结束后

的）表。如果将表项（m，④，n）→q看作一个具有两条分别到结点m和n的边的结点g，则可以
将表看成一个有向无环图（directed acyclic graph，DAG），如图17-1c所示。 399]
值编号是用一遍数据流分析计算叠加优化作用的一个例子;这里的叠加优化即叠加的公共

子表达式删除。但是这种优化器还可以执行范围更广的转换——尤其是下一章将要描述的循环

优化。要设计出这样一种数据流分析是非常困难的∶它只需执行一遍就能够预测组合在一起的
许多不同优化的结果。

取而代之，我们还是使用通用的数据流分析器和通用的优化器，但是当优化器改变了程序

时，它必须告诉分析器哪些信息不再有效。

增量式活跃分析。例如，活跃分析的增量式算法必须保存足够的信息，以便当插入或鹏除

一条语句时，能够高效地更新活跃信息。
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算法 17-3 值编号算法

T← empty
N -0
for块中的每个四元式a←b由c
if（b→k）∈ T对于某个k

n。←k
else
N←N+1
m，←N
将b→ n，放入T中
i对于某个k，有（c→k）∈T
m。←k
else
N←-N+1
n。4-N
将c → n，放入7中
谓对于某个m，有（（np，田.n.）→m）∈T
将a →m放入T中
将这个四元式a←b甲c标记为公共子表达式
else
N←N+1
将（nm，田，n2）→ N放入T中
将a →N放入T中

予
震 一→3

8←x十y 材 "-—h←u-U 量
i←x十y (4,-,5)→6=x←u-u →6”u←8+h →3

辈 A'v←1+x → 6

(3,+,6)→w4-u十0
晶 人、

高一
,。
(7.+.7)→8
→8w

(e)(b)(a)
图17-1 值编号的示例。（a）基本块;（b）值编号算法创建的表，划掉的四元式

表示可以删除的表达式;（c）将表看成一个DAG

假设流图中的每个结点都有入口活跃信息和出口活跃信息，当我们从此流图中删除了语句

s∶a*-b④c时，数据流信息的变化如下。
（1） a在此结点不再被定值。因此，如果a属于这个结点的出口活跃集合，那么现在 a将

400]属于该结点的入口活跃集合（删除之前不属于）。
（2）b在此结点不再被使用。因此，如果b不属于这个结点的出口活跃集合，它也将不会

属于它的入口活跃集合。我们必须向后传播这一改变;c 的处理和b一样。
工作表算法在这里相当有用，因为我们恰好可以将s的前驱加人到工作表中，并运行算法

直到工作表为空;通常这一过程很快就会结束。

传播变化1所起的作用和最初针对活跃分析的（非增量）工作表算法相同;它会使活跃集
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合变大。因此，习题10.2中关于工作表算法找到的是活跃方程的一个最小不动点的证明，也适
用于删除a的定值导致的额外的活跃传播。那个关于活跃分析终止的证明是基于这样的考虑;

任何改变都会使集合变大，并且对集合能增长的大小有一个预先的限制。
但是变化2所起的作用是使活跃集合变小，而不是变大，因此简单地运行最初的算法，并

在每次迭代中从以往计算得到的 in 和out集合开始，由此找到的不动点可能不是最小的不动
点。例如，假如我们有下面的程序∶

自： d-4、，。 a-0em L:3b-a＋1c←-c+b
当 a←d
寸 a+b.2v if a<N goto L:e retum c
活跃分析表明d 属于语句1、2、3、3a、4和5的入口活跃集合。但是 a不属于语句3a的

出口活跃集合，因此语句 3a是死代码，我们可以删除它。如果使用算法10-1，并且每次迭代从
以前计算出的数据流信息开始，那么到达一个不动点时，我们得到的结果将是表10-3的第Y

列，而不是实际活跃信息的最可能的近似值。

一种更精确的活跃分析。从上面的分析可以得知，我们必须使用更好的算法。解决的方法

是，我们必须在变量 d 的每一个定值点准确地记录它可能有哪些使用。我们的活跃计算和算法

10-1非常类似，但是它操作的是使用集合，而不是变量集合。事实上，这个算法就像是反过来 [401
的到达定值算法。令uses（v）是程序中变量 v的所有使用点的集合。给定一个语句s∶a-b④c，

集合
tive-orit[s1n uses(a)

包含了该定值可能到达的 a的所有使用点。
现在，删除使用了某个变量b的一个四元式时，我们可以从所有人口活跃和出口活跃集合
中删除b的这个使用。这样，就可以如我们所希望的一样，获得最小的不动点。

死代码的叠加。从上面的程序中删除语句 3a后，增量式活跃分析将发现语句0是可以删除
的死代码。因此增量式活跃分析可以很好地和死代码删除协同工作。类似地，其他类型的数据

流分析也可以是增量式的。有时，与活跃分析的情况一样。我们必须首先改进分析方法。

17.5 别名分析

本章描述的别名分析只考虑Tree 语言中临时变量的值。逃逸变量被（编译器的前端）表示

为需要显式取存的存储单元，我们不打算分析这些变量的定值、使用和活跃性。变量或存储空

间可能有几个不同的名字或别名（alias），这一问题使得我们很难得知哪些语句影响了哪些
变量。
有可能会有别名的变量包括∶

·作为传地址参数传递的变量（Pascal、C十、Fortran）;

·取了其地址的变量（C、C++）;
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·析取指针的左值表达式，例如 Tiger 语言中的 p.x或C中的·p;
·显式带下标的数组左值表达式，例如 ai】;
·以及内层嵌套过程中使用的变量（Pascal、Tiger、ML）。
一个好的优化器应该优化这些变量。例如在下面的程序片断中∶

p.x:-5;q.x:-7;a:= p.x402]
我们可能希望到达定值分析指出只有 p.x的一个定值（即5）到达了a的定值点。但是问题在于
我们不能得知一个名字是否是另一个的别名。q和 p是否能指向同一个记录?如果是，就有两个
定值（5和7）能够到达 a。

同样，如果下面的程序采用传地址方式传递参数∶

function f(rer i:int,ref j:int)=
(1. := 5;j:=7;return i)

那么当用f（x.x）来调用f时，简单的到达定值计算会看不到i可能和j是同一个变量这一事实。

可能别名关系。我们使用别名分析（它也是一种数据流分析）来识别可能指向相同存储空
间的不同名字。别名分析的结果是一种可能别名（may-alias）关系∶如果程序的某次运行中，p
和q可能指向相同的数据，则 p和g可能别名。在大多数数据流分析中。静态（编译时）信息
不可能完全精确，因此可能别名关系是保守的;如果不能证明 p绝对不是q 的一个别名，我们

就说p和g可能别名。

17.5.1 基于类型的别名分析

对于强类型语言（例如 Pascal、Java、ML、Tiger），如果两个变量具有不一致的类型，那

么它们不可能是同一存储空间的不同名字，因此。我们可以利用类型信息来提供有用的可能别

名关系。另外，在这些语言中，程序员不能显式地使指针指向一个局部变量，我们也可以利用
这一点进行别名分析。
我们将程序使用的所有存储空间划分为一些不相交的集合，这些集合称为别 名类（alias

class）。对于Tiger，可以使用的别名类包括∶

·对于用F_allocLocal（true ）创建的每一个栈帧单元，有一个新的类;

·对于每个记录类型的每个记录域，有一个新的类;

·对于每个数组类型 a，有一个新的类。
别名类的计算涉及类型，而编译器语义分析阶段之后的阶段对类型一无所知，因此我们必须在

语义分析阶段计算这些类。每一个类可以用不同的整数来表示。

Translate 函数必须使用别名类标记每个取操作和存操作（即 Tree 语言中的每个 MEM结

点）。为此我们需要修改Tree数据结构，为 MEM结点中增加一个aliasClass域。403
给定两个MEM结点 M，【x】和M，【y】，其中i和j是 MEM结点的别名类。如果i=j，我
们就说M;【x】可能与 M;【x】别名。
这样的别名分析适用于Tiger和 Java。但是如果语言支持传地址的调用或类型转换，这种
方法就失效了。
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17.5.2 基于流的别名分析

除了基于类型的别名类外，还可以基于创建点构造别名类。

在程序17-2a中，即使p和q的类型相同，我们也知道它们指向的是不同的记录。因此，我
们知道赋给a的一定是0;定值q.head∶=5不会影响 a。同样，在程序17-2b中，p也不会与q
别名，因此a一定是0。

程序 17-2 p和q不是别名

type 1ist=(head:int, {int *p,*i;
tai]:1st} int h.4:

var p :1ist:= nil p= &h
var q:list :· ni1 q= 丘i;

*p=0q :=1isthead=0,tall=nf1};
p := 1ist(head=0,tail-q); *q" 5;
q.head ;=5; a- *p:
a :=p.head

（b）C 程序（a）Tiger 程序

为了能自动识别出这些区别，我们为每个创建点构造一个别名类。也就是说，对每个分配

记录的不同语句（即在C中每一次调用 malloc，Pascal或 Java中每次调用new），都构造一个新

的别名类。此外，每个不同的被取了地址的局部或全局变量都属于同一个别名类。

指针（或传地址的参数）可以指向多个变量，这些变量可以属于不同的别名类。在程序

I p := 1ist (head=0,tafl=nf1);
2 q:=1ist {head=6,tail=p}r
3 1f a#0
then p:=q;M

5 p.head :-4;
的第5行，g只能指向别名类2，但是p指向的别名类既有可能是1，也有可能是2，具体取决于a的值。 404
因此，必须给每个MEM结点关联一组别名类，而不是只关联某一个别名类。第2行后，

我们得到了信息 p→ 【1，q →{2|;第4行后，有p→{2}，g→ {2}。但是当控制流的两

条分支汇合时（在这个例子中，我们有控制边 3→5和4→5），必须合并别名类信息;于是在第

5行，我们有p→{1，2}，g→ {2}。

算法。数据流算法处理形如（t.d.k）的元组集合，其中t为变量∶d和k是在位置d分配的

记录的第k 个域的所有实例的别名类。如果r一k在语句s的开始可能指向别名类为d的一个记
录，集合 in【s】就包含了（t，d，k）。这个数据流向题恰好可以作为证明位向量不能像树或散列表

表示一样适合稀疏问题的一个例子。

这里不使用 gen 和kill集合，而是使用一个传递画数（transfer function）;如果 A是语句s

的人口处的别名信息（元组集合），则 trans，（A）是语句s的出口处的别名信息。不同类型的四
元式的传递函数的定义如表17-4所示。

初始集合 A。包括（FP，frame，0），frame 是当前函数的所有分配在栈帧上的变量的特殊别

名类。
我们使用缩写三表示所有元组（r，d，k）的集合，其中d、k是其类型和变量!一致的任意记录域

的别名类。让编译器前端配合，由它为每个变量r提供一个"小的"三，集合，可以使得这种分析更

405为精确。当然，在无类型的语言或具有类型强制转换的语言中，>，可能必须是所有别名类的集合。
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表17-4 别名流分析的传递函数

语句s trans,(4)
1←b (A-2)U(r,d.kI(,d,keA]

( is a consant)1-b+k (A-Z)U[(r,d,D(,d.i-kEA]
1←b田c (A-E)U[r,d.DI(b,d.EAv(c,d.k)∈A

AUZt--M[b]
。角M[a] - b

ifa > b gotoLielse L2
<goto L
利L:

f(aj,.,an) A
(A-E)u1r,d.0)d∶1←allocRecord（a）
AU E,1 ←f（a，⋯，a）

别名流分析的集合方程组是;

其中，5是起始结点intsol = A0 美
in{nl =U:上子主三宝三记
out[n]= trans,(in[a])

我们可以像通常一样用迭代方法求解此方程组。

产生可能别名信息。最后，如果存在d、k使（p，d.k）∈ in【s】并且（q，d，k）E in【s】，我们
就说p在语句s 可能与q别名。

17.5.3 使用可能别名信息

给定可能别名关系，我们可以将每个别名类作为数据流分析中的一个"变量"来对待，就
像到达定值和可用表达式中的变量一样。

为了以可用表达式为例，我们修改表17-4中的一行，设置 gen 和kill 集合为

语句。 gents] ki13]
Ma]+-b 【M【xla在语句5可能与x别名）1

现在，我们能够分析下而的程序片断;

一”一十釜辽
2∶M【a】 ←r
3:w 4M[r]
4∶b ←■+w
没有别名分析时，由于我们不知道t和x是否相关，，因此会假定第2行的存储指令可能会

杀死 M【r】的可用性。但是假设别名分析已判断出在语句 2，t不可能和x别名，则在第3 行

M【r】仍是可用的，于是，可以将它作为公共子表达式删除;经复写传播后，得到∶

1;z 4--M[0]
2∶M【x】←r
4∶b ←z+z

406]
上面介绍的是过程内的别名分析。过程间的别名分析有助于分析CALL指令的作用。例如

在下面的程序中∶
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1:t ++12
2:u -M[o]
3:f()
4∶ w←M【7】
5∶b←u+w

函数f会修改M【t】吗?如果修改了，M【t】在第 4行就不是可用的了。
过程间别名分析超出了本书的范围，这里不予讨论。

17.5.4 严格的纯函数式语言中的别名分析

有些语言具有不变的变量，这些变量在初始化之后就不能再改变。例如C语言的 const变
量，ML语言中的大部分变量，以及 PureFun-Tiger（见第 15章）中的所有变量都是不变的。

不需要对这些变量进行别名分析。别名分析的目的是判断程序中的不同语句是否互相影响，
或者一个定值是否杀死另一个定值。尽管这些语言中可以有许多指向相同值的指针，但是不会

有任何指针能够导致这种不变的变量的值发生改变，即不变的变量不会被杀死。

对优化器来说这是一件好事，对程序员也同样。优化器在进行常数传播和循环不变量检测

（见第 18章）时可以不受别名的烦扰;没有别名指针存储操作带来的混乱和复杂性，程序员也

更容易理解一段程序的行为。

推荐阅读

Godel【1931】证明了数学家的充分就业定理。Turing【1937】证明了停机向题是不可判定的，

Rice【1953】证明了编译器开发者的充分就业定理，虽然那时还没有编译器开发者。
Ershov【【1958】开发了值编号算法。Allen【1969】整理了许多程序优化方法;Allen【1970】和
Cocke【1970】设计了第一个全局数据流分析算法。Kildall【1973】第一个提出了数据流分析的不动

点迭代方法。 407]
Landi和 Ryder【1992】给出了一个过程间别名分析的算法。

习题
17.1 给出到达表达式（17.2.3节）的数据流方程。要特别注意被定值的临时变量同时也出

现在四元式右边时的情况，例如四元式1←-1④b或1-M【1】。和到达定值一样，gen

和 kill集合的元素可以是定值 ID。

提示∶如果到达表达式的定义不够清晰，无法用公式表示精确的定义，可以参考到达
表达式在公共子表达式删除（17.3.1节）中所扮演的角色。

17.2画出程序17-1的基本块 （基本块可能包含多条语句）的控制流图。给出每个基本块

（关于到达定值）的 gen 和kill 集合。
·17.3 分别针对
a.可用表达式
b.活跃分析
说明如何合并同一个基本块中两个相邻语句的 gen 和kill 作用。

·17.4修改计算可用表达式的算法，使之可同时计算到达表达式。为了使该算法更加高效，



286 第二部分 高级 主 题

可以利用这一事实;如果一个表达式在语句s是不可用的，那么（为了公共子表达式
删除）我们就不需要了解它是否到达s。提示;对每个通过语句s传播的可用表达式

a＋b，同时也传播表示所有定值 a十b并且到达s的语句的集合。
17.5 考虑下面程序的到达定值计算∶

x :=1:
y :=1;
f z <>0
then x:=2
else y :=2;
袭“消十心

a.画出该程序的控制流图。

b.给出对该程序运行算法17-1得到的 sorted 数组。

c.计算到达定值，按照程序17-1上方的表格格式给出每次迭代的结果。总共需要多

少次迭代?408
*d.证明在无环图上通过迭代计算到达定值时，如果计算，按照算法17-1给出的结点顺

序进行，只需要一次迭代（第2次迭代仅仅验证结果不会再改变）。

提示∶证明和利用引理∶每个结点都在它的所有前驱之后被访向。
e.假如我们通过深度优先搜索按照第一次被访问的顺序对结点进行排序。利用该顺序

计算到达定值，并按照表格格式给出每次迭代的结果。总共需要多少次迭代?

*17.6 采用和算法17-2类似的形式，写出用于活跃分析的工作表算法。409]
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循环（loop）;重复执行直到满足终止条件的一个指令序列。

韦氏字典

循环在计算机程序之中无处不在，程序的大部分执行时间一般都用于执行一个或另一个循

环。因此设计出能使循环执行得更快的优化是值得的。直观上进。循环是这样的—个指令序别，

它在序列的结尾又跳回到序列的开始。但是为了高效地优化循环，我们将使用更准确的定义。

控制流图中的循环是一个包含满足以下性质的头结点（header node）h 的结点集合S。
●S中的每个结点都有一条通向h的有向边路径。

·从h到S中的任意结点，都有一条有向边路径。

·除 h 之外，不存在任何从S外的结点到S内其他结点的边。

可见，（韦氏）字典的定义和技术定义不同。
图18-1给出了几个循环。循环的入口（loop entry）结点是有一个前驱位于循环外的结点，

循环的出口结点是有一个后继位于循环外的结点。图 18-1c、18-1d和18-1e 说明了循环可以有

多个出口结点，但是只可以有一个人口结点。图18-le 和18-1f包含嵌套循环。-
He)()

言)
(e)(b)(a)
(=)（一）Ke)

一类， 3
() ()(e]一(o) (+-O

(D)(e)(d)(c)
图18-1 循环。在每个子图中，1是头结点

可归约流图

可归约流图（reducible flow graph）是这样一种流图，在其中循环的字典定义更符合技术定

410义。不过我们将给出一种更准确的可归约流图的定义。

图18-2a不包含循环，在强连通部分中的那两个结点（2.3）都可以不经过对方而到达。
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e ，
(e]

言

（四】 (a)

(a) (e)(b)
图18-2 所有流图都不包含循环。虚线指出了通过

删除边和折叠结点对图（c）的归约

图18-2c中分别包含结点1、2 和3的图形和图18-2a相同;如果我们重复地删除所有x是

y的唯一前驱的边 x→y，并且合并这一对结点（x，y），则可以看得更清楚。也就是删除6→9、

5→4，合并（7，9）、（3，7）、（7.8）、（5，6）、（1，5）、（1，4），我们就可以得到图18-2a。
不可归约流图（irreducible flow graph）是指这样的图∶合并结点和删除边后，在图中可以
找到与图18-2a相同的子图。可归约流图是合并后不包含这种子图的流图。在没有这样的子图

时，结点的任何环路都只有唯一的头结点。
常见的控制流结构，如 if-then、if-then-else、while-do、repeat-until、for 和 break（甚至多级

break）都只能够生成可归约流图。因此，Tiger或Java的函数，或者不带goto 的C 函数的控制
流图，总是可归约的。

4] 假设扩展了Tiger使之具有 repeat-until循环，下面的 Tiger 程序对应于流图18-1e∶
functfon isPrime (n: int):int=
(1 := 2:
repeat j := 2;
repeat if i*j-n

then return 0
el8e j:=j+1

unt11 j=n;
1 :=1+1

unt11 i=n;
return 1)

在函数式语言中，循环通常使用尾递归函数调用来表示。使用函数式语言的isPrime 函数

可以写成∶

function isPrime (n: int):int=
0 tryI(n,2)
function tryI(n: int,i: int): int =
tryJ(n,1,2)

function tryJ(n: int,i:int,j:int):int =
if 1+j=n
then 0寻。属 elge nextJ (n,i,j+1)

function nextJ(n: int,i: int,j:int): int=v 1f j=n
then nextI(n,i+1)
else tryJ(n,i,j)

function nextI(n:int,i:int):int=
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e if 1mn
then 1
elge tryI(n,1)

412]
其中，数字1~6对应图18-1f中的相应结点。

由于程序员可以按任意顺序安排这些函数，由函数式程序的尾调用结构产生的流图有时是
不可归约的。

可归约流图的优点。许多数据流分析（在第17章中讨论的）都能够在可归约流图上高效地

进行。此时，不需要使用不动点迭代（即迭代地执行赋值，直到结果不再发生改变），我们就可
以确定计算这些赋值的顺序，并且提前计算出需要多少次赋值，即我们不再需要检查是否发生

了任何改变。
但是，本章的剩余部分将假设控制流图既可能是可归约的，也可能是不可归约的。

18.1 必经结点

在优化循环之前，我们必须先找出流图中的循环。必经结点（dominator）的概念对找出循
环非常有用。
每个控制流图都一定有一个没有前驱的起始结点 s。，这个结点是程序（或子程序）执行的

假设开始点。
如果从s。到结点 n的所有有向边路径都经过结点d，那么结点 d是结点n的必经结点。每

一个结点都是自己的必经结点。

18.1.1 寻找必经结点的算法

考虑一个具有前驱 p.⋯·P的结点n和另一个结点 d（d≠n）。如果d是每个p的必经结

点，那么它一定是n的必经结点。因为从s。到 n的路径一定要经过某个p，而每条从s。到p

的路径又都必须经过d。反过来说，如果 d是n的必经结点，d也必须是所有p的必经结点，
否则，就会有一条从s。到 n的路径经过了某个前驱p，而 d不是p的必经结点。
令 D【n】是n 的所有必经结点的集合，则∶

量三曰三 forn≠80D[]= [so)

和通常一样，可以将每个方程看作一个赋值语句，通过迭代求解此联立方程组。但是在这种情
况下，由于赋值D【n】←1nU⋯使 D【n】变小（或不发生改变）而不是变大，所以每个集合 D413
【n】（n≠s。）在初始化时必须包括图中的所有结点。

以类拓扑序对赋值语句进行排序，即按照图的深度优先搜索（算法17-1）顺序，可以使算

法更为高效。19.2 节描述了一个更快的计算必经结点的算法。
技术上讲，不可到达结点的必经结点是图中的每个结点;我们可以在计算必经结点和循环

优化之前，删除不可到达结点，以避免出现这一情况。另见习题18.4。

18.1.2 直接必经结点

定理∶在连通图中，假设d是n的必经结点，e 也是n的必经结点，则一定有d是e的必
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经结点，或者e是d的必经结点。

证明∶（反证法）假设定理不成立，即 d 和e 都不为对方的必经结点，则有一条从s，到e的

路径不经过d，因此，任何从e到n的路径都必须经过d，否则 d就不是n 的必经结点。

反过来，如果同时任何从d 到n的路径都必须经过e。这就意味着，为了从e到n，其路径
一定包含了无限循环 d→e→d→⋯，从而永远不可能到 n。

这个定理告诉我们，每个结点 n都不会有超过一个的直接必经结点（immediate dominator）。

结点 n的直接必经结点，记为 idom（n），具有下列性质;

（1）idom（n）和 n 不是同一个结点，

（2）idom（n）是n的必经结点，并且

（3） idom（n）不是n的其他必经结点的必经结点。
除s。外，所有其他结点至少有一个除自己本身之外的必经结点（因为s。是每个结点的必经

结点）。因此，除 s，外，所有其他结点都恰好有一个直接必经结点。

必经结点树。让我们来画这样一个图，图中包含流图的每个结点，并且对每个结点 n，有

一条从 idom（n）到 n的边。因为每个结点都恰好有一个直接必经结点，所以画出的图是一棵
树。这棵树称为必经结点树（dominator tree）。
图 18-3 展示了一个流图和它的必经结点树。必经结点树的某些边对应于流图中的边（例如

4→6），但是其他的边（例如4→7）在流图中没有相对应的边。也就是说，一个结点的直接必经
结点不一定是它在流图中的前驱。414

(-{7

(e)(e) 一一 (e) ()鸣

六自() (7)(6) O)

(r()] 工二

g ()工

(9 12

(O)(a)
图18-3 《a）流图;（b）它的必经结点树

流图中从一个结点n到它的必经结点h的边称为回边（back edge）。对每条回边，对应地
存在着一个构成循环的子图。图 18-3a中的回边有3→2、4→2、10→5和9→8。

18.1.3 循环

回边 n→h，其中h是n的必经结点，对应的自然循环（natural loop）是满足下列条件的所
有结点x组成的集合;x的必经结点是h，并且有一条从x到 n的路径不包含h。这个循环的头

（header）是h。
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图18-3a的回边10-5的自然循环包括结点5、8、9、10，并日内部有一个由结点8、9构成

的嵌套循环。
如果有多条回边到达结点h，那么 h就是多个自然循环的头。在图18-3a中，3→2 对应的
自然循环由结点3、2组成，4→2对应的自然循环由结点4、2组成。

本章描述的这些循环优化适合任何循环，不管循环是否是自然循环，或者是否和其他循环共

享一个循环头。但是，因为内层循环占用了大多数程序执行时间，所以我们通常希望首先优化内 415
层循环。如果两个循环共享一个循环头，就很难判断应将哪一个循环看作内层循环。解决这一问
题的通用方法是合并共享同一个头的所有的循环。但合并后的循环不一定是一个自然循环。

如果我们合并图18-3a中循环头为2的两个循环，得到的这个循环将包括结点2、3、4——

该循环不是一个自然循环。

嵌套循环。如果A和B是头分别为a和b的两个循环，其中 a≠b，并且b在A中，则 B
的结点是A的结点的真子集。我们说B嵌套在A的内部，或者说B是内层循环。

我们可以构建程序中循环的循环嵌套树（loop-ncst trce）。流图 G的循环嵌套树的构建过程如下。
（1）计算G的必经结点。

（2）构建必经结点树。

（3）找出所有的自然循环，以及所有的循环头结点。

（4）对每个循环头结点 h，将所有头为h的自然循环合并成一个循环loop【h】。
（5）构建循环头结点（以及隐含的循环）的树，如果 h，在循环 loop【h;】中，则在树中，
h，在h之下。

这种循环嵌套树的叶子结点是最内层循环。

为了在循环嵌套树中有一个位置放置不属于任何循环的结点，我们可以将整个过程体看成

一个位于循环嵌套树的根的伪循环。图18-3的循环嵌套树如图18-4所示。

6.7.il,2)

e 53.4 10

秒

、看、9
图18-4 图18-3a的循环嵌套树。循环头（结点1、2、5、8）位于每个椭圆的上半部;一个
循环包括一个循环头（例如结点5）、同一个椭圆中的所有其他结点（例如结点

10），以及以该椭圆为根的循环嵌套子树中的所有结点（例如结点8、9）

18.1.4 循环前置结点

许多循环优化需要在紧挨着循环执行之前插入一些语句。例如，循环不变量外提会将一条
语句从循环内移动到紧挨循环之前。这些语句应该放在哪里呢?图18-5a举例说明了这个问题

如果我们想要将语句s插入到循环之前紧挨着循环的一个基本块中，则需要将s同时放到基本

块2和3的末尾。为了有一个统一的位置放置这些语句，我们在循环外插人了一个新的、初始
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为空的前置结点（preheader） p和一条边p→h。所有从循环内的结点x到h的边x→h都不会
发生改变，但是所有从循环外结点y到h的边y→h都将重定向到p。[416

(3)(2)

(ee) o

(v

言一

(r]酶

() K)

(a) (b)
图18-5 （a）循环∶（b）具有一个前置结点的同一个循环

18.2 循环不变量计算

如果循环中包含语句t←-a④b，并且在循环的每一轮执行中，a的值都相同，b的值也相

同，那么t每次也会具有相同的值。我们可以将这个计算提升到循环之外，这样，该计算就只

需要执行一次，而不是每次迭代都执行。
我们不能总是知道 a是否每次都具有相同的值，因此同通常优化时的处理一样，我们做保守的

估计。如果每个操作数a，都满足下列条件之一，则循环L中的定值d;1←-a④a，是循环不变量∶

（1）a，是常数，
（2）或者所有到达 d的a的定值都在循环之外，

（3）或者a只有一个定值到达d，并且该定值是循环不变量。

根据上面的条件。可以很自然地使用迭代算法来找出循环不变量的定值。首先找出所有操作数

是常数或者来自循环之外的定值;然后重复地寻找其操作数都为循环不变量的定值。

外提
假设1←-a④b是循环不变量。我们能够将它提升到循环之外吗?在图18-6a中，将它外提

可以使程序运行较快，并仍得到相同的计算结果。但是在图18-6b中，外提它虽然可使程序运

行得更快，但是结果却不正确——原来的程序并不一定会执行1-a④b，但是转换后的程序却
总是执行它，如果一开始就有i≥ N，转换后的程序会产生错误的x值。图18-6c中，外提1-
a守b也是不正确的，因为原循环中有多个对t的定值，转换后的程序会以不同的交替方式对t

赋值。在图18-6d中进行外提同样是错误的，因为在此循环不变量定值之前有一个对t的使用。

因此，将此定值外提后，循环的第一次迭代会使用错误的值。

考虑到上述隐患，我们可以建立将 d;1-a④b外提到循环前置结点末尾的准则。

（1）d是所有这样的循环出口结点的必经结点∶在这些循环出口结点，r是出口活跃的。
（2）并且在循环中t只有一个定值。

（3）并且t 不属于循环前置结点的出口活跃集合。
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LoLoLoLo - 一-0 -0t ←0
了，己 LL

MU】←t←i+1ifi≥N gotoL2←i+1 i←i+1←a甲bi←i+1←a田b ,e
M[]-r←a田b 1←a田b1

M[i-! 茎辽十一Mt】←r t ←0ifi<N gotoL; MU]-7gotoLi ifi<NgotoLL2 La ifi<N gotoLLa，一 L ←I←1率 者工

（a）外提 （d）不能外提（c）不能外提（b）不能外提

图18-6 外提1*-a④b的正确候选和不正确候选

隐含的副作用。如果t←a④b可能引发某类算术异常或者有其他副作用，上述规则就需要

做一些修改;见习题18.7。

[418]将 while循环转换为 repeat-until循环。条件1会阻碍从 while 循环中外提许多计算;从图18-7a

可以清楚地看到，循环体中没有一条语句是循环出口结点（它同时也是循环头结点）的必经结点。
为了解决这个问题，我们可以将 while循环转换为其前有一条 if语句的 repeat循环。这种转换需要

复制头结点中的语句，如图18-7b所示。当然，repeat 循环体中的所有语句都是循环出口结点的必

经结点（如果没有 break或显式的循环退出语句），这样条件1便能得到满足。

，
x<1+3
fx<ngoto 2eise goto 3

Ir← i+3 o←-i+aifx<ngoto2else goto 3
←- My】
w< y+1互 Mw】 ←zy el+a

|z ← MLUy】
w ey+l 1a

│xe 1+3M1w] <z
ifx<n goto 2ele goto3goto 1

ow

(b)((a)
图 18-7 while 循环（a）被转换为 repeat 循环（b

18.3 归纳变量

某些循环中，存在一个递增或递减的变量i，以及一个（在循环中）被置为i。c十d 的变量

j，其中c和d是循环不变量。于是我们可以在不引用i的情况下计算j的值;只要i以a递增，
我们就可以用c·a递增j。
例如，程序18-1a计算一个数组的所有元素之和。利用归纳变量分析（induction-variable

analysis），可以发现i和j是相关的归纳变量，通过强度削弱（strength reduction）可以用加法
替代乘以4的乘法，然后通过归纳变量删除（induction-variable elimination）可以将i≥ n替
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换为k≥4n+a，最后通过各种复写传播，我们可以得到程序18-1b。转换后的这个循环包含的

四元式更少，运行也会更快。下面我们分步介绍这一系列的转换。

程序 18-1 归纳变量优化之前的循环和之后的循环

s←0s+0
-0 K+a
L:: ifi≥n goto La b-n·4

c ←a+bj←1.4
k-j+a L∶∶if大'≥cgoto L2
x-M/[k] x -M【肉'

，零卡千3←-3+工
i-7+1 k'←K+4
goto L gotoL;
听 L2

（b）之后（）之前

我们说像程序18-1a中i这样的变量是基本归纳变量（basic induction variable），j和k是和119
i同族的导出归纳变量（derived induction variable）。（在原始循环中）j被定值后，有j=a+

i·b，其中ay=0，b;=4。我们完全可以用（i，a，b）来刻画j在它的定值点的值，其中i是基
本归纳变量，a 和b是循环不变表达式。

如果有另一个导出归纳变量k，具有定值k←j十c（其中c。是循环不变量），则k也和i
同族。我们可以用三元组（i，c.，b）来刻画 k，即 k=c。＋i.b。
也能以同样的方式用三元组（i，0，1）刻画基本归纳变量 i，这意味着i=0＋i.1。这样，每

个归纳变量就都可以用这种三元组来刻画了。

如果一个归纳变量在循环的每次迭代中都改变相同的量（常数或循环不变量），我们就说它

是线性归纳变量（linear induction variable）。在图18-8a中，归纳变量i不是线性的∶在某些迭
代中，它递增b;在其他迭代中，它递增1。此外，在一些迭代中j=i。4.而在另外一些迭代

中，导出归纳变量j（暂时地）并不随i的递增而增加。421]

s -0
飞十一平
B-b:4
n ←n·4s+0
L::if s >0goto L2L::ifs>0goto L2

i←i+b 户一买+b
←产j←i4
x ←MU】x←MU】 s←s-xs←s-x

gotoLu gotoL
la∶j←户+4i∶i←i+1

s←s+j s ←s+
ifi<ngotoLi ifj<ngotoL

（b）之后（a）之前
图18-8 基本归纳变量i在不同的迭代按不同的量递增;导出归纳变量j不是每次迭代都改变

18.3.1 发现归纳变量

基本归纳变量。如果在以 h 为头结点的循环L中，变量i只有一个形如i←-i＋c或者
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i-i一c的定值，其中c是循环不变量，那么i就是循环L的一个基本归纳变量。
导出归纳变量。如果变量k同时满足下列条件，那么k是循环L中的导出归纳变量。

（1）L中k 只有一个形如k*j·c或者k-j+d的定值，其中j是一个归纳变量，c和d是
循环不变量。
（2）当j是和i同族的导出归纳变量时，有

（a）到达k的j的唯一定值是j在循环中的那个定值;
（b）并且在j的定值到k 的定值之间的任何路径上都没有i的定值。

假设j是用（i，a，b）来刻画的，则根据k的定值是j·c还是j+d，可以用（i，a·c，b·c）或者
（i，a＋d，b）来描述k。

为了进行归纳变量分析，形如k-j—c的语句可以作为k←j+（-c）来对待（除非-c是
不可表示的，在2的补码算术中有时可能会发生这种情况）。

除法。形如kj/c的语句可以重写为k-j（一），因此，k可以看成一个归纳变量。这样
的重写只适合于浮点计算———尽管我们必须注意当不能精确表示1/c 时所出现的微小数值误差。

但如果这是一个整数除法，我们就根本不能表示1/c。

18.3.2 强度削弱

在许多机器上，乘法比加法的代价高得多。因此我们希望找出定值形式为j←i.c的导出归

纳变量，并用一个加法来替代它。

对三元组为（i，a，b）的每一个导出归纳变量j，构造一个新的变量j'（尽管具有相同三元组

的不同导出归纳变量可以共享同一个j'）。在每个赋值 i←-i+c之后，构造一个赋值j←-j'＋
c·b，其中c·b是可以在循环前置结点计算的循环不变量表达式。如果c和b都是常数，则乘
法c·b可以在编译时完成计算。用j←-产替换循环中这个对j的（唯一）赋值。最后，需要在

循环前置结点的末尾用j'--a+i.b初始化j'。 422
对于i族的两个归纳变量 x和 y，在循环的执行期间，除了在语句序列 z←-z，+c，中（c，

是循环不变量）之外，如果每次都有（x—a.）/b.=（y一a，）/b，我们就说x和y是协调的
（coordinated）。显然，i族中由强度削弱引入的所有新变量都是相互协调的，也都和i协调。

当一个归纳变量j的定值 j-⋯被替换为j--j时，我们知道i是协调的，但是j可能不是协

调的。不过，只要其间没有插入对j的定值，标准的复写传播算法就可以用广的使用替换j的

使用。
因此，可以不使用流分析去了解j是否是协调的，只要复写传播认为使用j是合法的，我

们就使用j。
在强度削弱后，程序中仍然有乘法，但乘法已经在循环之外了。如果循环执行多个迭代，
则在许多机器上，使用加法的循环应该比使用乘法的运行得更快。但是，在能够通过指令调度

而隐藏乘法延迟的处理器上，强度削弱的效果有可能会令人失望。

例 对程序18-1a执行强度削弱。我们发现j是三元组为（i，0，4）的一个导出归纳变量，k

的三元组为（i，a，4）。对j和k执行强度削弱后，有∶

3 ←0
-0
j ±0:
啊还
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L:ifi ≥ngoto L2
j←）
k 4K
x← M【k】
5←5＋
←17+1
'←疗+4
k←'+4
goto LLn
可以执行死代码删除来删除语句 j一j'。我们还希望删除无用变量i'的所有定值，但是从[423
技术上讲j并不是死的，循环的每个迭代中都使用它。

18.3.3 删除

强度削弱后，一些归纳变量在循环中根本不被使用，另一些也只是用于和循环不变量变量

作比较。这些归纳变量都可以删除。

如果一个变量在循环L的所有出口都是死去的，并且它只用于对自身的定值，那么在循环

L中这个变量是无用的（useless）。无用变量的所有定值都可以被删除。

在上述例子中，删除j后，变量j就成了无用变量。我们可以删除 j'←j'+4。如此一来，
在前置结点中，j'的定值也能够通过死代码删除来除去。

18.3.4 重写比较

如果变量k 只是用于与循环不变量进行比较，或者只是用于自身的定值，并且在同一族归
纳变量中，还存在着另外某个不是无用的归纳变量，那么k 就是一个几乎无用的变量。通过修

改循环不变量与这个几乎无用的变量的比较，使之与相关的归纳变量进行比较，可以使一个几

乎无用的变量变成一个无用变量。
如果有k< n，并且j和k是i族中的协调归纳变量，n是循环不变量∶则我们知道有

（j一aj）/b，=（k一ax）/b，因此，比较k<n可以写成∶

“空广号人平
现在，可以将两边都减去 a.，然后都乘以b，/b.。如果b/b.是正的，则这个比较变为;

J-g,、i-4)
如果 b，/b，是负的，这个比较则变为∶

-6)>-)
最后，在两边都加上 a（这里只给出b，/b。为正的情况）∶

)<(-a)+a)
这个比较的整个右部是一个循环不变量，可以外提到循环前置结点中并只计算一次。424
限制∶
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（1）如果 b，（n一a0）不能被 b，整除，则不能使用上面的转换，因为不能在整数变量中保存

一个小数值∶
（2）如果b，或者b。不是常数，而是一个不能确定其正负值的循环不变量，则也不能使用

上述转换，因为不知道应该使用哪种比较（小于还是大于）。

例在我们的例子中，比较i≤n可以用k'<a+4·n来替换。当然，a十4·n是一个循

环不变量，应该外提。于是i将成为一个无用变量，并可以被删除。转换后的程序变为∶

 ←0
X +-a
b←-n·4
c-a+b
L::ifk'<c goto L2
k-k'
王-M【k】
3←5十石
k -K'+4
goto L
L3
最后，复写传播可以删除k ←-k'，我们最终得到了程序18-1b。

18.4 数组边界检查

安全的程序设计语言会自动地对每个下标操作插入数组边界检查（见7.2.7节的劝告）。当

然，对于写得好的程序，所有的这种检查都是冗余的，因为写得好的程序不会越界访问数组。
我们希望安全的语言能够获得与不安全语言一样的高性能。为此，不要关掉所有的边界检查
（关掉所有的检查是不安全的），而是让编译器删除它能够证明是冗余的所有检查。

我们不可能奢望能删除所有的冗余边界检查，因为这个问题是不可计算的（和停机问题一

样困难）。但是许多数组下标都具有a【i的形式，其中i是归纳变量。编译器通常能够很好地理

[425解这种形式的下标，并进行优化。
数组的边界通常具有形式0≤iAi<N。当N非负时（N总是非负的，因为它是数组的

大小），可以将它实现为i≤。N，其中，≤。是一个无符号比较操作符。

删除数组边界检查的条件。尽管自然和直观地来看，一个归纳变量似乎一定会位于某个范

围内，并且我们应该能够知道这个范围是否超出了数组的边界，但是从循环L中删除一个边界

检查的如下判别标准实际上是相当复杂的。

（1）有一个语句s，它含有一个归纳变量j和一个循环不变量u，且该语句具有下列形式

之一
ifj<ugoto L1 else goto L2
ifj≥u goto L2 cise goto L!
if u >j goto L1 clsc goto L2
ifu≤jgot0 L2 else goto L1

其中，L.在循环之外。

（2）有一个具有如下形式的语句 sg∶

ifk <n n goto L clsc goto L4
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其中。k是和j协调的归纳变量，n是循环不变量，s，是s;的必经结点。
（3）L中不存在包含k 的定值的嵌套循环。
（4）当j增加时，k也增加，即b;/b，>0。

n常常是数组长度。在有静态数组的语言中，数组长度 n是常数。在许多具有动态数组的
语言中，数组长度是循环不变量。在 Tiger、Java和 ML中，数组一旦被分配，就不能动态地修

改其长度了。典型情况下，数组长度 n可以通过读取某个数组指针v的length 域来获得。为了
便于阐述，假设 length域位于数组对象中偏移为0的位置。为了避免进行复杂的别名分析，编

译器的语义分析阶段需要将表达式 M【v】标记为不变的，这意味着不会有其他存储指令能够修

改数组 v的length域的内容。如果v是循环不变量，则 n也是循环不变量。即使 n不是数组长

度，而是其他某个循环不变量，我们也仍然能够优化比较 k<，n。
我们想在循环前置结点中放一个测试，该测试要表达的意思是;每次迭代都有k≥0Ak<

n。令k。是前置结点末尾处k 的值，令△k;，△k，⋯·△km是在循环内给k增加的所有的循环不426
变量值。于是，我们通过在前置结点的未尾进行如下测试来确保 k≥0∶

k≥0AAk≥0人⋯·-入Akm≥0

令 △k，，△k∶，⋯，△k。是在s，和s;之间不（再）经过s的任意路径上给k增加的所有的循环

不变量值的集合。于是，只要保证在 s;处有k≤n一（△k，＋⋯＋△k。），就足以确保在s∶处有

k≤n。由于我们知道（k-a。）/b.=（j-a）/b，所以这个测试变为∶

j~号（n-（k，+⋯+k，）-a）+a
因为测试j<u是测试k<n的必经结点，所以当下面的测试成立时，上面这个测试将总是

为真∶

中人名！号十己十宁艺土
由于比较的两边都是循环不变量，我们可以按下面的方法将它移到前置结点中。首先，要
确保所有循环不变量的定值都已提升到了循环之外。然后，按如下方法重写循环L∶复制L中

的所有语句，由此创建一个头为L'。的新循环L'。在L'中，将语句

if k <ngoto Lz else goto L4
替换为goto L。'、在L的前置结点的末尾，加入与下列语句等价的语句;

ifk≥0 Ak≥0八 .入k≥0
入u<包（n-（△k;+⋯+Ak）-a）+aj
goto L
else goto Lh

这个条件 goto 语句测试k 是否总在0和 n之间。
有时我们具有的信息足以在编译时便计算出这一复杂的条件。至少在下面两种情况下可以

做到这一点∶
（1）测试中出现的所有循环不变量都是常数，或者

（2）n和 u是同一个临时变量，a.=a，b.=b，并且在s;和 s∶之间没有给k 增加

△k。在类似 Tiger、Java或者 ML的语言中，如果程序员编写的是如下程序，则可能会出现
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这种情况∶ 427
1et var u : length(A)
var 1:0
in while ieu
do(aum := sum ＋A[1];
1:=4+1)

end
假设数组 A 的长度是从相对此数组指针偏移为0的域中读取的，length（A）对应的四元式

就将包括u←M【A】;同时，A【门的四元式为了用n进行边界检查，也会包括n←M【A】。假设

已标记表达式 M【A】为不变的，那么就不会有其他的 STORE指令会修改存储单元 M【A】的内

容，因此，现在对u和n定值的这两个表达式都是公共子表达式。

如果能够在编译时计算出前面那个复杂的比较，我们就能够无条件地使用循环L或循环

L'，并且删除没有使用的另一个循环。
清理。优化后，程序中可能会遗留一些没有解决的小问题。标号L'，后面的语句可能是不可

到达的;在循环L'中可能有 n和k的若干无用计算。前者可以通过不可到达代码删除来清理，

后者可以通过死代码删除来清理。

拓广。为了使这个算法在实际中有用，还需要从几个方面进行拓广。

（1）循环出口比较可以是下列形式之一∶

ifj≤u'goto LI else goto L2
i j> u'goto L2 else goto L)
if u'≥j goto L1 else goto L2
if u'<j goto L2 clse goto L1

其中，比较j≤u'替换了j<u。
（2）循环出口可以发生在循环体的底部，而不是数组边界检查之前。我们可以将这种情况

描述如下∶存在着一个测试

s2: if j<u goto L else gotoL2
其中，L;在循环之外，并且s;是所有循环回边的必经结点。则感兴趣的 △k，位于s。和任意

回边之间，以及循环头和 s.之间。

（3）应该处理b，/b。<0的情况。

（4） 应该处理j的计数向下减少而不是向上增加的情况，此时循环出口测试类似j≥1，l

是循环不变量的下界。

（5）归纳变量的递增可能是"不规则的";例如; 428]
whfle i<n-1
do (if sume0
then《it=i+1; sum;= sum+i;主∶=i+1）
else 1 :=1+2:
8um := sum  a[1]

这里，有3个△i（分别是1、1和2）。在分析时需要假设这三个增加可能全都起作用，可能只

有某一个起作用，也可能全都不起作用。但显然这里的效果是，在两条路径上都有i-i+2。在

这种情况下，那种将i的递增提到if之前（并合并它们）的分析对此会有益处。
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18.5 循环展开

有些循环的循环体较小，大部分的执行时间都用在了递增循环计数变量和测试循环退出条

件。展开这些循环，将循环体连续地复制两次或多次，可以使这些循环更加高效。

给定一个头结点为h，回边为s.→h的循环L，我们可以按以下方式展开L。

（1）复制结点，构建一个头结点为h'，回边为ss'→h'的循环L'。

（2）将循环L中所有从s，→ h 的回边改为s.→h'。

（3）将循环L'中所有从s'→h'的回边改为s'→h。

429] 例如，程序18-2a展开后得到程序18-2b。但是这并没有完成什么有用的优化;每个"原始"
迭代仍然有一个递增分支和一个条件分支。

程序18-2 无用的循环展开

L::x--M[]
3←3十工
-1+4
ifi < ngoto L1 else L2
L∶x←M【】L::x- Mti1]
 ←-5+x5 ←5十x
←1+4T←1+4
if i < n goto L else L2ifi <n goto L else L2 LLba
（b展开后（a）展开前

利用归纳变量的有关信息，我们可以做得更好。我们需要一个归纳变量 i，它的每次递增

i←-i＋△是循环的每条回边的必经结点。于是，我们知道每次迭代对i的递增恰好是所有△的

和，因此我们可以将所有的递增和循环出口测试积累到一起，得到程序 18-3a。但是这样的循环
展开仅在原始循环迭代次数为偶数时才正确。为解决这个问题，我们可以在展开的循环之后再

增加一个结尾（epilogue）来执行"奇数"迭代，如程序18-3b所示。

程序18-3 有用的循环展开。（a）仅当原始循环的迭代次数为偶数时才能

正确工作;（b）可以在原始循环迭代次数任意的情况下工作

ifi <n-8 goto Lelse L:
宁心”十适己
$←.+x
x←ML+4
5+5+x

宁“不十主己 1+-1+8
ifi <n-8 goto L else L2 45+x

x-Mi+4] L2x←M团】
3←5+X 5←s十x
i←i+8 i←i+4

ii<ngotolaelsel3ifi<n gotoLielsela
LsLa

（a）脆弱的 （b）健壮的
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这里我们仅给出了展开因子为2的展开情况。当使用展开因子K进行展开时，循环的结尾
是一个K一1次迭代的循环（和原始循环相当类似）。

推荐阅读

Lowry 和 Medlock【1969】使用必经结点描绘了循环并实现了归纳变量优化。Allen【1970】引
人了可归约流图的概念。Aho 等人【1986】描述了针对循环的多种优化、分析和转换。

430控制流的结点分割或边分割可以为语句的移动提供放置点。18.1.4节描述的循环前置结点

转换就是这种分割的一个例子。其他的例子还有着陆垫（landing pad）【Cytron et al.1986】，即在

循环的每个出口边插人的结点;循环体后置结点（postbody node）【Wolfe 1996】，即在循环体的
末尾插人的结点（见习题18.6）;以及保证后继或前驱唯一性特性【Rosen et al.1988】（见 19.1

节）的边分割。
第19章描述了其他循环优化和一个更快的计算必经结点的算法。

习题
18.1 a.计算流图中每个结点的必经结点∶

K--→L-M
b.画出直接必经结点树。

c.确定每个自然循环的结点集合。

18.2 计算下面每个流图的直接必经结点树。

a.图2-8。
b.习题2.3a的流图。

c.习题 2.5a的流图。
d.图3-11。

*18.3 G是一个控制流图，h是G中的一个结点，A是以h为头结点的一个循环的结点集
合，B是以h为头结点的另一个循环的结点集合。证明其结点属于 AUB的子图也是

一个循环。
431*18.4当流图中包含不可到达的结点时，直接必经结点定理（18.1.2节）将不再正确。

a.画出一个包含结点 d、e 和n的图，使得d是n的必经结点，e是n的必经结点，但
是 d不是e 的必经结点，e也不是d的必经结点。

b.指出这个定理的证明中哪一步对包含不可到达结点的流图是无效的?
c.用3个左右的词，命名一个有助于寻找不可到达结点的算法。

*18.5 说明在一个连通的流图（不包含不可到达结点）中，一个按照18.1.3节定义的自然循
环满足本章开头给出的循环定义。
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18.6 为了达到某些目的，需要每个循环头结点恰好只有两个前驱，一个在循环外，一个在

循环内。我们可以通过插入一个循环前置结点确保循环头只有一个循环外的前驱结点，
如18.1节所述。解释如何插入一个循环体后置结点，以确保循环头只有一个循环内的

前驱结点。
*18.7 假设任何算术溢出或除以零都会引发运行时的异常。如果我们将1+-a田b提升到循环
外，而这个循环原来根本不会执行这条语句，那么在原始程序不会产生异常的情况下，

转换后的程序则有可能会引发异常。修改循环不变量外提的标准，加入对上述问题的

考虑。不要用诸如"可能不执行该语句"之类的非形式化的描述，要用数据流分析和
必经结点的术语。

18.8 18.2节最后描述了将 while循环转换为 repeat 循环的方法。说明如何（使用必经结点）

刻画基本块控制流图中的 while 循环。以便优化器能够识别它。这种循环的循环体可能

包含显式退出循环的 break 语句。

*18.9 对于边界检查删除，我们要求（18.4节）循环出口测试是边界检查比较的必经结点。

如果不是这样，而是边界检查比较是循环出口测试的必经结点，则我们在循环的末尾
就会有一次额外的数组下标引用。这样。判别条件

a.+i·b≥0N(n-ai),b<(u-a,)·b.

就会比允许的边界偏移了一个位置。重写这个判别条件，以处理边界检查比较位于循

环出口测试之前的情况。

*18.10 写出关于循环展开的规则，形式大致如程序18-2所示，使得对归纳变量的所有递增都

432] 积累在一起，并且展开后的循环的每次迭代只有一个循环出口测试。
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支配（dom-i-nate）∶对⋯⋯施加最具决定性的或引导性的影响。

韦氏字典

许多数据流分析需要寻找表达式中每个定值变量的使用点， 或者每个使用变量的定值点。

定值-使用链（def-use chain）是一种能够高效获得这些信息的数据结构∶对流图中的每条语句，

编译器能够保存两个由指针组成的列表，其中一个列表中的指针指向在该语句中定值的变量的
所有使用点，另—个列表中的指针指向该语句中所使用弯量的所有定值点。通过这个方法，编

译器能够快速地从使用跳到定值，从定值跳到使用。

对定值-使用链思想的一种改进是静态单赋值形式（static single-assignment form），或 SSA
形式。SSA形式是这样一种中间表示∶在程序正文中，每个变量只有一个定值。这个（静态的）
定值可能位于一个可（动态）执行多次的循环中，因此我们把它称为静态单赋值形式，而不是

简单地称为单赋值形式（在单赋值形式中，变量根本不会被重新定值）。

基于以下一些原因，SSA形式是有用的。
（1）当每个变量只有一个定值时，数据流分析和优化算法可以变得更简单。

（2）如果一个变量有N个使用和 M个定值（占了程序中大约N＋ M条指令），表示定

值-使用链所需要的空间（和时间）和 N·M成正比——即成平方增大（见习题19.8）。对于

几乎所有的实际程序，SSA形式的大小和原始程序的成线性关系（习题19.9给出了一个例

外）。
（3）SSA形式中，变量的使用和定值可以与控制流图的必经结点结构以一种有用的方式联

433系起来，从而简化诸如冲突图构建这样的算法。

（4）源程序中同一个变量的不相关的使用在 SSA形式中变成了不同的变量，从而删除了它
们之间不必要的关系。例如，程序;

fori-1 to N do Ali】←-0
fori *-1 to M do s -s+B[il

即使这两个循环计数器的名字都是i，也没有理由需要使用同一个机器寄存器或中间代码临时变

量来保存它们。

在直线式代码中，例如在一个基本块中，容易看出每条指令可以定值一个全新的变量，而
不是重新定值一个老的变量，如图19-1所示。一个变量（例如 a）的每个新定值都被修改为定
值一个全新的变量（a;az⋯），该变量的每个使用修改为使用上一次定值的那个版本。这也是
值编号（17.4.6节）的一种形式。
但是当两条控制流边汇合到一起时，如何使每个变量只有一次赋值就没有那么显而易见了。

在图19-2a中，如果我们在基本块1和基本块3中各定值了a的一个新版本，那么在基本块4中

该使用哪个版本呢?当一条语句有一个以上的前驱时，就没有"上一次"的概念了。
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a-x+ya+x+y
b.a∶一1b*a-1
a;+y+b.a+y+b
b.*x·4bx·4

a*0:+b:ata+b
(b)(a)

图19-1 （a）直线式程序;（b）单赋值形式的程序

为了解决这个问题，我们引入了一个虚构符号，称为φ函数。图19-2b说明，可以用函数

a，←彰（a;.a;）来合并（在基本块1中定值的）a和（在基本块3中定值的）a3。但是，和普通

的数学函数不同，如果控制流沿边2→4到达基本块4，φ（a，az）产生a，如果控制流沿边3→4
到达基本块4，$（a;，a∶）产生a.。

b1 +-M×l b仁M对J
b4-MxJ a-0 西←0ae--0

irb<4 ifby<4D eifb<4
迎2c-b1 Q24b

ae- b

a←（a2aa3e-(a2.a)
本 c1←a+b cjea3+b)Ce-a+b

(b) ()(a)
图19-2（a）含控制流汇合的程序;（b）程序被转换为

单赋值形式;（c）边分割的SSA形式

那么φ函数如何知道控制流走的是哪一条边呢?这个问题有两个答案。

·如果必须执行该程序，或者必须将该程序翻译成可执行形式，则可以如19.6节所示，在434
每条进入边利用 MOVE指令来"实现"φ函数。

·在优化期间，许多情况下只需要知道使用和定值之间的联系，而不需要"执行"φ函数。

在这些情况下，可以忽略到底产生哪一个值的问题。

考虑图19-3a，此图包含一个循环。可以将它转换为图19-3b 所示的静态单赋值形式。注意

435变量a和c都需要有一个φ函数来合并它们从边1→2 和2→2 到达的值。由于b1是一个死变量，
b;的φ函数在稍后可以通过死代码删除而消去。变量c在人口时是活跃的（转换为SSA形式后，
隐含的定值 c。是活跃的）;它可能是一个未初始化的变量，也可能是所在函数的形参。

赋值c;c∶＋ b;将会执行许多次;因此变量 c;也会更新许多次。这也说明了为什么不可

能有动态单赋值（像纯函数程序一样）的程序，而只能有其中每个变量只有一个静态定值点的

程序。
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a←0
a e0 esaz ← φ（a1.a2）

bi ← e（bo.b2）ri c2 ←- e（co，c）b ←a+1 b2← a3+le ←-c+b c ←- c2+b2a<-b*2 a2 ←- bz*2ifa<N if a2<N
等 3return creturn e_

(b)(a)
图19-3 （a）含有一个循环的程序;（b）该程序被转换为边分割的单赋值
形式。a。、b。、c。是这些变量在基本块1之前的初始值

19.1 转化为 SSA形式

将一个程序转化为SSA形式的算法首先为变量加人的函数。然后用下标重新命名变量的所

有定值和使用。图19-4举例说明了每一个步骤。

DF(m)等
夕-j←1 e一一 g9六十三

过一E艺变
j←1
k←0 四，。

[rk<100]whilek<100 v谓j<20 ，return[ifj<20←
k←太+1 二。”j←ielse kek+2kek+1j←表
k←k+2

return j
（a）程序 （d）必经结点边界（b）CFG（控制流图） （c）必经结点树

结点1定值了变量j，但是DF（1）为 ，二一
二空。结点5定值了变量j.DF（5）包 云十”k-0 k←-ol含结点7，因此，需要在结点7插入 。。 e中G.j）。现在结点7也定值了j（通过 【←·G4.，色宁与

k-e(k. b) k2←四（k4.kp）φ函数），DF（7）包含结点2，因此结
ifrk2<100ifk <100点2也需要插入少（.j）。DF（6包含结

点7，因此结点7需要的（.j）（但是已 j<20 freturn 2return fh<20部 、
经有了）.DF（2）包含纳点2，因此结

3←ijek js←-k2点2也需要插入中i.送也已经有了）。 ，
k←k+1 kek+2 kyeko+i =k2+2ke←

k的计算和j相同。结点1定值了变量 。
Je00.) 4←●O3- js）iDF（1）为空，因此。不需要为1插入
[kee(k.k) [kee(kg.ks)φ函数。
（f）插入中函数后 （g））重命名变量（e）插入中函数的标准

图19-4 将程序转化为静态单赋值形式。结点7是一个循环体后置结点，插入结点7是为了确保
只有一条循环边（见习题18.6）;这类结点不是严格必需的，但有时会有所帮助
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19.1.1 插入φ函数的标准

我们可以在每个汇合点（即控制流图中前驱个数超过1个的结点）为每个变量插入一个φ
函数。但是这种做法既浪费又没有必要。例如图 19-2b中，沿基本块4的两条入边到达的b的

定值相同，因此没有必要为 b插人φ函数。下面的标准描述了变量的数据流路径的汇合结点∶

路径汇合标准。当下列所有条件都为真时，在流图的结点 z 正好应该为变量 a 插入一个φ函数。

（1）有一个基本块x包含a的一个定值。

（2）有一个基本块y（y≠ x）包含a的一个定值。
（3）有一条从x到z的非空路径P。。
（4）有一条从y到z的非空路径P。
（5）除结点 z外，路径P。和P，没有其他任何共同结点。
（6）在路径 P.和P。的汇合点以前，结点z没有同时出现在这两条路径中，但它可以出现

在其中某条路径中。
我们认为流图的起始结点含有每个变量的—个隐含定值，因为变量可能是一个形参，或者

在非特殊情况下可以认为有 a·-未初始化的值。

436 注意，a 的φ 函数本身也定值a，因此，必须将路径汇合标准看成是需要满足的一组方程。
和平常一样，我们可以通过迭代来求解此方程组。

迭代的路径汇合标准∶

while结点 x、y、z满足条件1～5并且 z不包含a的φ函数
do 在结点 z 插人a～-φ（a，a⋯，a）

其中，结点 z有多少个前驱，φ函数就有多少个参数a。

SSA形式的必经结点性质。静态单赋值形式的一个基本性质是"定值（结点）是使用（结

点）的必经结点"。更明确地说∶

（1）如果x是基本块n中一个φ函数的第i个参数，则 x的定值（结点）是n的第i个前驱

的必经结点;
（2）如果x在基本块n的一个不是φ函数的语句中被使用，则 x的定值（结点）是 n 的必
经结点。
18.1节定义了必经结点关系∶如果从起始结点到 n 的每条路径都经过d，则 d是n的必经结占

19.1.2 必经结点边界

放置φ函数的迭代路径汇合算法并不实用，因为它需要花大量的时间来检查结点 x、y、z的每
个三元组和从 x到 y的每条路径。利用流图的必经结点树，我们可以获得一个更高效的算法。

定义。如果x是w的必经结点，并且x≠w，则x是 w的严格必经结点。在本章中，提到图
的边时，使用后继和前驱，提到树的边时，使用父亲和儿子。如果有一条由树边组成的 x→y的

路径，则结点x是y的祖先（ancestor）;如果该路径非空，则x是y的真祖先（proper ancestor）。
结点x的必经结点边界（dominance frontier）是所有符合下面条件的结点 w 的集合∶x是

w的前驱的必经结点，但不是 w 的严格必经结点。

图19-5a举例说明了一个结点的必经结点边界;本质上，它是必经结点和非必经结点之间

的"分界线"。
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y

中部

(I) 一(3 一司二 。。。

(b) (C)(a)
图19-5 结点5是灰色区域中所有结点的必经结点。（a）结点5的必经结点边界包括结点4、5、
12、13，这些结点都是从以结点5为必经结点的区域（包括结点5的灰色范围）到不
以结点5为严格必经结点的区域（包括结点5的白色范围）的边的目标结点。（b）n

的必经结点边界中的任何一个结点也是两条非相交路径的汇合点，即从 n来的路径和

从根结点来的路径的汇合点。（c）汇合路径的另一个例子是路径 P.和路径 P.汇合

必经结点边界标准。只要结点 x包含某个变量a的一个定值，则 x的必经结点边界中的任

438何结点z都需要有一个a的φ函数。

迭代的必经结点边界。由于φ函数本身也是一种定值，我们必须迭代地应用必经结点边界

标准，直到再没有结点需要φ函数为止。

定理。选代的必经结点边界标准和选代的路径汇合标准指定的需要放置晶函数的结点集合

正好相同。
本章末尾"推荐阅读"中所列的参考书目中有关于该定理的证明。这里，我只概述这个证
明的前一半，说明如果 w是一个定值的必经结点边界，则它一定是一个汇合点。假设在某个结

点 n（如图19-5b中的结点5）中有一个变量 a的定值，并且结点 w（如图19-5b中的结点12）

属于 n的必经结点边界。根结点隐含地包含每一个变量的一个定值，也包括 a在内。于是，有
一条从根结点（图19-5中的结点1）到w的路径P，，P，不经过n或者不经过以n为必经结点

的任何结点;并且有一条从 n到w的路径P，P.只经过以n为必经结点的结点。w是这两条

路径的第一个汇合点。

计算必经结点边界。为了插入所有必需的的函数，对于流图中的每个结点 n，我们需要计

算n的必经结点边界DF【n】。给定必经结点树，我们可以用一遍遍历就高效地计算出流图中所

有结点的必经结点边界。为此，定义两个辅助集合。 [439]
· DF【n】;不以 n为严格必经结点的n的后继。

·DF，。【n】;属于 n的必经结点边界、但是不以 n的直接必经结点作为严格必经结点的
结点。

n的必经结点边界能够根据DFm和 DF。计算得来∶

DFfelDF[n]=DFat[n] U
cscindres列l

其中，children【n】是其直接必经结点（idom）为 n的所有结点。

为了更容易地计算 DF【n】（使用直接必经结点而不是必经结点），我们使用了下面的定

理∶DF-a【n】={n的一些后继组成的集合，这些后继的直接必经结点不是 n}。
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调用下面的 computeDF函数时，应该用必经结点树的根（流图中的起始结点）作为参数。

computeDF函数遍历必经结点树，计算每个结点 n的DF【n】∶它通过检查 n的后继来计算

DF_a【n】，然后合并 DFa【n】和（每个儿子c 的）DF，【c】。

computeDF[n] =
幼十二

这个循环计算，DFicalnlfor suce 【n】中的每一个结点y
直idomr（y）手n
S←SUy】

for必经结点树中的n的每个儿子c

computeDFIe]
这个循环计算DFplelforDF【c】中的每个元素w

in不是w的必经结点，或者谓n=w

S -SU(t]
DFa】÷←S

上述算法是相当高效的。它的工作时间与原始图的大小（边的数目）和它所计算的必经结
点边界的大小之和成正比。尽管存在一些不合理的图，其中多数结点有非常大的必经结点边界，

但是在大多数情况下，所有 DF的总大小与图的大小近似地成线性关系，因此该算法的运行时

间在实际中几乎总是线性的。

19.1.3 插入φ函数

440O] 从一个不是SSA形式的程序开始，我们需要插人正好足够的 由函数以满足迭代必经结点边
界标准。为了避免检查那些不插入φ函数的结点，我们使用工作表算法。

算法19-1的开始，有一个变量集合V，一个控制流结点图G，其中的每个结点都是一个由

若干语句组成的基本块;并且，对于每个结点 n，有一个在n定值的所有变量的集合A.【n】。
该算法计算在结点 n必须有φ函数的变量集合A，【n】。注意，一个变量既可以属于A.y【n】，
又可以属于A，【n】。例如图19-3b中，a同时属于A.【2】和A，【2】。

算法19-1 插入φ函数

Place-◆-Functions=
for每个结点n
forAele【n】中的每个变量a
defsites【a】 ← defsites【a】U {n】

for 每个变量a
W-desites[a]
while W非空
从W中删除某个结点n

for DF【a】中的每个Y
谓aA。【Y
在块Y的顶端插入语句a φ（a，a.⋯，a），其中φ函数的参数个数
与Y其有的前驱结点的个数一样多

A。Y]=A.[Y]U{a}
ia安 Analn】
W-WU1]

对每个变量 a，算法19-1的外层循环只执行一次。工作表 W 记录所有可能违反必经结点
边界标准的结点。
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W的表示必须要能够快速地测试一个元素是否属于W，还要能够从 W中快速地抽取一个
元素。工作表算法（通常）不关心删除的是表中的哪一个元素，因此结点数组或者结点链表就
足以满足这两个要求。为了快速地测试某个结点是否在 W中，我们可以在每个结点 n 的表示中

使用一个标记位，当将 n放入工作表时，置该标记位为 true;当 n 被删除时，置该标记位为

false。如果不希望修改结点的表示，则一个工作表加上一个散列表也能够高效地工作。 441
对于（a）控制流图中的每个结点和每条边，（b）程序中的每条语句。（c）每个必经结点边界中

的每个元素，以及（d）每个被插入的φ函数，这个算法的工作量都为常数。对于大小为N的程

序，（a）和（b）的工作量与 N成正比，（c）通常和 N近似地成线性。插入的φ函数的数目（d）在最

坏的情况下是 N3，但是经验表明它通常和 N成正比。因此，在实际中，算法19-1以近似线性

的时间运行。

19.1.4 变量重命名

放置好φ函数后，我们可以遍历必经结点树，将变量 a 的不同定值（包括φ函数）重命名
为a1、a，、a等。
在直线式程序中，我们可以重命名 a的所有定值，然后将 a 的每次使用用a的上一个定值

重新命名。对于含有控制流分支和汇合点。并且其流图满足必经结点边界标准的程序，我们用

必经结点树中位于a上面的最靠近 a的定值d来重命名a 的每个使用。
在算法19-1插入φ函数后，算法19-2重命名了各个变量的所有使用和定值。在遍历必经

结点树的过程中，算法为每个变量使用一个单独的栈，以"记住"每个变量的最近定值版本。

算法19-2 重命名变量

初始化∶
for每一个变量a
Count(a]-0
Stack【a】 ←-empty
将0压入Stackal

Rename(n)=
for基本块n中的每一个语句S
ifS不是φ函数
for S中某个变量x的每一个使用
i4- top(Stack[x])
在S中用x替换x的每个使用

for S中某个变量a的每个定值
Cowntla】 ←Count（a】+1
i - Countal
将i压入Stack{a】
在S中用a;替换a的定值

for基本块n的每 一个后继Y，
设开是Y的第j个前驱
for y中的每一个中函数
设该中函数的第j个操作数是a
i t top(Strack[a])
用a替换第j个操作数

forn的每一个儿子X
Rename(X)
for原来的S中的某个变量a的每一个定值
从Siackla】中弹出栈项元素
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尽管算法沿着必经结点树的结构《而不是流图的结构）前进，但是在树中的每个结点处，
算法都要检查结点在流图中的所有出边，看是否有任何φ函数的操作数需要给予适当的编号。

算法需要的时间和（插入φ函数后的）程序的大小成正比，因此在实际中，它的时间应该
和原始程序的大小有近似线性的关系。

19.1.5 边分割

如果控制流图中不存在从一个具有多个后继的结点进入一个具有多个前驱的结点的边，那
么有些分析和转换就会简单得多。为了使流图具有后继或前驱唯一的性质，我们执行下列转换∶

对每条控制流边a→b，其中a有多个后继，b有多个前驱，我们创建一个新的为空的控制流结

点 z，并用一条a→z的边和一条z→b的边替换a→b。[442]
具有这种属性的 SSA图属于边分割（edge-split）SSA形式。图19-2举例说明了边的分割。

[443边的分割可以在插入φ函数之前或之后进行。

19.2 必经结点树的高效计算

使用SSA形式的一个主要原因是它能使优化编译器运行得更快。编译器不需再使用代价高

昂的位向量迭代算法来关联变量的使用和定值（例如，为了计算到达定值），而只需查看每个变
量的（唯一）定值或者使用列表。

为了能够用SSA帮助编译器运行得更快，我们必须能够快速地计算 SSA形式。从必经结点
树计算SSA的算法相当高效。但是18.1节给出的那个基于集合的计算必经结点的迭代算法在最

坏的情况下可能会很慢。一个使用必经结点的产品级的编译器应当使用更高效的算法来计算必

经结点树。
Lengauer和Tarjan 的算法是一种近似线性时间的算法，此算法依赖于控制流图的深度优先
生成树（depth-first spanning tree）的属性。深度优先生成树正好是隐含地通过深度优先搜索

（depth-first search，DFS）算法遍历得到的递归树，这种搜索算法在第一次遇到流图中的某个

结点时，会给它一个深度优先顺序号（depth-first number，dfnum）。

Lengauer 和 Tarjan的算法相当抽象，只是想知道必经结点树可以被高效计算出来的读者可

以跳过下面的内容，直接阅读19.3 节。

19.2.1 深度优先生成树

我们可以利用深度优先搜索计算控制流图的深度优先生成树。图19-6展示了一个CFG和它

的深度优先生成树，树上每个结点都带有深度优先顺序号 dfnum。
一个给定的 CFG可以有多个不同的深度优先生成树。从现在开始，假设我们已经（通过深
度优先搜索）从这些生成树中任意地选择了一个。当说到"a 是b的祖先"时，意味着有一条
从a到b的只通过生成树边的路径，或者有a=b;当说到"a是b的真祖先"时，意味着a是

b的祖先并且a≠b。

深度优先生成树的性质。CFG 的起始结点 r是深度优先生成树的根。
如果 a 是b的真祖先，则dfnum（a）<dfnum（b）。

假设CFG中有一条从 a到b的路径，但是a不是b的祖先。找到 b的深度优先递归（沿生成
树路径）过程在下降找到b之前，从其他路径往上返回的沿途一定已经经过了a和 b的所有公共祖
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444先。这就意味着dfrum（a）>dfnum（b），并且从a到b的这条路径一定包含了某些非生成树的边。

M M1
EHG ILEHEo ，，立 6

过 ，Go

习 -×K

→M -M
（d必经结点树（a）控制流图 （c）半必经结点树（b）深度优先生成树

图19-6 控制流图和从它导出的树。（b）中的数字标记是结点的 dfnum

因此，如果我们知道有一条从 a到b的路径∶就可以只通过比较 a和b的dfnum 便可以知

道a是否是b的祖先。
在画深度优先生成树时，我们按照深度优先搜索时子结点被访问的顺序对一个结点的儿子

排序，以便右边的结点有较高的dfnum。这意味着，如果a是b的祖先，并且在CFG上有一条
从 a到b的路径使得生成树出现分枝，则此分枝一定是在生成树的右边，绝不会在左边。

必经结点和生成树路径。考虑 CFG中的一个非根结点n，以及它的直接必经结点d。因为

从根r到n的任意路径（包括生成树路径）都必须经过 d，所以在生成树上，结点 d 一定是n

的一个祖先，即有djnum（d）<dfnum（n）。

我们知道 n的直接必经结点一定位于r和n 之间的生成树路径上;剩下的只是
需要了解它到底在 n 之上的什么位置。

如果 n的某个祖先x不是n的必经结点，则在 x之上一定有一条从该生成树分
叉的路径。在CFG中，此路径在 x之下又重新与这条生成树路径汇合①。在这条旁

路路径上的结点不是 n的祖先，因此他们的dfnum都大于n 的dinum。该旁路路径
可以在 n或者n之上重新与这条生成树路径汇合（如右侧的图所示）。 [445
19.2.2 半必经结点

旁路 n的某些祖先的路径有助于证明这些祖先不是n 的必经结点。现在，我们只考虑那些
在结点 n（不是 n之上）重新加入生成树的旁路路径。我们要寻找这样一条路径，它从生成树

位于 n 之上的最高可能祖先s分叉，然后在 n重新加入生成树。我们称结点s为n的半必经结
点（semidominator）。

n的半必经结点s的另一种说法是，s是满足下列条件的结点s中具有最小dfnum 的结点∶

s有一条到n的路径，并且此路径上的结点（不包括s和n）都不是 n的祖先。半必经结点的这

种描述没有明显地说s必须是n的祖先;但是显然，对于任何有一条路径到 n但又不是n的祖

① 生成树实际上不会有这种"在x之下又重新与这条生成树路径汇合"的边。因为生成树是树，而不是围。作者
这里指的是CFG上的边。即在CFG上有一条从生成树上而某个分又路径上的结点进入这条生成模路径上某个

结点的边。这个图中进人x之下那个结点的边不是树边，而是 CFG边;如果将它画成虚线以示区别就会更清

楚。后面谈及这种生成树上的汇合边时也类似。实际上，作者已通过术语"前驱/后继"与"祖先/父亲/儿子"
进行了区别。请读者注意。-译者注
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先的结点，其 dfnum 都要大于n在生成树上自己的父结点的dfnum;生成树上 n 的父结点本身

有一条到n的路径，此路径上没有非祖先的内部结点（实际上，根本没有内部结点）。

通常，一个结点的半必经结点也是它的直接必经结点。但是如右图所示，为了
找到结点 n的必经结点，只考虑在 n重新加人树的旁路路径是不够的。右图中，有

一条从r到n的路径，此路径旁路了n的半必经结点s，并在n 之上的结点y重新加

入树。但是，寻找半必经结点s仍旧是有助于寻找必经结点d 的一个步骤。

半必经结点定理。为了寻找结点 n的半必经结点semi（n），需要考虑 CFG中 n

的所有前驱v。

·如果v是n在生成树中的真祖先（有dfnum（v）<dfnum（n）），则v是semi（n）的候选。

·如果v不是n的祖先（有dfnum（v）>dfnum（n）），则对 v的每个祖先u（或者 u=v），
令 semi（u）成为 semi（n）的候选。

在所有这些候选中，具有最低 dfnum 的结点就是n的半必经结点。
证明。见."推荐阅读"。

从半必经结点计算必经结点。设s是n的半必经结点。如果有一条在s之上从生成树分叉
的路径旁路s，并且在s和n 之间的某个结点重新加入生成树，则s不是n的必经结点。

但是，如果我们找到的这个位于s和n 之间的结点y是具有最小编号的半必经结点，并且

semi（y）是s的真祖先，则 y的直接必经结点也是n的直接必经结点。446
必经结点定理。在 semi（n）之下和n 之上（或者包括 n）的生成树路径上，设 y是具有最

小编号的半必经结点（dfnum（semi（y））最小）的结点，则 n的直接必经结点idom（n）为

semi(m) if semi(y)= semi(n)官量它囗章中省艺件各量三
证明。见"推荐阅读"。

19.2.3 Lengauer-Tarjan 算法

利用上述两个定理（半必经结点定理和必经结点定理），算法19-3使用深度优先搜索

（DFS）计算每个结点的 dfnum。

然后，算法按照从最高的 dfnum 到最低的dfnum 的顺序，依次访问各个结点，计算结点的

半必经结点和必经结点。在访问每个结点时，算法 19-3都将结点放入到图的一个生成树森林

中。称其为"森林"是因为此时的图可能有多个不相连的部分。只有当完成对所有 CFG结点的

访问后，才会形成一棵完整的生成树。

给定某条边v→ n，计算n的半必经结点需要查看v在生成树中的所有dfnum 大于dfnum

（n）的祖先。算法19-3在处理结点 n时，只有 dfaum 大于dfnum（n）的结点在森林中。因此，

算法可以只简单地检查已经在森林中的 v的所有祖先。

我们使用必经结点定理，通过在从 semi【n】到 n 的路径上寻找具有最低 dfnum 的半必经结
点的结点y来计算 n的直接必经结点。在计算结点s=semi【n】时还不能确定出 y;但可以在
稍后将s加入到生成树森林时再确定y。因此，我们需要将所有以s为半必经结点的结点保存

在 bucket数组中;当将 s链入到生成树森林时，我们就可以计算 bucket【s中每个结点的直接
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必经结点dom。
生成树森林用一个祖先数组 ancestor 来表示∶对于森林中的每个结点 v，ancestor【v】指向
v的父结点。这样，便可容易地实现从 v向上的搜索。

算法19-3 计算必经结点的Lcngauer-Tarjan算法

DFS(node p,node n)=
idnuon【川】= 0
dfaum【n】 ←-N; vertex【N】←n; parent{n】 ←p
N-N+1
for n的每个后继w
DFS(a,m)

Link（node p，node n）=将边 p←n加入到祖先数组ancestor 隐含的生成树森林中

AncestorWithLowestSemi（node n）=在森林中寻找n的非根祖先，该祖先在n的所有
祖先中拥有最低djruamy 的半必经结点。

Domintors)=
N ←0; Van.bucker【n】 ← 1
Vn.dfum（nl←0，semin】←ancestor【n】←idom【n】←-samedomnl←none
DFSaone,r)

跳过根结点0for/ ←N-1downto 1
n+vertex【i】; p ←parent【n】;s ←Pp
for n的每一个前驱v

这几行基于半必iTdj/muon[v]≤d/mumt[n]
经结点定理计算s← n的半必经结点。

else y'←-semi【AncestorWithLowestSemi（v）】
If djnum[s']<djnumis]
s←s'
客己” n的必经结点计算推迟到
bucker【s】← buckert【sjU【a） 从、到n的路径已被链入

Link(p,n) 到森林时。
for bucker【p】中的每一个v

现在，从P到v的路径已经被链y -AncestorWithLowestSemi(v)
入到生成树森林中，这几行基于ifsemity]= semitv]
必经结点定理的第一部分计算vidom【y】 ← p 的必经结点，或者将计算延迟，

ese samedombv】←y 直到y的必经结点被算出时。
buckelp] - 1}
forl-1 to N-1

现在，基于必经结点定理
m.←verer【】 的第二部分执行所有被延
if samedom[n]≠ nonc 迟的必经结点计算。
idom【n】←-idomr【samedom【】

算法19-4a给出了管理生成树森林的函数 AncestorWithLowestSemi和 Link 的一个非常低效
的版本。函数 Link设置祖先关系，函数 AncestorWithLowestSemi 向上搜索其半必经结点具有

最小 dfnum的祖先。

但是，如果生成树非常高的话，每次调用 AncestorWithLowestSemi 都可能需要线性的
时间（N的线性时间，N 是 CFG中结点的数目）;并且每个结点和每条边都要调用一次

AncestorWithLowestSemi。因此，算法19-3 加上算法19-4a 最坏情况下的时间复杂度为 N
的二次方。 447]



第二部分 高级主题314 第

算法 19-4 操作生成树森林的函数 AncestorWithLowestSemi和Link 的两个版本。简单版本
（（a）每次操作需要花费的时间复杂度为 O（N>（因此，算法的复杂度为 O（N2））;

高效的版本（b）每次操作需要 O（log N），算法的复杂度为O（N log N）

AncestorWithLowestSemi(node n)=
AncestorWithLowestSemi(node u)= a- ancestor[u]
u←第 if ancestorla ≠ none
while ancestor[v]*none b←- AncestorWithLowestSemi（a）
idjnum[senilu]] < dfnum[semiu]] ancestor【u】 ←- ancestor{a】u- if dpum[semi[bl] <
v- ancestor[u] dfnumisemilbestulretrn u besxt[u]-b

return besr[u
Link(node p, node n)=

Link(node p,node m)=ancestor[n]-p
ancestor【n】←-p; besrtn】 ←-n
（b）利用路径压缩，每次操作（a）简单版本，每次操作的
的复杂度为Olog ）复杂度为OV）

路径压缩（path compression）。算法19-3 对同一个结点 v可能会多次调用 AncestorWith-
LowestSemi 函数。在第一次调用，AncestorWithLowestSemi遍历从v到v的某个祖先a，的路径
上的所有结点，如图19-7a所示。然后，也许会有新的链接 a.→a;→a.加人到 a、之上的森林

中，这样，第二次调用 AncestorWithLowestSemi则要遍历到 a3。但是我们希望避免重复遍历从
v到a;的路径。此外，我们还可能会在稍后对v的子结点w 再次调用 AncestorWithLowestSemi

（w）。而在这次搜索中，我们也希望能够跳过从v到a;的路径。

码， gz
”奉

8e 2

a1

]

W七。
(d)(b) (c)(a)

图19-7 路径压缩。（a）在生成树中祖先的链接;AncestorWithLowestSemi（v）遍历3个
链接。（b）新结点 a∶、a，被链入到树中，现在 AncestorWithLowestSemi（w）需要
遍历6个链接。（c）带有路径压缩的 AncestorWithLowestSemi（v）重定向祖
先的链接。但是 besr【v】记录在 v和a;之间的压缩路径上最新插人的结点。

（d）a。和a。被链入后，AncestorWithLowestSemi（w）只遍历4个链接

路径压缩技术可使 AncestorWithLowestSemi 运行得更快。对生成树森林中的每个结点 v，

我们让 ancestor【v】指向远在v的父结点之上的某个祖先。但是我们必须记住 best【v】——即在
ancestor【v】和 v之间被跳过的路径中的最佳结点。
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· ancestor【v】=生成树森林中在 v之上的任意结点。

·besr【v】=从结点 ancestor【v】向下至结点 v（包括v，但是不包括 ancestor【v】）之间被
跳过的路径上，其半必经结点具有最低 dfnum 的结点。

449]现在，当 AncestorWithLowestSemi 向上搜索时，只要它同步更新了 best【v】，它就可以通

过设置 ancestor【v】←ancestor【ancestor【v】】来压缩每条路径，具体如算法19-4b 所示。

一个具有K个结点和 E条边的控制流图需要调用 K一1次 Link 函数，调用 E十K一1次
AncestorWithLowestSemi 函数。采用路径压缩，它们所需要的时间复杂度为 O（E log K）。如果控制
流图的"大小"为 N=E+K，则算法19-3 加上算法19-4b总共需要的时间复杂度为 O（N log N）。

平衡的路径压缩。Lengauer-Tarjan算法最先进的版本是一个与算法 19-3类似的算法，但其
中的Link 和 AncestorWithLowestSemi 函数使用了可重新平衡的生成树，这样，路径压缩只在
它确实有益时才进行。那个算法的时间复杂度为 O（N·a（N）），其中a（N）是一个缓慢增加的逆

阿克曼（inverse-Ackermann）函数。对于所有实际的应用，a（N）几乎总是常数。在实际中，这

种先进的算法比 N log N的算法大约快35??对超过1000个结点的图进行测量时得到的数据）。

450另见本章"推荐阅读"。

19.3 使用 SSA的优化算法

我们感兴趣的主要是 SSA形式，因为它提供了对重要数据流信息的快速访问，因此我们应

当关注SSA图的数据结构表示。

我们关心的对象是语句、基本块和变量。

·语句。我们感兴趣的范围包括包含这条语句的基本块，该语句在基本块中的前一条语句

和后一条语句，以及该语句定值的变量和使用的变量。每一条语句可以是普通的赋值、
φ函数、取数、存数或者分支。
·变量。变量有定值点（语句）和使用点列表。
·基本块。基本块包含语句列表、一张前驱的有序列表和一个后继（以条件分支结尾的基

本块的后继不只一个）。前驱的顺序对判定该基本块中的φ（v，v，，vs）的含义非常重要。

19.3.1 死代码删除

SSA数据结构使得死代码的分析特别快和特别容易。一个变量在它的定值点是活跃的，当
且仅当该变量的使用列表不为空。由于同一个变量不可能再有其他定值（它是单赋值形式!），

并且变量的定值是它的每个使用的必经结点——因此一定有一条从定值到使用的路径①。

由此得出了下面的删除死代码的迭代算法∶

while存在着某个没有使用点的变量 v

并且定值 v的语句没有其他副作用

do 删除定值 v的这条语句

删除语句 v一x④y或者语句v-φ（x，y）时，我们注意要将该语句从x和y的使用列表中删

除。这样当该语句是x或y的最后一个使用时，x或y也变成死去的。为了高效地跟踪这一过
程，算法19-5使用了一个工作表 W 来保存需要重新考虑的变量。算法的时间复杂度与程序______
①同通常一样。我们只考虑连通图。
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的大小和删除的变量数目（这个数目不可能超过程序的大小）之和成正比——大体上是线性时

间。唯一待确定的问题是从 x的使用列表（可能很长）中删除S需要花费多长的时间。如果我

们采用双向链表保存x;的使用列表，并且使x的每个使用都回指自 己在该列表中的表项，删除

就可以在常数时间内完成。[451
如果对图19-3b中的程序运行该算法，它将删除语句 b，*-必（b。，b.）。

一种更激进的死代码删除算法对"死代码"有着不同的定义，见 19.5节。

算法19-5 SSA形式的死代码删除

W-SSA程序中所有变量组成的列表

while W不为空
从W中副除某个变量v

ifv的使用列表为空

令S是对v定值的语句
if S除了赋值给v之外没有其他副作用

从程序中删除S

for S使用的每个变量x;
从x。的使用列表中删除S

w-Ux;)

19.3.2 简单的常数传播

只要有形如 v*c 的语句，其中c 是常数，就可以用 c 的使用代替v的任何使用。
任意形如 v6（c，c∶·⋯;c。）的φ函数，若其中c.全部相等，则可以用v-c代替该由

函数。
利用SSA数据结构，可以容易地检测和实现上面的每个条件，并且我们可以使用简单的工

作表算法来传播常数∶

W ·SSA程序中所有语句的列表

whitle W非空
从W中删除某条语句S

if S是形如 v*-必（c，c，⋯.c）的语句，其中c 是常数

用 v-c替换S
iS是形如 v-c 的语句，c是常数

从程序中删除S
for 使用了 v的每条语句T
用e替换T中的v
w-WUI7)[452

如果对图 19-4g的 SSA程序运行这个算法，则赋值j一-i可以用j-1替换，并且赋值

i，←-1可以被删除。变量j，和k，的使用也都可以用常数替换。
下面的转换都可以与工作表算法结合，这样，所有这些优化就都可以在线性时间内一次完成。

·复写传播 只有一个参数的φ函数x←-φ（y）或者复写赋值 x←y可以被删除，并且x的
每个使用都可以用y替代。
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·常数折叠 如果有语句 x←a④b，其中 a 和b都是常数，则我们可以在编译时计算

c←-a④b，并用语句 x-c替换该语句。
·常数条件 在基本块L中，如果条件分支if a<b goto L1else L。中，a和b为常数，则

可以根据（编译时）计算出的 a<b的值，用 goto L，或者 goto L，替换这个条件分支。同

时还必须删除从L到L（或者L到L，）的控制流边;这会减少L，〈或 L）的前驱个

数，并且那个前驱基本块中的φ函数也必须随之作出调整（删除一个参数）。

·不可到达的代码 删除L。的一个前驱可能会使基本块 L。变成不可到达的。在这种情况

下，可以删除L。中的所有语句;这些语句中使用的所有变量的使用列表也必须随之调

整。接着，应该删除这个基本块本身，它的后继基本块的前驱个数也随之减少。

19.3.3 条件常数传播

在图19-4b的程序中，j总是等于1吗?

·如果j总是等于1，基本块6就从来不会被执行，因此对j的唯一赋值是j←i，所以总是

有 j=1。
·如果有时j>20，则基本块6会被执行、并执行赋值j←k，最终使得j>20。

这两个语句都是不矛盾的;但是实际中哪一个语句是真的呢?事实上，这个程序执行时，

j决不会被设置成大于1的任何值。这是一种最小不动点（和10.1节描述的类似）。
"简单的"常数传播算法面临假设基本块6可能被执行的问题，因此j可能不是一个常

数，也许就有 j≥20，因此基本块6可能被执行。简单的常数传播找到的不动点不是最小不
动点。 453
为什么程序员会将一些从来都不会执行的语句放在程序中呢?许多程序都有形如 if debug

then⋯的语句，其中 debug的值是常数 false;我们不希望这种在调试从句中的语句妨碍有用的

优化。
SSA条件常数传播（conditional constant propagation）寻找的是最小不动点∶它一直要到

有证据表明一个基本块会被执行时才假设这个基本块将被执行;它也一直要到有证据表明一个

变量不是常数时才假设这个变量不是常数，等等。

算法按如下方式跟踪每个变量运行时的值。

以【v】=工 我们还没有证据表明曾经执行了对v 的任何赋值。
V【v】=4我们已看到了赋值 v-4被执行的证据，但没有其他证据表明v曾经被赋予了

其他任何值。
V【v】=T 我们已经有证据表明，在不同的时候，v至少有两个不同的值，或者有某个编

译时不可预知的值（也许是从输入文件或存储器中读取的值）。

这样，我们就有了一个值组成的格，工表示从未被定值;4表示定值为4;T表示重复定值;
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新的信息只能使一个变量在这个格中向上移动"。

我们还可以用如下方法跟踪每个基本块的可执行性。

e【B】=false 还没有看到基本块 B曾经被执行的证据。

e【B】=1rue 已经看到基本块B会被执行的证据。
一开始，所有变量的以【】=上，并且所有基本块的e【】=false。我们可以观察到以下

事实。
（1）任何一个没有定值的变量v，它要么是程序的输人，要么是过程的形参，要么是一个

无初值的变量（这是一个糟糕的错误!），这种变量 v一定有V【v】】←T。

（2）起始基本块B1是可执行的ε【B门】←true。
（3）对任意只有一个后继C 的可执行的基本块B，有e【C】*-true。454
（4）对任意可执行的赋值 v-x④y，如果V【x】=c;并且V【y】=c;，则置V【v】-c;④c;。

（5）对任意可执行的赋值 vx④y，如果V【x】=T，或者以【y】=T，则置V【v】-T。

（6）对任意可执行的赋值v←φ（x;⋯·x。），如果评【x】=c，V【x，】=c，c;≠c∶，并且
第i个和第j个前驱是可执行的，则置【v】←-T。

（7）对任意可执行的赋值 v←-MEM（）或者y-CALL（），置以【v】←T。

（8）对任意可执行的赋值 v-小（x;.⋯·x。），如果V【x，】=T，并且第i个前驱是可执行的，
则置【v】-T。
（9）对任意赋值v-或（x⋯，x。），如果它的第i个前驱是可执行的且以【xi】】=c;并且其

他每个前驱j，或者是不可执行的，或者V【x】=工，或者V【xj】=c，则置V【v】-c。
（10）对任意可执行的分支 if x<ygoto L，else L3，如果【x】=T或者以【y】=T，则置

e[L,]-true,e[L:]-true。
（11）对任意可执行的分支if x<y goto L，else L，如果V【x】=c，并且V【y】=c，则根

据 c<cs的值，设置e【L;】+-true 或者e【L。】true。
可执行的赋值（executable assignment）指的是在e【B】=true 的基本块B中的赋值语句。上

面这些条件"忽略了"在不可执行的基本块中的所有表达式或者语句，并且其中的φ函数"忽

略了"来自一个不可执行的前驱的所有操作数。

利用工作表可以使算法相当高效∶算法可以使用两个工作表，变量工作表 W、和基本块工作

表W。运行时，算法从W、中选择一个变量x，考虑x的使用列表中满足条件4～9的语句;或
者从 W，选择一个基本块 B，考虑 B中满足条件3和条件4～9的任意语句。只要一个基本块是

新被标记为可执行的，这个基本块和它的可执行的后继就将加人到W，中。每当V【x】从"上

升"到c或者从c"上升"到T时，x 就被加入到W、中。当 W、和 W，都为空时，算法便结束。
因为对于任意x，V【x】最多上升两次，并且对于任意 B，算法最多改变一次e【B】.所以算法运

行得很快。
我们可以这样利用这个信息来优化程序∶分析结束后，只要e【B】=false，就删除基本块

B;只要P【x】= c，就用 c 代替x，并删除这个对 x的赋值。

①在数据流分析的子领域中。使用上表示重复定值。T表示从未定值;在语义和抽象解释领域，使用|表示没有

定义，T表示重复定义∶本书遵从后者的惯例。
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图19-8展示了对图19-4的程序运行这个条件常数传播算法的步骤。算法发现所有的j变量

都是（值为1的）常数，k是（值为0的）常数，并且不会执行基本块6。在删除不可到达的

455]块，用常数值替换常数变量的使用（删除这些常数变量的定值）之后，程序中出现了几个空基
本块和一个只有一个参数的φ函数;我们可以进一步简化空基本块和φ函数，得到如图19-8d所

示的程序。

B.cLBlxVx] 寿全

日几应庐属压小他船吆码
true十二 一 k2+-●(kt.0)云十呼于字当

-----SF上F-书
/)

k eo 2 true ifk,<100irk2<1003 trueh←*da.0 [retum freturn Tky←k2+l4 rnekg-#(kgk)
irk2<10o0 心融6o ale k3仁k+
returmj[ri<20 7 true k4←电（ky
Js←k2四，二
ks←k2+2k←kl ，

←·O3.js）
k4#(yko

（c）常数传播之后（a）SSA程序 （d删除空基本块和乏”苦。
（同图19-4g） 只有一个参数的

φ函数之后

图19-8 条件常数传播

唯一后继或前驱的性质对这个算法的正确操作非常重要。假设在已知 M【x】=1的情况下对
图19-2b中的流图做条件常数传播，则基本块1、2、3和4都会标记为可执行的，但是不清楚边
2→4是否会发生。在图19-2c中，因为基本块5是不会被执行的，从而可以清楚地看出边 2→4

不会发生。通过使用边分割的SSA形式，我们可以不需要将边（不只是基本块）标记为可

执行的。

19.3.4 保持必经结点性质

几乎每一种合理的优化转换——包括以上介绍的转换，都保持了SSA程序的必经结点性质;

即一个变量的定值是它的每个使用的必经结点 （或者当这个使用位于φ函数中时。是这个使用

的前驱的必经结点）。
很多优化算法（例如算法19-6）都依赖于这个性质，因此保持这个性质很重要。另外，甚

至 SSA形式定义本身（即在任意两条数据流路径的汇合点存在着一个φ函数）也隐含地需要该

性质。
但是也存在着一种不会保持必经结点性质的优化。图19-9a的程序中，我们能够证明，基本

456块5中x，的使用将总是得到值x，决不会是x。——因为基本块1和基本块4计算条件z一0的

方式是相同的。因此，编译优化会尝试用x，替换基本块5中的 x。。转换后得到的图19-9b不再
具有必经结点性质∶基本块2中 x的定值不是基本块5的必经结点。

这种转换（它根据已知两个条件分支测试的是相同条件来进行转换）不能合法地应用于

SSA形式。
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名。旦xo<u
ifz<0 ifz<0

X1←，Xt4- .·

x26@(x1, xo] x2←e（x1，xo】

ifz<0 iz<0

...←x2】 ...←x1
（a）转换前 （b）转换后

图19-9 不能保持SSA形式的必经结点性质的转换，应当避免这种转换

19.4 数组、指针和存储器

在许多以优化、并行化和调度为目的的转换中，编译器需要了解"语句 B 是如何依赖于语

句 A 的"。常数转播和死代码删除转换也要依靠这种依赖信息。

依赖关系可以分为以下几类。

·先写后读 A定值变量v，然后 B使用v。

·先写再写 A定值变量v，然后 B定值v。

·先读后写 A使用变量v，然后 B定值v。
·控制依赖 A控制B是否执行。

先写后读依赖关系在SSA图中非常明显∶A定值v，v的使用列表指向B;或者 B的使用列
表包含v，并且v的定值点是A。

控制依赖将在 19.5节讨论。457]
在 SSA形式中，没有先写再写或者先读后写依赖。语句 A和B绝对不会写同一个变量，任

何变量的使用都必须在该变量的定值"之后"（即以定值为必经结点）。

存储依赖
迄今为止关于赋值和 函数的讨论都只涉及了非逃逸的标量变量。真实的程序一定还包含

对存储单元的读取和存储。

使存储器获得单赋值性质的一种途径是确保每个存储单元只被写一次。尽管这看上去是苛
刻的要求，但是却正是纯函数式程序设计语言所做的（见第 15章）——纯函数式程序设计语言

有幕后的垃圾收集器的辅助，使得物理存储空间的实际重用成为可能。
但是，在命令式语言中，我们必须做另外的工作。考虑下面的存取序列;

1 M[] -4
2 x←MJ】
3 M1k】←j
我们不知道i、j和k是不是同一地址，因此不能将每一个单独的存储单元看成独立的不同变量

以达到静态单赋值的目的。
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我们也许可以将整个存储器看成一个"变量"，其中 store指令创建（整个存储器的）一个

新值∶
1 M14-store(Mo,i.4)
2 x ←load（M1，j）
3 M2 ←store（M1，k，j）

这创建了定值-使用边12和1一3。这些定值-使用边和SSA 的定值-使用关系类似，并且
我们按同样方式在它们的汇合点构造φ函数。

但是没有从2→3的边，那么如何防止编译器将这几条语句按如下方式重排呢?

1 M1 ← store（Mo，i，4）
3 M2←store（M，k，j） 4584x +-load(M;,j)
从函数式程序设计的角度来看，上述语句序列的依赖关系仍旧是正确的——如果将 M，看成
语句1之后的整个存储器的一个瞬间快照，则只对从这个快照的地址j读取数据而言，语句4

仍旧是正确的。但却是极其低效的（这只是退一步的说法!），因为这种计算机要保存整个机器

存储器的多个副本。
我们本可以指出有一个2→3的先读后写依赖能阻止编译器在所有使用 M的语句完成计算

之前创建 M。。但是关于存储位置的精确依赖信息计算超出了本章的介绍范围。

一种简单而实用的解决方法。在缺少先读后写和先写再写依赖信息时，我们可以假定存指

令总是活跃的，即不对存指令进行死代码删除，并且也不对程序进行这样的转换;交换取指令

和存指令的顺序，或者交换两条存指令的顺序。但是，存指令可以是不可到达的，不可到达的

存指令可以被删除。

本章介绍的这些优化算法都没有包括指令的重排。也没有试图传播经过存储器的数据流信

息，所以它们都隐含地使用了这种简单的存取模式。

19.5 控制依赖图

结点 x是否能够直接控制结点 y的执行?这个问题的答案有助于我们进行程序的转换和优

化。
任何流图都必须有一个出口（exit）结点。如果一个控制流图表示的是一个函数，则函数的

return 语句就是 exit 结点;如果有几个return语句，那么我们假设每个return实际上都有一条到
CFG中某个唯一规范的 exit 结点的控制流边。

如果我们可以从结点x转移到u 或者v，从u有一条路径可以不经过y而到达exit 结点，并

且从v到exit 的每条路径都经过y，我们就说y控制依赖（control-dependent）于x∶

459eXil
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控制依赖图（control-dependence graph，CDG）中，如果y控制依赖于x，则有一条从x到y的

边。
如果从v到exit 结点的每条路径都经过y，就说y是v的后必经结点（postdominator），换
句话说，在逆控制流图中，y是v的必经结点。

构建控制依赖图。为了构建控制流图G的 CDG，我们需要做以下几点。
（1）在G中加入一个新的入口结点r，一条从r到G的起始结点s的边r→s（表示包围它的程

序可能进入 G），以及一条从r到 G的 exit 结点的边r→exit（表示包围它的程序可能根本不执行

G)。
（2）令G'是 G的逆控制流图（reverse control-flow graph）∶即只要G中有边 x→y，G'中
就有边 y→x，并且G'中的起始结点对应于 G的exit 结点。

（3）构建G'的必经结点树（它的根结点对应于 G 的exit 结点）。

（4）计算 G'中的结点的必经结点边界DF。。

（5）只要x EDF。【y】，CDG就有边x→y。
也就是说，当且仅当在逆控制流图中，x在y的必经结点边界中，x 才直接控制v是否执

行。
图19-10展示了图19-4中程序的CDG。

n DFe(a)o
一言
2 [2,7l
(2)3 irl寸

或或? 看：， 5extO 6,0， (2)7
exitexi

(e)cDG（b）逆CFG （d后必经结点边界（）后必经结点树（a）CFG（由图
19-4b而得）

图19-10 构建控制依赖图

有了SSA图和控制依赖图，现在我们可以回答"A 必须在B 之前执行吗?"这个向题了。如

果存在任何由SSA使用-定值边和CDG边组成的路径 A一B，则表示有数据依赖和控制依赖要

求A必须在B之前执行。460]

激进的死代码删除

控制依赖图的一个有趣的作用是删除死代码。假如我们面临图19-8d的情况，常规的死代

码分析（见17.3 节的描述或者算法19-5）会断定∶

·k∶是活跃的，因为它在k。的定值中被使用;
·k是活跃的，因为它在人，的定值中被使用。

但是实际上变量k。和 k，对于计算的最终结果都没有影响。
传统的常数传播假设一个基本块是不可到达的，除非有证据表明执行能够到达该基本块。

和传统的常数传播一样，激进的死代码删除也假设一条语句是死的，除非有证据表明它对最终
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的程序结果有影响。

算法。将下列语句标记为活跃的∶

（1）执行输入/输出、存储至存储器、从函数返回或者调用另一个可能有副作用的函数的

语句;
（2）对被其他活跃语句使用的变量 v定值的语句;

（3）一个条件分支语句，且其他活跃的语句控制依赖于该语句。

然后。删除所有未标记的语句。

算法可以通过迭代（或者工作表算法）来求解。图19-11展示了对图19-8d中的程序运行

该算法得到的令人高兴的结果∶整个循环被删除了，只留下一个非常高效的程序!

DFc(n)n e-
定-过乙‘亏

k2←φ（k3，0）
if k2<100

eritk←k2+ retum I，
（a）SSA程序 （b）后必经结点 （C）后必经结点边界

基本块4包含返回语句，因此是活跃的;没
enter 有活跃的基本块控制依赖于基本块2;没有

return I活跃的赋值语句数据依赖于k或者k因此

除基本块4外，再没有其他活跃的基本块
（语句）了。。便

（）死代码被删除后（d）控制依赖图 （e）寻找活跃的语句

图19-11 激进的死代码删除

警告。激进的死代码删除算法会删除没有输出的无限循环，从而会改变程序的含义。因为

在原来的程序不产生任何输出的情况下，删除这种无限循环后，程序会执行该循环之后的语句，

而这些语句有可能会产生输出。在许多环境下，这被认为是不可接受的。

但是另一方面，控制依赖图经常用于并行化编译器∶任何没有控制依赖或者数据依赖的两

条语句都可以并行执行。即使这种编译器不删除这种无用的无限循环，它也可以选择并行执行

该循环和循环的后继语句（它和该循环没有控制依赖关系）;这和删除这个无限循环有着差不多

相同的作用。 (461

19.6 从 SSA形式转变回来

程序转换和优化后，静态单赋值形式的程序必须重新转换成某种不带台函数的可执行的表

示。定值 y←6（x，x∶，x，）可以转换成"如果沿着前驱1的边到达，则y←一x;;如果沿着前驱 2

的边到达，则 y*-x;;如果沿着前驱3的边到达，则y←-x，"。为了"实现"边分割SSA形式中
的这种定值，对每个i，我们可以在包含φ函数的这个基本块的第i个前驱插人yx。
后继或前驱唯一的性质可以防止插人大量冗余的传送指令;图19-2b因为不具备这个性质，
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因此会需要在基本块 2中插入传送指令 a;←a，但在then分支会发生的情况下，这条传送指令

是多余的;但是在图19-2c中，传送指令 a;←a会被插人到基本块5中，它绝不会冗余地被

执行。
现在我们可以对该程序进行寄存器分配（见第11章的描述）。如果 x和 x;是由原始程序中
同一个变量x导出，则简单地为x，和 x，指派同一个寄存器是一种诱人的做法;但是对 SSA形式

进行的程序转换有可能会使他们的活跃范围相互冲突（见习题 19.11）。因此，我们忽略不同的[462
SSA变量的原始出处，并且依靠寄存器分配器的合并步骤（复写传播）来删除几乎所有这些插

人的传送指令。

SSA的活跃分析

我们可以在即将将φ函数转变为传送指令之前，高效地构建 SSA 程序的冲突图。对每个结
点v，算法19-6向后查看v的每次使用，当到达v的定值时便停止。SSA 形式的必经结点性质

保证算法总是只查看以 v的定值为必经结点的区域。对许多变量而言，这个区域很小;而与此

相反的是图19-9（非 SSA程序）的情况，算法计算变量 x，时，需要向上经过边1→3遍历整个
程序。由于该算法只是处理那些v在其中是活跃的基本块，因此它的运行时间和它所构建的冲[463
突图的大小成正比（见习题19.12）。

算法19-6使用了递归（LivelnAtStatement 调用LiveOutAtBlock 时）和尾递归（LivelnAt-

Statement 调用 LiveOutAtStatement 时，LiveOutAtStatement 调用 LivelnAtStatement 时，以及

LiveOutAtBlock 调用LiveOutAtStatement时）。一些程序设计语言或者编译器能够非常高效地

将尾递归编译成 goto（见 15.6节）。但是，当用不支持高效尾调用的编译器来实现这个算法
时，最好使用显式的 goto 或者使用工作表来实现 LiveOutAtStatement 和 LivelnArStatement，而
不是使用尾递归。

算法 19-6 SSA形式中的活跃范围计算，以及冲突图的构建。将图遍历（graph-walking）算法表示

为LiveOutAtBlock、LiveInAtStatement 和LiveOutAtStatement之间的相互递归。只要
LiveOutAtBlock 找到一个已经查看过的基本块，或者 LiveOutAtStatement 到达了v的
定值，这种递归就结束

LivelnAtStatement(x,v)=LivenessAnalysis()=
◆在s是人日活跃的for每一个变量v
ifs是某个基本块n的第一条语句M+{)
v在n的人口是活跃的for v的每一个使用点s
or n的每一个前整p其s是一个以v作为它的第i个参数的
LiveOutAtBlock(p,v)体嘉臂 else令p是包含s的基本块的第i个前驱
令s'是s前面的那条语句LiveOutAtBlock(p,v)
LiveOutAtStatement(s',v)else LivelnAtStatement(s,v)

LiveOutAiStatement(s,v)=LiveOutAtBlock(n,v)=
v在s是出口活跃的v在n是出口活跃的
令W是s定值的变量集合if n∈M
for每一个变量we（W一（v）M卡-MU{n）
将（v。w）添加至冲突围令s是n中最后一条语句 i w∈WLiveOutAtStatement(s,v)
LiveinAtStatement(s,y)
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19.7 函数式中间形式

函数式程序设计语言是一种通过为变量绑定值来执行的语言，并且变量一日初始化后，就

不再被修改（见第15章）。这类语言准许等式推理，这一点对程序员很有用。

除了对程序员有用外。等式推理对编译器甚至更有用——许多编译优化都是将一个慢的程序重

写为等价的更快的程序。当编译器不必考虑x现在的值和以后的值时，这些转换也就更容易表示。
这种单赋值性质是函数式程序设计和 SSA形式的核心。函数式语言编译器使用的函数式中

间表示和命令式语言编译器使用的 SSA形式之间有着密切的关系。

图19-12给出了现代函数式语言编译器使用的一种中间表示的抽象语法。它追求的是同时

具有四元式、SSA形式以及λ演算的最好的性质。同四元式的表示方法一样，它的表达式也被

分解成若干按指定顺序进行计算的基本操作，每个中间结果都是显式命名的临时变量，并且操

作符或者函数的每个参数都是一个原子（atom，变量或常数）。同在SSA 形式和入演算中一样，

每个变量只有一次赋值（或绑定），并且变量的每个使用都在这个绑定的作用城内。同入演算中

一样，作用域是一个简单的句法概念，不需要计算必经结点。 [464]

常数整数alomm→C
常数字符串指针atomm→8
变量→Vatom
函数声明eyp →let fundefs in esp
复制ep → lety=atom in ep

ep 算术操作符→ let y= binop(atom,atom)in ep
从存储器中读取ep → let y= Mlaiom] in ep

eq 向存储中存入→ M[atom]:=atom; exp

ep →ifatom relop atom then ey else exp 条件分支
尾调用ep → atom(args)
非尾调用ex→ let 型 = atom（args）in ey

国 返回→return atom
args
→ atom ar85浸

funde5 →
fundefs → fundefs function g(ormals)= exp
formals →
formals→ formals
binop → plus |minus |mul|..
?relop → eq I ne | 其t|...

图19-12 函数式中间表示。下划线指出变量的绑定

作用域。没有变量名可以在多个绑定中使用。每个变量的绑定都有一个作用域，该变量的所有

使用都必须发生在这个作用域中。对于由letv= ⋯ in exp 绑定的变量v，v的作用域只是 exp。由

tet function fi...)= expi

function f(...)= evpy
in eP
绑定的函数变量f的作用域包括所有的exp;（允许函数相互之间递归）和 exp。被绑定为函数
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形参的变量，其作用域为函数体。465
这些作用域规则使许多优化的判断更容易;我们用函数内联扩展作为例子来说明这一点。

如 15.4节讨论的，当我们有一个定值f（x）=E和一个使用f（z）时，可以用 E的副本替换
f（z），但是要将这个副本中x的所有使用都替换成z的使用。在第7章介绍的 Tree语言中，由

于Tree 语言没有函数，这一点很难表示;在第 15章的函数表示中，如果 z是一个非原子的表
达式，这种替换就会变得复杂（如算法15-1b所示）。但是用图 19-12的函数式中间表示形式

（所有的实参都是原子的），内联扩展就会变得非常简单，如算法15-1a所示。

将 SSA转换成函数式形式。任何 SSA程序都能转换为这种函数式形式，转撞算法如算法19.

7所示。每个有多于1个前驱的控制流结点都将成为一个函数、这个函数的参数恰好是那些在该
结点有φ函数的变量。如果结点f是结点g的必经结点，则g的函数会嵌套在厂的函数体中。进
人包含φ函数的结点的控制流边表示的是调用一个函数，而不是跳转到到一个结点。程序 19-1
展示了转换后的程序应该是什么样子。

算法19-7 将SSA转换成函数式中间表示

Translate(node)-
let C 是必经结点树上node 的儿子

let p1⋯·P。是C中有多于1个前驱的结点
for i-1 to n
let a;.⋯，a.是p，中的多涵数的目标（k可能为0）
let S;=Translate(p,)

let F= "functionf<a⋯.a。)=S"
let F=FyF:⋯F。
return Statements(node,1,F)

Statements( node,j,F)=
if 结点 node 中的语句数≤j

then let s是node 的后濮

i 只有一个前驱
then return Statements(y.1,F)
else s有m个前驱
设 node 是s的第1个前驱
设∶中的书函数是n一补（an⋯，a-））⋯a声（an.⋯，a一）
return"iet Fin J,(ai,⋯,au)"

else if node 的第j条语句是φ函数
then return Statements(node.j+1,F)

else if node 的第j条语句是"return a"
then return"let F in return a"

对于a←b.a*-M【b】和else if node 的第j条语句是a*-b④c
M【a】b的情况也类似。then let S=Statements（node，j十1.F）

return "let a = b④e in S*
elseif node 的第j条语句是"if a<b goto s，else s，"

then《在边分割 SSA形式中）s和》s;都只有一个前驱

let S;=Translate(x))
let S,= Translate(s.)

return "let F in if a<b then S,else S,"
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将函数式程序转换成函数式中间形式。用PureFun-Tiger 这样的语言编写的函数式程序，其
形式从一开始就服从所有的作用域规则，但是函数的参数不是原子的。并且变量不是唯一的。

不过，通过递归遍历表达式树来引入符合作用域规则的中间临时变量是一件简单的事情;必经

结点和SSA 的计算都不是必需的。 [466
程序 19-1 将图19-4g中的SSA程序转换成函数式中间表示

leti:= 1 in
let万=1 in当十二 letk:=0in二
let function fGj2.k2)=ki--0
ifk<100 then

评；章宇艺 let function(ja,.k)=
k2←φ（kg，k） f(,ka)ifk,<100 in if h<20 then

let 方3=iinj2<20 return);2 let k=k+1in
Gs.k3)【J5←kjJ< elseks一k2+2ks←k2+!
let js= k2 in。

，率乎艺艺 let ks=k2+2 in
k4←-e（k3.ks） 1(js.ks)

else retum j
in A(i.k)

所有基于SSA的优化算法在函数式中间形式上同样也能够工作得很好;第15章描述的有关

函数式程序的优化和转换也是一样。函数式中间形式也可以是显式类型的、类型可检查的和多
态的（见第 16章）。总而言之，这种类型的中间表示很值得推荐。

推荐阅读

IBM Fortran H编译器使用必经结点识别机器指令基本块控制流图中的循环【Lowry and
Medlock 1969】。Lengauer和 Tarjan【1979】开发了近似线性时间的算法来寻找有向图的必经结

点，并且证明了本章提及的相关定理。尽管这一算法被普遍使用，但需提及的是还存在另一
种更复杂的线性时间的算法【Harel1985】。在给定的生成树森林结点之上寻找"最佳"结点

是一种联合搜索（union-find）问题的例子;针对联合搜索的平衡路径压缩算法的分析（例如

Lengauer-Tarjan算法的先进版本）在许多教科书中都能找到（例如，【Cormen et al.1990】的
22.3~22.4节）。
静态单赋值形式是由 Wegman、Zadeck、Alpern 和 Rosen【Alpern et al.1988;Rosen et

al.1988】提出的，其目的是为了高效地计算数据流问题，例如全局值编号、变量的结合、激进的
死代码删除，以及带条件分支的常数传播【Wegman and Zadeck 1991】。控制依赖由 Ferrante
等【1987】 形式化，并用于向量并行机的一个优化编译器中。Cytron 等【1991】描述了使用必
经结点边界高效计算 SSA 和控制依赖图的方法，并且证明了本章提到的几个定理。

Wolfe【1996】描述了SSA（Wolfe把 SSA称为因式化的使用-定值链，factored use-def chain） 468]
上的几个优化算法，包括归纳变量分析。
在将控制流图转换成 SSA形式之前，先对流图执行几种转换是有益的。这些转换包括将
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while循环转换为repcat循环（见18.2节）;插入循环前置结点（见18.1.4节）、循环体后置结
点【Wolfe 1996】（见习题18.6），以及为循环出口边插人着陆垫（landing pad）【Rosen et al.

1988】（边分割能高效地实现着陆垫的插入）。这些转换为插入循环不变量计算、公共子表达式
计算等语句提供了放置的位置。

函数式中间表示的多样性。各种函数式中间形式全都或多或少基于λ演算，但是它们在3

个重要方面有所不同。

（1）一些形式是严格的，一些形式是懒惰的（见第15章）。

（2）一些形式允许子表达式的任意嵌套;一些具有原子实参（atomic argument）;一些形式

具有原子实参加上λ含义（这意味着除了匿名函数外，所有实参都是原子的）。

（3）一些形式允许非尾调用（直接风格），一些只支持尾调用（延续传递风格）。

第1方面的不同会丧失延续传递风格。

人们已经充分探究了这些选择的设计空间，如下所示。

直接风格 延续传递风格
严格的 懒情的

Augustsson[1984]Cardli [1984].任意嵌套的子表达式
Cousincau 等【1985】

Steele[1978].原子实参十λ Flanagan等【193】
Kranz 等【1986】
AppeL192]Tarditi[1997]原子实参 Peyton Jones[ 1992]

图19-12所示的函数式中间形式和Tarditi【1997】都归于表左下角一类。Kelsey【1995】说明了

469如何在 SSA和延续传递风格的中间形式之间进行转换。

习题
19.1 使用深度优先搜索编写一个算法，将树上的结点按深度优先顺序编号，并且每一个结点用
它的最高编号后代的编号来标注。说明当你用这个预处理算法处理完一个必经结点树时，

如何利用这些标注在常数时间内回答诸如"结点i是结点j的必经结点吗?"的问题。

19.2 使用算法19-3计算习题18.1的流图的必经结点，给出不同阶段的半必经结点和生成

树森林。
19.3 计算图18-1和18-2中每个图的直接必经结点树（使用算法19-3 或者18.1节中的算

法），并且计算每个结点 n的DF【 n】、DF-【n】和 DF。

*19.4 证明对任意结点 v，算法19-3 加上算法 19-4b在调用AncestorWithLowestSemi（v）之

前，总是将best【v】初始化为v（在Link 函数中），即总是有 best【v】←v。
计算下列图中每个结点的必经结点边界。19.5
a.图2-8.
b.习题2.3a中的图。

c.习题2.5a中的图。

d.图3-11。
*19.6 按下列步骤证明
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DFp[Z1DF[n]= DFicaln] U
Zechilrrfn]

a.证明 DF_am【n】SDF【n】。
b.证明对于n的每个儿子Z，有 DFw【Z】二DF【n】。
c.如果 DF【n】中包括结点Y，则会有一条边 U→Y，其中 n是U的必经结点，但不

是 Y的严格必经结点。证明如果 Y = n，则 Y∈DF【n】，并且如果 Y≠n，则

对n的某个儿子Z，有Y EDF【Z】。

d.将上述引理结合起来证明题目中的定理。

19.7 将下面的程序转换为 SSA形式∶ 470
x←MIe】二马， ffv<nve0 s←s+x
ifs≤m

选
←V。 freturn mv←-V+I m ess ←0

r←-r+1Tfr≥n

说明你的每个步骤。

a.加入一个起始结点，它包含所有变量的初始值。
b.画出必经结点树。
c.计算必经结点边界。

d.插入φ函数。
e.为变量增加下标。
f.使用算法19-6构建冲突图。

g.通过插入move 指令代替φ函数，从 SSA形式转换回来。
19.8 下面的C（或者 Java）程序说明了定值-使用链和 SSA形式之间的一个重要的不同;

int f(int i,int 5)(
int x,Y;
awitch(i》
X*3:case O:

case 1:x=1;
X=4;cage 2;
x=l;Case 3:

ca8e 4:X=5;
default:x=9;

switch(j)(
case 0;!y=x+2;
Y=x+7;case 1;

case 2;yax+l;
case 3:)Y=x+8;
case 4:y=x+2;
default:y-x+8;
return y;

471
a.画出这个程序的控制流图。

b.画出程序的使用-定值和定值-便用数据结构;对于每个定值点，画一个指向每个使用点



330 第二部分 高级 主题

的链表数据结构;反之，对于每个使用点，画一个指向每个定值点的链表数据结构。

c.从a画出的 CFG开始，将程序转换为SSA形式。画出表示使用、定值和φ函数的数
据结构，见 19.3节一开始的描述。
d.统计使用-定值数据中的数据结构结点总数目和SSA数据结构中总的结点数目，并

进行比较。
e.假若每个switch语句有N个case 语句，而不是6个，估计使用-定值数据结构的总

大小和SSA数据结构的总大小。

19.9 假如习题2.3a中的图是程序的控制流图，并且基本块1中有对变量v的赋值。

a.将这个图转换为SSA形式（插入 v 的φ函数）。
b.说明对任意的 N，存在着一个具有O（N）个基本块、O（N）条边和 O（N）条赋值语句
（都在第一个块中!）的"梯子形"CFG，使得它的SSA形式中φ函数的个数为 N。

c.写一个其CFG像b所描述的程序。
d.说明包含嵌套很深的 repeat-until循环的程序，其φ函数同样会膨胀到N+个。

*19.10 算法19-2对每个变量使用了一个栈，以记录该变量当前活跃的定值。这和第5章解释

类型检查时利用环境处理嵌套作用域的做法相同。

a.重写算法19-2，使其调用Table模块（程序5-2给出了Table 的接口）的命令环境，
而不是使用显式的栈。

b.利用函数式风格的符号表重写算法19-2，这种符号表的TAB_table接口的描述见5.1.5节。
19.11 说明 SSA程序的优化可以使原始程序中由同一个变量 a导出的两个 SSA变量 a，和a。
具有重叠的活跃范围（如19.6节所描述的一样）。提示;将下面的程序转换为 SSA形

式，然后只做一次常数传播优化。

whlle c<0 do (b:= a;a := M[x]; c := a+b);
return a;
V，和E。分别是 CFG中的结点和边，V，和E，分别是算法 19-6产生的冲突图中的结点*19.12
和边。令N=|V，|+|E.|+|V1+|E1。472]
a.说明对下面的程序运行算法19-6的时间大致和 Nl-'成正比;

当十。2 -0
m-0
goto L:

L1:goto L2
L2:goOto 13

己”
粉14讲

忌十话

主。；量
*b.说明如果每个基本块至少定值一个变量，并且基本块中的语句数不超过c，基本

块的出边数也不超过c（c是某个常数）。则算法 19-6的复杂度是 O（N）。提示∶

只要调用了LiveOutAtBlock，就至多调用c 次 LiveOutAtStatement 函数，并且其

473 中至少有一次调用会将一条边加入到冲突图中。
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调度（sched-ule）;指明每个操作的时间和顺序的一种程序安排。

韦氏字典

简单的计算机每次能执行一条指令。它首先取一条指令，将指令解码为操作码和操作数，
然后从寄存器集合（或存储器））中读操作数、执行操作码指定的算术运算，并将结果写回到寄

存器（或存储器）中;然后再取下一条指令。

现代计算机在同一时刻可以执行多条不同指令的不同步骤。在处理器正等待将2条指令的
结果写回寄存器的同时，它可以执行另外 3条指令的算术运算，读2条或更多条指令的操作数，

为4条指令解码，并且读取另外4条指令。而与此同时，可能还有5条指令正等待着从存储器

取数的结果。

这样的处理器通常从单控制流中读取指令;它并行执行的不是几个程序，而是单个程序。
单个程序的相邻指令同时被解码并执行。这称为指令级并行（instruction-level parallelism，

ILP）。它是 20世纪 80年代处理器速度获得令人惊讶的提高的基础。

流水线（pipelined）机器可在执行一条指令的回写操作的同一时钟周期，执行下一条算术指

令和读上一条指令的操作数。超长指令字（very-long-instruction-word，VLIW）机器的每个时钟周

474期可以流出多条指令;编译器必须保证这些指令之间没有数据依赖。超标量（superscalar）机器在
指令之间没有数据依赖（指令解码硬件能够快速地检测出这种依赖关系）的情况下，可以并行流

出2条或多条指令;否则，它将顺序流出这些指令——这样，如果相邻指令之间存在数据依赖，

程序仍旧能够正确运行。但是只要编译器没有将有数据依赖的指令调度到一起，程序就能够运行

得更快。动态调度的机器在指令正在执行的过程中重排指令的顺序，使得它能够同时流出若干条

没有数据依赖的指令，并且只需要编译器很少的帮助。这些技术中任何一种都能够产生指令级并行。
能够同时执行的指今越多，程序运行得就越快。但是为什么不能计程序的所有指今都并行

执行呢?毕竟，这样做有可能达到最快的执行速度。

之所以不能这样做，是因为指令的执行有若干约来（constraint）;不过，通过找出服从下面

这些约束的最好调度，我们能够优化程序做到指令级并行。

·数据依赖约束∶如果指令A计算的结果将作为指令B的一个操作数，那么在 A完成之前

不能执行 B。
·功能部件约束∶如果芯片有k。个乘法器（加法器等），那么一次最多只能执行k、条乘法

（加法）指令。
·指令流出约束;指令流出部件一次至多流出k条指令。

●寄存器约束∶在某一时刻最多只能使用k，个寄存器，更具体而言，每个调度都必须有某

种合法的寄存器分配。
功能部件、指令流出和寄存器约束常常统称为资源约束（resource constraint）或者资源危

机（resource hazard）。
在流水线机器上，即使"B不能在A之前执行"，B 的执行中的某些部分（例如取指令）也
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可以和 A并行执行。图 20-2和图 20-3给出了更多的细节、

除了上述约束外，还有一些常常可以通过变量重命名消除的伪约束。
·先写再写∶如果指令A写一个寄存器或存储位置，B也写同一位置，则不能改变 A 和B

的执行顺序。但是通常我们可以修改程序，使 A 和B写不同的位置。

·先读后写∶如果 A必须在B写某个位置之前读该位置，那么不能交换 A和B的执行顺

[475 序，除非能够通过重命名使它们使用不同的位置。

指令资源的使用。我们可以根据指令执行时所需的时钟周期数和它在不同的执行阶段所使
用的资源来描述指令。图 20-1按照这种方法描述了基于 MIPS R4000改编的3条指令。

Cycle 0 Cycle I Cycle 2Cycle 3 Cycle 4 Cycle 5Cycle 6 Cyele 7 Cycle 8 Cyele9
TRoundRound ShifuFetch writeUnpakReaADD ShfAddAdd

MoIB wrteMuliBMukA RoundMouhAMultAUnpackReadI-FetchMULT Add
wrteAddShinShiftRouandRead多冬 Add RoundI-Fech Unpauck

图 20-1（在 MIPS R4000处理器上）指令的功能部件需求。这个机器的浮点加（ADD）指令需要

一个周期使用取指令部件;一个周期读寄存器;一个周期解包以获得指数和尾数∶然后
下一个周期使用移位器和加法器;同时使用加法器和舍入部件;再下来是舍入部件和移

位器;最后将结果写回寄存器文件。MULT和 CONV指令按不同的顺序使用功能部件

如果指令 A的第i个周期使用了一个特定的资源，并且指令 B的第j个周期也要使用同一
资源，如图 20-2所示，那么不能将 B正好调度在A开始后第i一j个周期执行。

但是，有些机器的每种功能部件都有若干个（例如，多个加法部件）;在这样的机器上，只

成对考虑指令是不够的，我们必须考虑在给定时间适合于调度的所有指令。

指令的数据依赖。同样的考虑也适合于数据依赖约束。例如，指令 A 在它执行的Write 阶
段将结果写回寄存器文件（见图 20-1）;如果指令 B使用这个寄存器，则 B的 Read阶段必须在

A的Write 阶段之后。有的计算机有旁路电路，可以允许 B的算术阶段紧跟在A的算术阶段之

后。例如，ADD指令的 Shift/Add阶段能够紧跟在 MULT指令的 Round阶段之后。图 20-3展示
了这样的情况。476

20.1 没有资源约束时的循环调度

选择一种同时服从数据依赖约束和资源危机的最优调度并不容易——这是一个 NP完全问
题。尽管 NP完全问题并不能使编译器设计者感到害怕（图着色是 NP完全的，但是第 11章描
述的图着色的近似算法非常成功），但是资源受限的循环调度在实际中依然很难处理。
本节首先描述一个忽略资源约束的算法，它是仅服从数据依赖约束的最优调度算法。这种

算法在实际中并没有用，但是它说明了指令级并行的各种机会。

Aiken-Nicolau 循环流水算法分为以下几个步骤。

（1）展开循环。
（2）调度来自每个迭代的每条指令，使每条指令尽可能早地执行。
（3）将这些指令安置在一张以迭代编号和执行时间为索引的表（tableau）中。
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（4）找出以不同斜率（slope）分开的各个指令组。
（5）接合（coalesce）这些斜率。

（6）回卷循环。

RoundShif Round writeADD UnpackReadI-Fetch ShifAddAdf 震MuIE witeMuhB RoundMutAMutA子号产Unpack1-FetchMULT Read Add
[RoundRound[Shr1-Fetch writeADD UnpackRead |ShinAddAds oKMuB wntelMULr 室善砂Read RoundMeinBMolAMultAUnpack-Fetch Add
ShR [Round[Round wrteADD UnpackRead-Feteh AdAdd  Shin OKMuF witeMULT MainBeMutA子三产t-Fetch RoundMultAUnpackRead Add

Round[ShR Round weiteLFechADD Read Unpack ShinAddAdd 黑子三子L-Feceh writelMohBMutAMoatAReadMULT RoundUnpack Add
TSh RoundRound write-FechADD UnpackRead ShinAddAdd ，子MoirB落多予ReadMULT 号景 writeMoltAMutA RoundAdd

RoundShiR RoundADD 乏岩L-Feceh UnpackRead Add ShinAda okM8 wnteRound]MoltBMutAMoutAMolAunpackMULT Add

图 20-2 如果每种功能部件只有一个，则 ADD 指令不能和 MULT指令在同一时间开始执行
《因为有太多的资源危机，黑体字表示）;也不能在 MULT之后第3个周期（因为

Add、Round 和Write部件危机）或者第4个周期（Round危机）执行。但是，
如果有两个舍人（Round）部件，则 ADD可以在 MULT开始之后的第4个周期

开始执行。如果再有两个取数部件、多访向的寄存器文件和两个解包器，MULT

和 ADD就可以同时执行

MunB] writeMutA MuB RoundMuitAMultA Add
TShRTRoundTRound乏景UnpacktRead-Feeh ShirAddAdd

TMuB]MokB WriteMuitA Roundl|一产MultA Add RoundShi Round WrieUnpack1-FetchRCad ShtAddA7d
图 20-3 数据依赖。（上图）如果MULT产生的结果是ADD的一个操作数，那么 ADD必须

在 MULT将结果写到该寄存器文件之后才能读该寄存器。（下图）特殊的旁路电路能

够将 MULT的结果直接发送到 Shift 和 Add 部件，跳过 Write、Read 和Unpack 阶段

为了解释表、斜率和接合的含义∶我们用程序20-1a作为例子，并假设每条指令都能够在一

[178个时钟周期内完成。同一个时钟周期可以流出任意多条只服从数据依赖约束的指令。
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程序20-1 （a）一个要进行软流水的for 循环。（b）该循环经过标量替代优化后
（在 a 的定值中）;其中的标量变量标记有它们的迭代编号

for -1to Nfor i - 1 to N
a -j申Vi -1】 a ←j-1田b_1b←-a由f b ←a甲f1
c←-e田j c ←e=1田j-1
d ←f由e d ←f_∶田e;e +b田d e←b①d
←U1】 f.←UI】
冶。己，子 g∶V【】+防
h:WU]+d h∶WLi】←d
j←-X】 j-X[1

(b)(a)

存储器相关的数据依赖。为了对存指令和取指令进行最优调度，我们需要跟踪诸如将一个值

存入到存储器中、然后又将它取出的数据依赖。正如19.4 节讨论的，分析存储器访问引起的依赖

关系不是一件简单的事!为了说明在没有完整的依赖分析的情况下如何调度程序 20-1a的循环，
我们可以使用标量替代将对V【i一1】的引用替换为（等价的）b;现在我们看到在替换后的程序

20-1b中，所有的存储引用都互不依赖，这里我们假设数组 U、V、W、X是互不重叠的。

接下来我们标记循环体中的每个变量，以指出它使用的是本次迭代的结果，还是前一次迭
代的结果，如程序 20-1b所示。我们可以构建一个数据依赖图（data-dependence graph，DAG））

来辅助调度;如图20-4a所示，实线边表示迭代内的数据依赖，虚线边表示循环携带的（迭代之

间的）依赖。
C,
6-
多-5-f图 ' 少 否

-81:b)
hae营” 替 e ‘部

b七
(b)(a)

图20-4 程序 20-1b的数据依赖图;（a）原始图，实线边表示同一个迭代内的数据依赖，

虚线边表示循环携带的（迭代之间的）依赖;（b）展开后的循环的无环依赖图

假设我们现在展开这个循环;展开后它的 DAG 如图 20-4b所示。如果没有资源约束，调度

这个 DAG不难;从没有前驱的操作开始，只要某个操作的所有前驱都已执行，该操作就可以开479
始执行∶
调期 指念
a1e打方

2 b、d;
3: e;ghar
4b:ce
5d:g:a
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用表（tableau）来表示这种调度非常方便∶表中的行表示连续的周期，列表示原始循环的

连续迭代，如表 20-1a所示。

表 20-1（a）软流水循环调度的表;有一组指令的斜率为0，另一组指令 abg 的斜率为2，

第三组指令cdeh的斜率为3;（b）将斜率较小的指令组下拉使其斜率变为3，并且
找到了组成流水循环的模式（方框所示）

Iteratiomsterationsc 2 3 4 54 5 6 ac并手一并手

线
re

符病于而6下w。g型四工2
O bd

为切- Pro-获 eghaegN

be 打loguecbm 画纤 dgdg a
雪远， en ehyw路气警 aC8
每bLoop 页管药碧 、辈一lehbody 3s布

喧孙碧 矿一d

wLe'eh1 Epioge
eh

(b)(a)

调度了几个迭代后，我们注意到在表中出现了这样一种模式;一组指令 cdeh 以每个迭代间

隔3个时钟周期的斜率向右下角延伸，另一组指令 abg 的斜率则较平缓（每个迭代间隔 2个时

钟周期），第三组指令疗的斜率为0。关键的一点是在调度中存在着一些不同的间隔，它们分隔
相同的指令组，并且以常数比率增长。在这个例子中，在迭代 i≥4之后，迭代i的指令组和迭

代i＋1的指令组相同。一般地，迭代i的指令组和迭代i＋c（有时c>1）的指令组相同;见习
题20.1.

定理∶
●如果循环中有K条指令，则在 K"个迭代内《通常不需要这么多个迭代）总是会出现由

不同间隔所分隔的相同指令组的模式;
·我们可以在不违反数据依赖约束的情况下，增加倾斜度较小的指令组的斜率，使这些指

令组的斜率靠近，或至少使它们之间的间隔变小并且不再增加;

·结果得到的表中有一组占m个相同时钟周期重复出现的指令，这一组指令构成了流水循

环的循环体;
·由此得到的循环是最优调度的循环（它以尽可能少的时间运行）。

相关证明见"推荐阅读"。但是我们可以这样来理解为什么这个循环是最优的;考虑展开后

的循环的数据依赖 DAG，其中有一条长度为P的路径通向最后一条要执行的指令，而调度后的

循环正好在时钟周期P执行这条指令。
对于我们这个例子，最后结果如表20-1b所示。现在我们能发现有一个3个时钟周期的重复 [480]
模式（因为3是倾斜度最陡的指令组的斜率）。在这个例子中，这个重复的模式一直要到第8个

周期才开始出现，如表 20-1b的方框所示，它构成了被调度循环的循环体。在循环体之前的不

规则调度指令构成了循环的填充部分（prologue），循环体之后的指令构成了循环的排空部分

(epilogue)。
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现在我们可以生成这个循环的多指令流出的程序，如图 20-5所示。但是，在这个"程序"
中，变量仍然带有下标;变量i活跃的同时，j。也是活跃的。为了能够将这个程序编码成指

令，我们需要在不同的变量之间放入 MOVE指令，如图20-6所示。

才了 X·-0申04-田b eatt ，◆

6①GL←a1田 ←X【27dfo ， [2oy )，b1田小 导西空]:D a2，-d
←e1④  X[3]←V3 IA←a2④/ lc2

/田空 b2 F/田h， a一 十当当Jed ，名J4b七a田←b2田d ： J4码警

大刻 e豆十乎审污午2田h 】←b3 ←-3lc3

A f-1⑨e ，垫码涵Wbr+-4，产侈 V+T←b1当母乎 WI1←-d /[i±2] ← Xl十2】，一Iei /i+2

万4田b+1+e7田方 goto L←i+l，
④CN一 [bN ← aN甲千N.N2

bN一1 WIN-T  ←bN ⑤dN- 14-dN-，
cN eN-1田JN-1
田cNN二1.6，1dN
言名十号b田d[CN ，略

图 20-5 流水调度。每行的赋值同时发生;右端中的每个变量引用的是赋值前的值。循
环出口测试i<N+1被移动到3次递增i之后，因此测试应该是i<N一2

←-0田/0，学西室 C1 ，与一一

50 ←了田CL ←X【2】1d1马母“，密一 J2

5由d ”，导母亚】←b a2一，警：

X3一 ←e田力1←-a的 旦一lcs

了①0. 万田b2←b2V ，2 e'
十吕 ←X4】，亟叶西出 ，毕码wrb

e由力2 I田b。。，、
码中 <-d'由 ，密”4-b,a'

wfij V【+I←b'田d X1t 4，。4-d 2

←+T审b goto L←- e 由 la-

← b田c 1←0日。一
V[N÷bWN=1由d 】←d

-eD
码。
WN]-db田d

图20-6 插入有传送指令的流水调度

假如机器能够同时执行 8条指令，包括4条同时执行的取指令和存指令，这个循环就是最

优调度的。

多时钟周期指令。尽管我们描述的例子中每条指令恰好需要1个周期完成，但是很容易将

算法扩展到某些指令需要多个时钟周期完成的情况。

20.2 有资源约束的循环流水

真实的机器每次只能流出有限条数的指令，并且只有有限个数的取/存部件、加法部件和乘

法部件。为了有实际应用价值，调度算法必须考虑资源的约束。

考虑资源约束的调度算法的输人应该包含下面三个部分。
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（1）要被调度的程序。
（2）每条指令在它的各个流水阶段使用的资源描述《和图20-1类似）。
（3）机器可用资源的描述《如每一种功能部件的个数，一次能够流出的指令条数，对可同

时流出的各种指令的限制，等等）。

有资源约束的调度是NP完全的，这意味着不可能有高效的最优算法。在这种情况下，我

们通常使用在"典型"情况下能够获得相当好的效果的近似算法。

20.2.1 模调度

选代模调度（iterative modulo scheduling）是资源约束的循环调度算法。尽管它不是最优

的，但却是实用的。算法的思想是通过回溯迭代来寻找好的服从功能部件和数据依赖性约束的 482]
调度，然后执行寄存器分配。

算法在假设也有 Aiken-Nicolau算法使用的循环填充和排空部分的情况下，试图将循环

体的所有指令放入一个周期数为 △ 的调度中。算法试着增加 △，直到 △的值能够形成一个

调度。
模调度的关键思想是;如果一条指今在时间t违背了功能部件的约，则它市将不能放在

时间 t+△或者任意时间t'，其中r=t'modulo △。

例如，假设在每次只能执行一条取指令的机器上，我们使用△=3来尝试调度程序 20-1b。

下面的循环体调度是非法的，因为在周期1有两条不同的取指令∶,- tUI ·X
”引
我们可以将f，从周期1移动到周期0或周期2∶

固一 了←UT 6
书十当cXIT -

。雪N 十

这两种调度都能够避免资源冲突。我们甚至可以将f移到更早，到周期一1，在那里（实际

上）我们正在计算厂;或者将f移到更晚，到周期3，在那里我们将要计算f-∶

国 -1
平十当 j←XI。产十写十己

但是，在△=3的情况下，我们不可能将f从周期1移动到周期4（或周期一2）来解决资

源冲突;因为1=4 module 3，/的计算仍旧和j的计算冲突∶

0
中十当-1←-V-T

便乓

寄存器分配的影响。考虑计算 d←/④c，其中计算发生在图 20-5 所示调度的周期0。如果

我们将 d的计算推后一个周期，则从f和c 的定值到该指令的数据依赖边会变长，而从该指令图
到d在W【i】←-d中的使用的数据依赖边则会缩短。如果数据依赖边缩短到小于0个周期，则违

背了数据依赖约束;这可以通过将使用 d的指令延后一个周期来解决。
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与之不同，如果数据依赖边延长了许多个周期，我们则必须在循环中保留一个值的若干个
"版本"（例如图 20-6的循环，我们保留了f、f、），这意味着我们会使用较多的临时变量，

从而导致寄存器分配失败。事实上，一个最优的循环调度算法应当在调度的同时考虑到寄存器

分配;但是并不清楚这种最优算法是否实际可行，因此本节描述的选代的模调度算法先进行调
度，然后再进行寄存器分配，我们希望这样能够做到最好。

20.2.2 寻找最小的启动间距

模调度从寻找流水循环体的周期数的下限开始。

·资源估计量∶对任何功能部件，例如乘法部件或取数部件，我们都能够知道循环体中与

之对应的指令（例如乘法或取指令）需要占用该部件多少个周期。这个周期数除以硬件
提供的该种功能部件数，就给出了△的下限。例如，如果有6条乘法指令，每条指令需

要使用乘法器3个周期，硬件提供两个乘法器，则 △≥6×3/2。
●数据依赖估计量∶对数据依赖图中的任何数据依赖环，其中某个 x，依赖于一条其他计算

组成的链，在此链上的计算又依赖于x，则这条链的总延迟给出了△的下限。

令△。是这两个估计量中的最大值。

下面我们计算程序20-1b的 △m。为简单起见，我们假设一条④算术指令和一条取/存指令
能够同时流出，并且每条指令需要1个周期完成;我们不考虑i-i十】或条件分支的调度。

算术资源估计量等于循环体中的5条④算术指令除以每个周期可流出的1条算术指令，

即△≥5。取/存资源估计量等于循环体中的4条取/存指令除以每个周期可流出的1条取/存

指令，即 △≥4。数据依赖估计量根据图 20-4a中的环∶c →d，→e，→c-得出，其长度决定
出△≥3。485
接下来，我们根据某个启发式来排列循环体中指令的优先顺序，这个启发式决定哪些指令

需要先考虑。例如，对于在关键数据依赖环上的指令或者大量使用了稀少资源的指令，应该在

调度中优先安排它们的位置，然后再在它们的周围填充其他指令。令 H.⋯;H。是按照（启发

式>优先顺序排列的循环体中的指令。

程序24-1b中，我们可以使用的优先顺序为 H=【c，d.e，a.b，f，j，g，h】，即尽早地放置那

些处于关键重复周期中的指令，或者使用算术功能部件的指令（因为该循环的资源估计量告诉

我们，和取/存相比，该循环对算术功能部件的需求更大）。

调度算法维护着一个已经调度了的指令集合S，其中的每条指令在特定的时间t被调度。

如果h∈S，则 SchedTime【h】=none，否则 SchedTime【h】的值等于调度h 时的当前时间。S的
成员服从所有的资源和数据依赖约束。

算法 20-1在每次迭代中，将具有最高优先级的未调度的指令 h按如下方式放入到S中。

（1）放入到服从所有依赖约束（考虑 h 的已经放置的前驱）和所有资源约束的最早时间槽

（如果有一个的话）中。

（2）如果在 △个连续的周期中都没有满足资源约束的槽。则决不会有这种槽，因为在时间

t可用的功能部件和在时间t+c·△可用的功能部件是一样的。因此，在这种情况下，先不考虑
资源约束，将 h放置在满足依赖约束（考虑已经放置的前驱）的最早的时间槽中，并且该时间

槽要比前面尝试的对 h的放置晚。
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算法 20-1 迭代模调度

for-- to-o
Budget--n·3
for i+-1 to n
LasrTime[i]--0
SchelTime[i]*none
while Budget>0且还有未调度的指令
Budget+Budget-l
令 h是具有最高优先级的未调度指令

--0
for h的每一个前驱p

if SehedTime[p]≠none
t--max(t-.SchedTime[p]+Delay(p.h)

for 1-t_tota+△-1
ir SchedTime[ h]=none
i可以在没有资源冲突的情况下调度h

SehedTime[h]--t
i SchedTime[h]= none

SchedTime[h]-max(r..,1+ LasrTime[h])
LaxtTime[h]-SchedTime[h]
for、h的每一个后维s
if SchedTime[s]= none
ir SchedTime[h]+Delay(h.5)>SehedTime[s]
SchedTime[s]-none

whle 当前调度有资源冲突

令是（除 h外）涉及资源冲突的某条指令

SchedTime[s]-none
If所有指令都已经被调度

RegisterAllocate()
if寄存器分配在没有藿出的情况下成功

return并且报告一个成功调度的循环

Delay(h.)=
已知一条依赖边h;→s，，此边满足条件;h使用s的来自于前k个迭代的值（其中，k=0表示h使用
s 的当前选代值）;

已知计算s的指令的延迟是1个周期

return l-k△

一旦将 h放置好后，便可能要从S中删除一些指令以使S再次合法，这些被删除的指令是

h的后继中不满足数据依赖约束的指令，或者是和 h有资源冲突的指令。

这一放置-删除的过程可能永远迭代下去，但是多数时候，对于给定的△，它或者能够很快

地找到一个解，或者没有解。为了在不能很快找到解的情况下使算法中止，算法只允许c·n次
调度放置（c=3或者等于某个类似的数），超过这个限制后，算法放弃当前的△值，用下一个

值进行试验。
当与变量j相连的定值-使用边变得长于△周期数时，j会需要有多个副本，并用传送指令

MOVE以接力传递的方式来复制不同迭代的版本。图 20-6的变量a、b、f、j说明了这一点，

但是我不打算给出一个明确的插入这些传送指令的算法。 486
我们可以使用资源预约表（resource reservation table）来检查资源冲突。资源预约表是一
个长度为△的数组。一条指令在时间r使用的资源放到数组的第rmod △个元素中;向表中加

入和删除资源使用，以及检查冲突，都能够在常数时间内完成。
迭代模调度算法不保证在任何情况下都能找到最优调度。算法可能可以找到一个最优的、
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启动间距为△、可分配寄存器的调度;也可能找不到任何满足 △的调度;或者虽然能找到满足 △
的调度，但却不能成功地进行寄存器分配。唯一令人感到安慰的是，在实践中模调度工作得很好。

该算法对程序20-1b的调度过程如图 20-7所示。

调度时间调度时间调度时间 调度时间

引心小郊日丁同上建间内口么“刀身小儿越。5k 飞v=沁召历。凶串月寓点上
警

啉省房。在辈盾了
量言 资源表资源表 资源表资源表

④M④M田M

府烟厚Q-N田Mo-N 省一一值下
，片令 oe]O) Be ia， - N me， Ae

Te s行 e3a 一，4b 46
放置b干扰。 放置c于来放置c，d.a，a。 e，.1.g，肉c→d、I除4影除b-

放置d干扰了
d→∶删除e

图 20-7 作用于程序20-1b 的迭代模调度。图 20-4a 是数据依赖图;

△.ma=5（见20.2.2节）;H=【c，d，e，a，b，，j，g，h】

20.2.3 其他控制流

我们已经展示了用于简单直线循环体的调度算法。如果循环包含内部的控制流（例如 if-

then-else 语句组成的树时）又会怎么样呢?一种方法是计算循环的2个分支，然后使用一个
（许多高性能机器都提供的）条件传送指令产生正确的结果。
例如，可以使用条件传送指令将下面左侧的循环重写成右侧的循环∶488]

for i- 1 to Nfor i - l to N
x4M[7]x←M【】

重fx>0 u'←z*工
u-A[7#《-2*术

else u←A【i】 ifx>0move u ←ul'
s←s+业s5+u

现在，得到的循环体是容易调度的直线代码。
但是如果if的两个分支的代码大小差异很大，并且频繁执行的又是较小的那个分支，那么

每个迭代都执行两个分支的代码会比最优情况要慢。另外，如果 if的某个分支有副作用，那么
除非条件为真，否则就不能执行该分支。

我们可以使用轨迹调度（trace scheduling）来解决这个问题∶选择一条经过这个控制流分
支的频繁执行的直线路径，高效调度这条路径，同时忍受在进入或者转出此轨迹时由于需要某

些修正指令而带来的一定程度的低效。见第8.2节和本章的"推荐阅读"。

20.2.4 编译器应该调度指令吗

许多机器有运行时对指令进行动态调度的硬件。这些机器采用乱序执行（out-of-order

execution），这意味着在缓冲区中有若干条已经解码的指令，并且无论哪条指令。只要其操作数

已准备好，那条指令就能够执行，即使在程序中较早出现的其他指令还在等待操作数或资源。
这样的机器首次出现在1967年 （IBM 360/91），但是直到 20 世纪 90年代中期才开始盖及。

现在大多数高性能处理器都带动态（运行时）调度。这些机器既有优点。也有不足。到目前为

止，还不清楚将来会是静态（编译时）调度成为标准，还是乱序执行成为标准。
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静态调度的优点。乱序执行使用昂贵的硬件资源，往往增加芯片每个周期的时间和功率。

静态调度器能够尽早地调度未来数据依赖路径最长的指令;而实时调度器则无法知道一条指令
导致的数据依赖路径的长度 （见习题20.3）。调度向题是NP完全的，编译器在调度算法上没有

实时限制，因此从原理上看，编译器找到的调度应当比实时动态调度更好。 489]

动态调度的优点。调度中有一些方面的信息在编译时是不可预测的，例如 cache 缺失;

如果知道了 cache 缺失导致的实际的延迟，调度可以做得更好（见图 21-5）。高度流水的调

度往往会使用许多寄存器;而典型的机器在指令域中只使用5位命名32 个寄存器，但是具
有运行时寄存器重命名能力的乱序执行可以只用少数静态名而使用上百个实际寄存器（见

"推荐阅读"）。最优静态调度需要知道受硬件影响的精确流水状态，但是在实践中，这些状

态有时是很难判断的。最后，针对相同指令集的每个不同实现，动态调度不需要重编译

（即重调度）程序。

20.3 分支预测

在许多浮点程序中，例如程序 20-1a，基本块较长，指令是具有较长延迟的浮点操作，分支

是可预测性良好的for循环退出条件。这种释序中的调度向题和前几节描述的一样，是要调度那

种延迟较长的指令。

但是其他许多程序，例如编译器、操作系统、窗口系统和字处理器，它们的基本块都较短，

指令是快速的整型操作，分支也难以预测。这里的主要问题是要足够快地获得指令，以便指令

能够及时得以解码和执行。

图 20-8说明了 COMPARE、BRANCH 和 ADD 指令的流水阶段。因为要取的指令地址还是

未知的，所以一直要到 BRANCH执行之后，才能执行取后续指令的动作。

COMPARE T-Fctch WiteAnith-Read
个AnthV1-FeichBRANCH Rcad
1-Fetch Rcad Arth Wrie]ADD wattwait

图 20-8 ADD指令的读取依赖于 BRANCH的结果

假设有一个超标量机器能够同时流出4条指令。那么，按读取 BRANCH指令之后，需要等
待3个周期才能读取 ADD指令来计算，则有11条指令的流出槽（3×4一BRANCH占用的指令

槽=11）被浪费。 490
有些机器通过读取紧随分支之后的指令来解决上述问题;如果分支不发生，这些已经读
取并已解码的指令就可以立即被使用。只有当分支发生时，才会存在停顿的指令槽。其他一

些机器则假设分支会发生，并且开始启动取分支目标地址的指令;如果分支没有发生，则会
发生停顿。有的机器甚至同时取两处地址的指令，但是这需要非常复杂的处理器和指令 cache

之间的接口。
现代处理器依赖于分支预测来对取什么指令做出正确的猜测。分支预测可以是静态
的——编译器预测分支有可能发生的方向，将它的预测放入到分支指令中;也可以是动态

的——硬件记住每个最近执行的分支的最后一次的发生方向，并预测该分支将按同样的方

向发生。
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20.3.1 静态分支预测

编译器可以通过分支指令中一个仅占1位的用于指明分支预测方向的域来和硬件通信。

为了节省这1位，或者为了和老的指令集兼容，一些机器使用诸如"假定向后的分支会发

生转移，向前的分支不会发生转移"这样的规则。规则的第一部分源于向后的分支（常常）是
循环分支，并且一个循环很可能继续执行，而不是退出。规则的第二部分源于将异常条件预测

为不发生转移的分支是有益的;在这种情况下，当预测两个分支方向都有可能发生时，我们可

以颠倒分支条件，使异常情况走下降分支，正常情况走转移分支，但是这样会导致指令 cache
性能较差，见21.2节的讨论。在为使用向前/向后分支方向作为预测机制的机器生成代码时，

编译器可以对程序中的基本块进行排序，使预测发生的分支向较低的地址转移。

有几个简单的启发式能够帮助编译器预测分支转移的方向，其中一些是根据直觉获得的，

但是所有的启发式都经过了实践的验证。

·指针∶如果循环执行指针相等比较（p=nul1或 p=q），则预测条件为假。
·调用∶如果分支的后继之一是一个过程调用的必经结点，则分支不太可能会转移到该后

继（许多有条件的调用是为了处理异常情况）。497]
·返回∶如果分支的后继之一是一个过程返回点的必经结点，则分支不太可能会转移到该
后继。
·循环∶如果分支的后继之一（如果有的话）是一个包含此分支的循环的头结点，则分支

很可能会转移到该后继。

·循环∶如果分支的后继之一（如果有的话）是一个循环的前置结点，并且它不是此分支

的后必经结点，则分支很可能会转移到该后继。这可以获得图 18-7 描述的优化的结果，

其中的迭代计数很可能会大于0，而不是等于0。（如果从A到程序结束的任何路径都必

须经过B，则 B是A的后必经结点;见19.5节。）

·看守;如果分支使用了某个值r作为操作数（作为条件测试的一部分），并且r在该分支

的一个不是其后必经结点的后继中是活跃的，则该分支很可能转移到这个后继。
某些分支可能符合多个启发式。在这种情况下，一种简单的方法是给启发式排一个优先顺

序，按这个顺序使用第一个起作用的启发式（上面列出的启发式顺序就是一种根据经验测量出

的合理的优先顺序）。
另一种方法是，用每一种可能起作用的条件的子集作为索引指向一张表，并由此（基于经

验测量）决定对每个子集应采取的行动。

20.3.2 编译器应该预测分支吗

完美的静态预测的动态误测率大约在9??针对C程序）或6??针对 Fortran 程序）。这种

"完美的"预测的误测率不会为0，因为任何给定的分支转移到同一方向的机会平均不会超过
91??假如一个分支100??时间都转移到同一方向，则完全可以不需要该分支!与C相比，

Fortran 程序中多数分支是循环分支，并且循环的迭代次数都很大，因此 Fortran 程序有更多的可

预测的分支。
在基于 profile的预测方法中，程序被编译成插有额外测量桩的可执行程序，当使用采样数
据运行该程序时，这些测量桩将统计出每个分支发生的次数，然后编译器在重新编译该程序时

根据这些计数来预测分支。基于 profile 的预测的准确度接近完美的静态预测。
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上面描述的基于启发式的预测的动态误测率大约是 20??（针对C程序），或者说其预测的

准确度相当于完美的（或基于 profile的）静态预测的一半。

典型的基于硬件的分支预测模式对每一条分支指令使用指令 cache中的2 位来记录此分支最 [192]
后两次执行的转移方向。这样的误预测率大约在 11??C程序），几乎和基于 profile 的预测一

样好。
10??分支误测率会导致非常多的指令停顿——-按照 20.3节开头描述的例子，如果每个误

测停顿11个指令槽，每10次分支有一次误测，并且程序的所有指令中有六分之一的指令是分
支，，那么，18??处理器时间将用在等待取误测的指令。因此，很有必要利用一些硬件和软件

技术的结合来进一步优化分支。尽管启发式预测有 20??误测，不过毕竞好于没有任何预测，

但它当然还不能最终满足人们的愿望。

推荐阅读
Hennessy和Patterson【1996】解释了高性能机器、指令级并行、流水线结构、功能部件、

cache（高速缓存）、乱序执行、寄存器重命名、分支预测，以及其他计算机体系结构问题的设
计和实现，对编译器的优化和运行时的硬件优化技术进行了比较。Kane 和 Heinrich【1992】描述

了 MIPS R4000 计算机的流水约束，图 20-1和图20-2便改编自它们。
20世纪 70年代的 CISC计算机利用内部微代码顺序地实现了复杂的指令，这种内部微代码可

以同时执行几个操作。但是编译器无法使几条宏指令的不同部分交错执行来提高指令间的并行性。

Fisher【1981】开发了一种微代码的自动调度算法，这种算法使用轨迹调度优化频繁执行的路径;接
着 Fisher【1983】提出了超长指令字（VLIW）体系结构，VLIW体系结构可以将微操作直接暴露给

用户程序，以便编译器进行调度。

Aiken 和 Nicolau【1988】是最早指出不需要孤立调度单个循环迭代的其中两人，他们提出了

最优（忽略资源约束）的循环并行化算法。
多处理器调度问题的许多变种都是 NP完全的【Garey and Johnson 1979;UIlman 1975】。选
代模调度算法【Rau 1994】在实际中获得了较好的结果。在没有资源约束的情况下，它等价于

Bellman-Ford最短路径算法【Ford and Fulkerson 1962】。（在原理上）通过将约束表示为整数线

493性规划，能够获得最优调度【Govindarajan et al.1996】，但是解整数线性规划问题需要花费指数

时间（问题是NP完全的），并且寄存器分配约束仍旧很难用线性不等式来表示。
Ball和Larus【1993】描述和测量了 20.3 节中给出的静态分支预测启发式;Young 和 Smith
【【1994】给出了一种基于 profile的静态分支预测算法，这个算法比最优静态预测还要好。对后面
这句话明显矛盾之处的解释是，他们的算法复制了一些基本块，使 80??发生的分支（20??

误测率）可以变成两条不同的分支，其中一条几乎总是发生，另一条几乎总是不发生;因此，
该算法好于最优静态预测。

习题
20.1 使用 Aiken-Nicolau 算法调度下面的循环∶
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fori←1 to N
a 4 XUi-2]
b ←Y【i-I】
c←a×b
d ÷-U[]
←Xf-1】e
d+e
8 ←-d×e
h:X[1]-8
∶Y13】←了

a.用下标i和i—1标记所有的标量变量。提示;这个循环中，没有循环携带的标量变量
的依赖关系，因此没有标量的下标是i—1。

b.针对 X【】和 Y【】执行标量替换。提示;现在你会需要下标i—1和i—2。

c.执行复写传播以删除变量 a、b、e。
d.画出语句c、d、f、g、h、j的数据依赖图;用0标记迭代内的依赖边;根据下标中
指明的迭代相差数，用1或 2标记循环携带的依赖边。

e.给出 Aiken-Nicolau表（见表20-1a）。
f.找出由增长的间隙所分开的相同指令组。提示∶这些相同的指令组相隔 c 个时钟周
期，这里，c大于11
g.指出斜率最陡的一组指令。提示∶其斜率不是一个整数。494
h.将循环展开k次，其中k是斜率的分母。

i.画出这个展开后的循环的数据依赖图。
j.画出这个展开后的循环的调度表。

k.求出斜率最陡的一组指令的斜率。提示;这个斜率应该是一个整数。
1.将斜率较小的指令组下移使之弥合间隔。

m.标识出循环体、循环填充部分和排空部分。

n.写出一种调度，即像图 20-5一样，给出在规定的时钟周期内对循环填充部分、循环
体和排空部分的一种放置。

o.删除循环体中变量的下标，在必要的地方如图20-6一样插入传送指令。
重复习题20.1的 a~d。然后使用迭代的模调度调度该循环;调度针对具有这种特征的机器;20.21
同一时间可流出3条指令，但其中至多只能有1条访问存储器的指令和1条乘法指令。每条
指令用一个时钟周期完成。

e.在数据依赖图中，用i到自身的边（标记为1）、从i到k的边（标记为0）和从k 到

循环体的每个结点的边（标记为1）显式地表示递增指令i-←-i，+1和循环分支∶
k:if i+1≤N goto loop。
f.基于下面的数据依赖周期限制，计算 △;每个周期2条指令，每个周期1条取/存指
令，以及每个周期1条乘法指令。注意∶一个数据依赖周期需要的 △是周期的长度除

以边上的标记之和（边的标记给出了迭代距离，见习题 20.1d）。

g.运行算法 20-1，给出将每个变量从调度中删除时的 SchedTime 和资源表，见图 20-8。
使用优先级顺序H=【i，k，c，d，g，f，h，j】。
h.删除循环体中的变量的下标，需要时插人传送指令，如图 20-6所示。如果传送指令

不能满足每个周期流出3条指令的限制，则增大△后再试。495
20.3 考虑下面的程序;
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L:L:
a∶ a ←UTI a∶a←Ut】

d∶d←dxab∶b←a×a
b∶b←a×ae: Vi1+b
c∶V【i】←b4∶i←1+1
∶i←i+1d;d ←dxa
e; ifd<L.0gotoLe: ifd<1.0goto L
（i）调度后（i）调度前

假设这两个循环都在一个乱序执行的机器上运行，该机器具有以下特征;每条指令需要1

个处理器周期执行∶只要它的操作数已就绪，并且前面的所有条件分支都已被执行，该

指令就可以执行。几条指令可以同时执行，但是只有一个乘法部件。如果有两条就绪的

乘法指令，则先执行来自较早迭代的指令或者同一迭代中先出现的指令。

这个程序最初编写的循环如循环（i）所示;编译器将它重新调度为循环（i）。对这两

个循环中的每一个循环。

a.画出其数据依赖图，并用虚线表示循环携带的依赖关系。
b.增加从e 到其他两个结点的边作为循环携带的控制依赖。

c.模拟机器如何执行循环，给出 Aiken-Nicolau表，此表需满足 b和d决不能放在同一
个时钟周期的限制。在 b和d 的前驱都就绪的情况下，选择来自较早迭代的指令或者
同一迭代中较早的指令。

d.计算表中最陡的斜率;这个循环的每个迭代需要多少个时钟周期?

e、编译器的调度对动态调度（乱序执行）的机器有用吗?
20.4 在许多机器上，位于条件分支之后的一些指令能够在已知分支条件之前执行（这些指令

要到分支条件已验证之后才被提交）。

假设我们有一台乱序执行的机器，它具有这些特征∶加法或分支需要 1个周期;乘

法需要 4个周期;每条指令只要操作数准备好就可以执行。几条指令可以同时执行，但
是机器只有一个乘法部件。如果有两条乘法指令都已就绪，则先执行来自较早迭代的指 496
令或者同一迭代中先出现的指令。

在一台具有这样行为的机器上，对下列程序重复习题 20.3的a~e∶

L: L:
b:b4-e×va∶a ←e×u

b;b←e×u a∶a ←-e Xu
中”。，部十些c∶C←-a+曲
d:d-e+xd∶d←-c +x
ee-d十ye:e-d+y

广∶ife>0.0 goto L f: ife> 0.0 goto L
）调度前 （i）调度后

20.5 写一个包括20.3.1节描述的所有分支预测启发式情况（指针、调用、返回、循环头、循
环前置结点、看守）的短程序。标记每种情况。

20.6 使用分支预测启发式预测习题8.6和图18-7b中的程序中每个条件分支的方向;解释每个

497分支适用哪个启发式。
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存储器（mem-O-ry）;能够写入和存放信息的设备，当需要时可以从中提取信息。
层次（hi-cr-ar-chy）;一个分层或分级的系列。

韦氏序典

理想的随机存取存储器（random access memory，RAM）有N个以整数作为索引的字，这

样，它的每一个字都可以通过整数地址以同样快的速度来存取。硬件设计者既能够构建容量大
但速度慢的存储器，也能够构建容量小但速度快的存储器，但是要构建既满足容量大又满足速

度快的存储器，价格却高得惊人。另外，提高存储器访问速度的一个办法是使其靠近处理器。

但是，在这个问题上无论花费多少钱，大的存储器中总会有一些部分远离处理器。

将一个容量小速度快的高速缓冲存储器（cache）与一个容量大速度慢的主存储器组合在一
起，就几乎能够和一个容量大速度快的存储器相媲美;程序将它频繁使用的数据放在 cache 中，
很少使用的数据放在主存储器中，当程序进入需要频繁使用数据 x的某个阶段时，就将 x 从慢
的主存储器中移至快的 cache 存储器中。
由程序员管理多个存储器相当不方便，因此硬件会自动地进行管理。当处理器需要访向在

地址 x处的数据时，处理器首先在 cache中查找，并且我们希望通常能够在 cache 中找到该数

据。如果发生 cache缺失（cache miss），即 x不在 cache 中，则处理器会将 x从主存储器中取

出，并将 x的一个副本放入 cache 中，这样，下一次对 x的引用就会 cache命中（cache hit）。

将 x放人 cache 中意味着需要将另一个数据y从 cache 中移出，以便为x腾出空间，当然这样

便导致了以后访问 y时发生 cache 缺失。498]

21.1 cache 的组织结构

直接映射的（direct-mapped）cache按如下方式来组织，以实现快速的存储器管理。cache
被分成2"个块，每个块包含2'个字，每个字2"字节;因此，这个cache总共包含2"件"字节，

并且排列成一个数组 Data【 block】【word】【byte】。每个块都是主存储器中某个数据的一个副

本，并且还存在着一个 tag数组，用以指明当前内容来自主存储器的什么位置。一般地，字大

小2"是4字节，块大小2"'是32字节，cache大小可以小到8KB，也可以大到2MB。

key bytewordtag 。m 位（月=《m十I+w））位 声

给定地址x，cache部件必须能够查找出x是否在cache中。地址x由n位组成∶x。-;x。∶⋯
x2x1x。（见图21-1）。在直接映射的cache组织中，我们用中间的m位作为键值，即 key =
x1-1x社--⋯x。I，并将x中的数据保存在Data【key】中。[499]
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图 21-1 直接映射的 cache 的组织。地址的 key 域用作tags数组和data blocks的索
引;如果 tags【key】与地址的tag 域匹配，则其数据是有效的（cache 命中）。
Word index用于从 cache块中选择一个字

x的高位x。-x。⋯x。+形成tag，并且如果 tags【key】≠tag，则发生了 cache 缺失，即
我们需要的字不在 cache中。在这种情况下，data【key】的内容被送回给主存储器，主存储器中
地址为x。-⋯x的内容被取出放入到第key个 cache块中（同时也送给 CPU）。访问主存储器
的时间远远大于访问 cache 的时间，因此我们不希望发生频繁的 cache 缺失。

下一次取地址x时，如果其间没有指令访问了 key相同但是tag 不同的另一个地址，则发生

cache命中∶tags【key】=tag，并且位x⋯1-⋯x.将定位于第key块中的一个字∶于是，data
【key】【x一）-⋯x。】的内容被送给处理器。这比从主存储器中取数据快很多。如果这条取数指令

是取一个字节（而不是取一个字），则（典型地）由处理器负责从这个字中选择字节 x;-⋯x。

另一种常见的 cache 组织方式是组相联（set-associative）cache。组相联 cache 和直接映射

cache类似，但是用同一个 key值能够容纳多个块。本章介绍的编译器优化策略对于直接映射
cache 和组相联 cache 都适用，但是针对直接映射 cache 的分析稍微简单直观一些。

写命中策略（write-hit policy）。上面的段落解释了当 CPU需要地址x中的数据时，读操作

发生的情况。当CPU往地址x写数据时，会发生什么情况呢?如果x在 cache中，则这是一个
写命中，这种情况的处理是简单高效的。当写命中时，主存储器可以立刻更新（write-
through），或者仅当cache块要从 cache 中写回时再更新（write-back）。但是写命中策略的选择
不会对顺序程序的编译和优化产生太多影响。

写缺失策略（write-miss policy）。如果 CPU所写的地址中的数据不在 cache 中，则发生写

缺失。不同的机器有着不同的写缺失策略。

·写时取（fetch-on-write）。字x被写人 cache。但是目前同一个 cache 块中的其他一些数

据字是属于不同地址（和x有着相同的key）的，因此，为了产生一个有效的 cache块，
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也要将这些字从主存储器中取到该 cache块中。在此期间，处理器将停顿。
·写-验证（write-validate）。字x被写人 cache。同一个 cache块中的其他字被标记为无效
的，并且不从主存储器中读取任何数据，因此处理器也不停顿。

·写-绕过（write-around）。字x被直接写入主存储器，而不是写人 cache。处理器不停顿，
也不需要存储系统为此作出响应。不幸的是，下一次取 x时，会产生一次读缺失，这将500]
导致处理器的延迟。

写缺失策略对程序的优化方法会有影响（见21.3节和21.6节）。

cache 的层次。现代机器的存储层次可以分为几层，如图 21-2 所示。位于处理器内部的是
寄存器，所有寄存器的总容量一般约为 200字节，并且可以在1个处理器时钟周期内访问;稍

远一点的是一级 cache，一级 cache一般能够保存8～64KB，访向它大约需要 2~3个时钟周期;
然后是二级 cache，其容量大约能到1MB，访问它需要7～10个时钟周期;主存储器的容量可以
达100MB，访问它需要约100个时钟周期。一级 cache 通常划分为指令 cache（处理器从指令

cache中取要执行的指令）和数据 cache（处理器从数据 cache 中存/取指令的操作数）。二级
cache 通常既保存指令也保存数据。

2MB-2GB 1GB-?64KB-2MB
8~64KB c3

10~10个周期70-100个周期□1个周期.7~10个周期

主存储器 磁盘寄存器 一级 cache二级cache

图21-2 存储层次

许多处理器每个时钟周期能够流出多条指令;一个周期内可用的指令的数目根据数据依赖

关系和资源约束而变化（见第 20 章开头）。但是我们这里假设平均每个周期能够完成两条可用
的指令。于是，一级 cache缺失将产生15 条指令的延迟（7～10个周期×2），二级 cache缺失

将产生 200条指令的延迟。
对于这种 cache 组织结构，程序员（通常也包括编译器开发者）有以下一些需注意的重要

结论。
·字节取;取单独的一个字节通常比取整个字的代价要大，因为存储器接口每次发送一个

完整的字，取单独的一个字节时，处理器需要做额外的移位操作。
·字节存∶存储单个字节一般比存储整个字的代价要大，因为这个字中的其他字节也必须
从 cache 中取出，并再存回到cache 中。501]
·时间局部性（temporal locality）∶访问（取或存）一个最近曾访问过的字，通常会是
cache命中的。

·空间局部性（spatial locality）∶访问一个与最近已访问过的字属于相同 cache 块的字，通
常会是 cache 命中的。
·cache 冲突（cache conflict）;如果地址 a 和地址 a+i·2"+件"都被频繁访问，那么因为

访问其中的一个必须将另一个清理出 cache，所以会产生许多 cache 缺失。
编译器能够做若干优化转换，这些优化不会减少要执行的指令条数，但却能够降低程序遇

到的 cache 缺失（或其他的存储器停顿）的次数。
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21.2 cache 块对齐

典型的 cache 块大小（B=大约8个字左右）和典型的数据对象大小相近。我们可以预期一

个算法在读取某个对象的一个域的同时，也会取到其他的域。
如果x跨越了B的一个倍数边界，则它会占用两个不同cache 块的一部分。这两个cache 块
很可能在同一时间都是活跃的。另一方面，如果x没有跨越B的倍数边界，访问x的所有域则

只需要用到一个cache 块。

为了通过有效地使用cache来提高程序性能，编译器应该合理安排数据对象，避免不必要

地将它们跨越在多个 cache 块中。
有几种简单的方法可以实现上述目的。

（1）顺序分配对象;如果下一个对象不能放入当前 cache 块的剩余部分，则跳过这些剩余

部分，从下一个 cache 块的开始分配对象。

（2）将大小为2的对象分配在一个存储区，所有对象都对齐在 2的倍数边界上;将大小为4
的对象分配到另一个存储区，按4的倍数边界对齐;依此类推。这消除了许多常见大小的对象

的跨块现象，并且在对象之间没有浪费空间。

块对齐在一些块的末尾会留下若干未使用的字，因此会浪费一些存储空间，如图 21-3 所

示。但是，执行速度可能会因此得到改善。对于一个给定的程序段，存在着一个被频繁访问的

对象的集合S，对齐可以减少S占用的 cache 块的数目，使该数目从大于 cache 大小减少到
cache可以容纳的大小。

，

(a) (b)
图 21-3 尽管数据对象之间会浪费空间，为避免跨 cache 块边界

而实施数据对象（或基本块）对齐常常是值得的

对齐既能够作用于全局静态数据，也能作用于在堆上分配的数据。对于全局数据，编译器

能够利用汇编语言的对齐指导命令来通知链接器。对于在堆上分配的记录和对象，将对象放置 502]
在 cache 块的边界或者最小化对象跨 cache 块的次数的任务不是由编译器完成的，而是由运行时

系统中的存储分配器来完成的。
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指令cache 的对齐

指令"对象"（即基本块）占据cache块的情形和数据记录占据 cache 块的情形一样，并且

同样需要考虑指令跨 cache 块的问题和对齐问题。将频繁执行的基本块的开始对齐在 B的倍数
边界上能增加在指令cache中同时容纳的基本块的数目。

不频繁执行的指令不应该和频繁执行的指令放在相同的 cache 块中。考虑下面的程序∶

言。
Af xthen ②;
R;
其中，x很少为真。我们可以按照图 21-4所示的两种方式之一为上面的程序生成代码;但是，
将 O放置到P和R之外（如图 21-4b所示）意味着这个语句序列（通常）会占用两个cache块;

而如果将 O放置在跨P和R之间的 cache块上《如图21-4a所示），则意味着即使在 Q不被执行503
的通常情况下，程序的这部分代码也会占用3个 cache块。

P QP
gotoTeifxgotolInot X goto L1 L3长Q

Li R
(b)(a)

图21-4 如果x很少为真，基本块放置（a）会占用3个cache块;
而（b）通常只占用2个cache块

在某些机器上，将分支指令的目标对齐在2的幂的边界特别重要。现代处理器每次取一个

已对齐的包含k（2或4，或更多）个字的块。如果程序分支转移到的某个地址不在 k的倍数边

界上，则不能够取到k 条有效的指令。
优化编译器在指令选择和寄存器分配后，应该有一个基本块排序（basic-block-ordering）的
优化阶段。轨迹调度（trace scheduling）（见8.2节）可以用来将一条频繁执行的路径放置在连
续的cache 块集合中。编译器在通过条件分支构建轨迹时，重要的一点是要沿着最可能发生的

出边进行构建，其中"最可能发生的出边"是根据分支预测（见20.3节）来确定的。

21.3 预取

如果一条取指令发生了一级（或者二级）cache 缺失，则需要从下一级存储层次中获取数

据，这将导致7～10个时钟周期的延迟（或者70～100个时钟的延迟）。在有些情况下，编译器

可以在许多个时钟周期之前便知道有对某个数据的需求，从而能够提前插人预取（prefetch）指

令开始取该数据。
预取指令是一种提示，它提示硬件开始将地址 x中的数据从主存储器中取到 cache 中。预

取绝不会使处理器停顿，但是另一方面，如果硬件发现会产生某种异常（例如，页错），则会忽



351第 21章 存储 层∶次

略这个预取。如果 prefetch（x）成功，则意味着下一次取 x将命中 cache;不成功的预取可能导504
致下一次取时仍旧会发生 cache 缺失，但是不影响程序的正确执行。目前许多机器都有某种形
式的预取指令。

当然，还有一种合理的选择∶不是在早些时候开始取数据，而是使用第 20章描述的软流水
技术来延迟那些需要使用取指令结果的指令。事实上，能对指令动态重排序（解决操作数没有

准备好的问题）的处理器在没有编译器特殊支持的情况下也能达到这一效果。
使用软流水或动态调度可以隐藏二级 cache 缺失引起的延迟，但它们却带来一个问题∶会

增加活跃的临时变量的个数。以下面计算点积的循环为例∶

L:x-.M]
y --MLU]
z←V×y
s←s+交
÷7+4
j←J+4
ifi<N gotoL1
如果i和j关联的数组所对应的数据不在一级 cache 中，或者 N相当大（约>8KB）以至于

这两个数组不可能全部容纳在 cache 中，则每一次i或j跨越一个新的B的倍数边界（进人一个

新的cache块）时，就会有一次 cache 缺失。实际上，准确的缺失率是 W/B，其中 W是字大
小，B是 cache块大小。W/B的典型值是1/4或1/8，这是相当高的缺失率。
发生一级 cache 缺失的代价大约是7个时钟周期或者14条指令《在每个周期流出两条指令

的机器上）。在20世纪90年代早期的机器上，这会导致14条指令的停顿。但是90年代后期，

一个不错的采用乱序执行的处理器可以找出不依赖于这条取指令的其他指令来执行。
在能对指令进行动态重排的机器上，上面那个循环的指令的实际执行顺序如图 21-5a所示。

当取x、一-M【i】时，若发生 cache 缺失，数据依赖于x;的指令就会需要等待11个时钟周期之后才

能流出。而在此期间，硬件能够计算i和j，甚至i。和j，并且可以流出 x。-M【i】的取指令。

随着未完成的循环迭代的增加，活跃的或预约了的寄存器个数也会成比例地增加了。因为
x∶、x，、x，都和 x，在同一个 cache块中，所以他们导致的 cache 缺失也和 x一样，因此 x、
x;、x，和 x，几乎都在同一时间成为可用的。迭代5～8（它使用下一个 cache 块）的动态调度会 505
和迭代1~4的一样，依此类推。
这里列举的一级 cache 延迟通常都比较小，没有预取技术也可以处理。但是二级cache 缺失

的延迟可以达到200条指令（即29个循环迭代），会有大约116条未完成的指令（x、y、z、s

的计算都处于等待 cache缺失的延迟中），它可能超出了机器的指令流出硬件的能力。

预取指令。假设编译器在取 a之前插入了一条预取地址a的指令，它提示计算机应当开始

将地址 a中的数据从主存储器传送到 cache中。于是，在几个周期过后，当原有的取指令取a

时便会命中 cache 而不会有延迟。
许多机器没有这样的预取指令，但是他们有一种非阻塞的取数指令。也就是说，当执行r，←

M【r.】时，即使发生了 cache 缺失，处理器也不会立即停顿，而是要等到其他某条使用r;作为
操作数的指令被执行时才可能停顿（如果取指令还未完成）。如果我们想要预取地址 a，我们只
需要做r，←-M【a】，并且从不使用r，的值。这将开始取地址 a中的数据，并在必要时将值放人

cache中，但是不会延迟其他指令。稍后，当我们再次取M【a】】时，它将命中cache。当然，如

果计算已经达到了存储部件的限制（即已满负载地利用了取/存部件，但算术部件仍经常空闲），
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那么用普通的取数指令（非阻塞的取数指令）恐怕无法实现预取。

流出的 活跃或已预cachecache 流出的 活跃或已预
庭退 药的寄存器延迟 指令指令" 约的寄存器
fetch Mio +16]x14Mtiol 5oo/osoiojor1 x1←Mioly1←MIjol soiojoE1ofojo*1yi y←ML6li←io+4 5oiojo*1ysoijo*1y
z←着+方←为+4 soiojo≈1盈当飞ii<N 5←30+z1sofijX19 51iojo年←io+42 ←MI1 51i1jo5oitjX1y12 五←j＋4y2←Mi1 之5o1j*1y-2Y2 ii<N⋯红 ←i+4 s1i1力5oi2力x1V1-2y2月←i+4 占十主 5itj25oi2j2X1yy32V2 2←MUiJifi2<N... 51ij22250i2j2XIYx2y2x3 ← M【t21 2←双2+y2 sitijz25012j2Xiy23x3y ← MU】 32 ←51+2 险5012j*IYx222x3V i2←百+4i3 ←i2+4

32i2j50i3j2XIV12y233y h←j+431←x+y s2i2h50ij22]2y2x3y3 ii2<N ⋯5←50+Z1 2iz万s1i3j2>23y3 fetch MU2 +16]2←妇十归5i3j2z2*3y3 32i2方3 ←MU1】82←51+22 s2i2加x32ig力3为3 y3←ML13←3+购s2isj3 52i2hr3y3
3←鸡+归5 ←到2+3 己平过sish 3←2+2内←方+4 s3tjs si2力i←边+4理i<N⋯ 3isj2n3isj h←h+4对4←Mtia】 53igjssisjx4 ifis<N飞十茎 sis力x4》4 s3igj天4←M【i3】4←对4十ysyisjz4 s3i33t4y4←MI方】4←52+z3 s4i3j szigjvtay4←x4+yi←有+4 4i4 *3i/3z454←的3+24J←力+4 54js54i4j4Ii4<N ←i+4 s44)sai4j4xs←M【al 月←方+4saiajaxs 54J4y3 ← MLial ifi4 <N.. 54/4.saaJ4xSy514←i3+4 fetch M/[U4＋ 16]44)4asdisj4-595
（b）有预取（a）没有预取

图21-5 cache块的大小为4个字时，点积循环的执行。（a）没有预取时，在动态

指令重排的机器上，未完结的指令数《预约了的寄存器数）随 cache 缺失

延迟成比例增长。（b））有预取时，硬件预约表绝不会增大。（这里展示的

是稳定状态的行为，不是初始的短暂现象。）[506

如果计算按顺序访问数组的每一个字，则它会使用每个cache 块中的几个字。这样，我们

就不需要预取每一个字，即每个 cache 块只需预取一个字就足够了。假如字大小为4 字节，
cache 块大小为16 字节，那个求点积的循环插入预取后看上去类似于下面的代码;

L1∶ii mod 16 =0then 预取M【i＋K】
ifj mod 16=0 then 预取 M【j＋K】
x←M（】
y←-MIJ】
Z ←工×y
。仍十”
←1+4
j←+4
ifi<N goto L;507
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K 值的选择要匹配预期的 cache 缺失延迟。对于有 200条指令延迟的二级 cache 缺失，当每个

循环迭代执行7条指令且i每次迭代递增4时，我们应该使K=200×4/7，并向上取块大小的
最近整倍数，即128。图 21-5b使用预取指令"隐藏"的 cache 失效延迟为11条指令，因此
K=16，即 cache块大小。当 K较小时，在某些机器上可能会有所帮助的另一种改进是;避免

重叠的预取延迟，这样存储硬件就不必同时处理两个缺失。

实际中。我们并不想每次迭代都测试i mod 16=0，因此可以展开循环或者在循环中再嵌套
一个循环，如程序21-1所示。左边这个循环展开的版本可以进一步得到改进，其方法与预取无508
关，而是通过18.5节描述的方法删除一些中间的 if语句。

程序21-1 使用循环展开或嵌套循环插人预取

L1∶n←i+16L1:prefetch Mti +K]
ifn+K≥N gotoL3prefetch MUj+ K]

中量己 prefetchM[ +K]

y←MU】 prefetchMUj+K]
L2ix←Mtz←x×y

3←s+正 y ←MU】
i←i+4 ””义飞
j←j+4 s←s卡z

i←i+4ii≥N gotoL2
j←j+4x-Mt

y←MU】 ifi<n gotola
goto l1←x×y
l3∶←M间】美←十z
y←MU】i←i+4

j←j+4 t←×y
Ii≥N gotol2 s←3+

主←i+4x← M位】
yM【月 j←j+4

ifi<N goto L3z·x×y←-s+z
i←1+4
j←j+4
ifi≥N gotol2
”；这可
y-MU1
”；”义心
3←s+z
i←i+4
J-j+4
ii<N gotoL1
L2:

存储指令的预取。有时我们在编译时可以预测一条存储（store）指令会产生 cache 缺失。

例如下面的循环∶

fori-0to N-1
十

如果数组 A 比 cache大，或者 A最近没有被访问过，则每次i跨过一个新的 cache 块时都会有

一次写缺失。如果写缺失的策略是写-验证，那么就不会有问题，因为处理器不会停顿。并且所
有标记为失效的字可以很快地用有效数据重写。如果策略是写时取，访问每个新 cache 块时的

停顿会大大降低程序的性能。但是在这个例子中可以使用预取∶
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for i-0 to N -1
ifi mod blocksize = 0 then prefetch A{i + K]
Ai】←i

和平常一样，循环展开可以删除 if测试。预取来的 A【i＋K】的值将包含垃圾——它是死数据，

我们知道它会被重写。我们执行这个预取的目的只是为了避免写缺失引起的停顿。

如果写缺失的策略是写-绕过，则只有我们预期 A【门】的值在写后会马上取的时候，才应该

预取。
总结。在下列情况下，预取是适用的∶

·机器有预取指令，或者有能够用作预取的非阻塞的取指令;

·机器不能动态重排指令，或者动态重排缓冲区小于我们希望隐藏的具体的 cache 延迟;并且

·所考虑的数据大于 cache，或是不能够预期数据是否已在 cache中。
在这里，我不讨论在循环中插人预取指令的算法，但是读者可以参见本章的"推荐阅

读"。509]

21.4 循环交换

高效使用 cache 的最基本的途径是重用cache中的数据。当嵌套的循环访问存储时，一个循

环的若干个连续迭代通常会重用同一个字，或者使用同一cache 块中相邻的字。如果这个重用
相同值的迭代是最内层循环，则会有许多存储访问命中 cache。但是如果是外层循环重用某个

cache 块，则可能由于内层循环的数据访问对 cache 的作用，下一个外层循环的迭代执行时，该
cache块已经被刷新了。
例如，下面的多层嵌套循环∶

fori ←0 to N-1
forj←-0to M-1
fork4←-0 to P-1
Ali、j，k】←（BLi.j-1，k+Bi，j，k】+B【i.j+1，kJ/3

B 【i，j＋1，k】的值在j循环的下一个迭代被重用（此时，它的"名字"是 B【i，j，k】），并
且在再下一个迭代又被重用（此时为 B【i，j-1，k】）。但是同时，k循环需要将B数组的3P个
元素和A数组的P个元素取到cache。这些字中有一些很可能和 B【i，j＋1.k】冲突，导致下一次

取B【i，j+1，k】时出现 cache 缺失。

在这种情形下，解决的方法是交换j和k 循环，将j循环放至最内层∶

fori40 to N-1
for k ←0to P-1
forj←0to M-1
A【i，j，k】←（B【，j-1，k】+B，j，k1+B【1、j＋1，kD/3

现在，B【i，j，k】将总是命中 cache，B【i，j-1，k】也一样。
为了判断给定的两个循环是否能够合法地交换，我们必须考察相应计算的数据依赖关系图。

如果迭代（j'，k'）计算的值将被迭代（j，k）使用（先写后读），或者它存储的值将被（j，k）重写

（先写再写），或者它读的值将被（j，k）重写（先读后写），则称迭代（i，k）依赖于迭代（j'，k'）。

如果交换后的循环在（j;k）之前执行（j'，k'），并且它们之间存在依赖关系，则计算会产生不同
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的结果，交换是非法的。 510
上面的例子中，这几个嵌套循环的任何迭代之间都没有依赖关系，因此交换是合法的。

读者可以参见"推荐阅读"中关于嵌套循环的数组访问依赖关系分析的讨论。

21.5 分块

分块（blocking）技术对计算进行重排，使得计算先对一部分数据进行，当这些计算完成之
后，再对下一部分数据进行计算。下面计算矩阵乘C=AB的嵌套循环说明了为什么需要分块;

fori -0 to N-1
forj+0 to N-1
fork-Oto N-1
CU，】←C【i，j】+A【i，k·B【k，j】

如果 A和B 能同时放入到 cache中，则k循环的执行就不会有 cache缺失，并且在j循环
的每次迭代，只有C【i，j】带来的一次 cache缺失。

但是假设这个 cache 的大小只能够保存2·c·N个矩阵元素（浮点数），这里1<c<N。例

如，在一个cache大小为8KB的机器上，两个50×50的8字节的浮点矩阵相乘，并且c=10。

则内层循环每次引用 B【k，j】都会有一次 cache缺失。这是因为自从最后一次访问了B的一个特

定元素之后，整个 B矩阵便都经过了cache;每次访问 B的一列中的一个特定元素会带入一行

元素，这行元素然后会被同一列的下一个元素访问带入的一行元素排挤出 cache。因此，内层循

环的每次迭代都会有一次 cache 缺失。
这里，循环交换也无能为力，因为如果j循环是最外层循环，那么数组 A会有 cache 缺失;

如果k循环是最外层循环，则C会遭遇 cache 缺失。
解决的方法是在 A矩阵的行和B矩阵的列仍在 cache 中时，重用它们。C矩阵的一个c×c

的块可以分别由A的c 行和B的c 列计算出来，具体如下所示（另见图21-6）;

fori -itoi6+c-1
forj ←方. to 万+c-1
for k 4- 0to N-1

[511]CU. j】←CL.】+Ali，k】-B|k.j

这个三层循环只用到了A的c·N个元素和B的c·N个元素，每个元素使用了c 次。这

样，以2·c·N次 cache缺失为代价，就可以将A和B 的这部分数据放入 cache 中，并且它可

以计算内层循环的c·c·N个迭代，而每次迭代的 cache 缺失率只有2/c.

AA BCB C邮A 侈■

图21-6 矩阵乘。C的每个元素的计算都需要 A的一行和B的一列。利用分块技术，
C矩阵的一个c×c块可以通过计算A的一个c×N块和B的一个N×c块

来获得
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剩下还需要做的是将上述三层循环嵌套在一个外层循环内，这个外层循环计算 C的每个

c×c块∶
foria ←-0 to N-1 by c
for j- Oto N-1 by c
for i ← ic to min（io+e-1.N-1）
for j ←o tomin（j6+c -1，N-1）
for k -0to N-I
Cu，j】←Ci.j1+A【i，k】∶Bk，jl

这种优化每次计算迭代空间的一小块，因此称为分块（blocking）。程序中存在着许多优化

编译器能够针对它们自动进行分块转换的嵌套循环。执行这种优化的关键是循环的迭代之间数

据不能相互依赖，例如在矩阵乘的例子中，C【i，j】的计算不依赖于C【i'，j'】。

标量替换。在矩阵乘程序中，即使访问C【i，j】几乎总是命中 cache（由于k 循环中反复使

用同一个字），仍旧可以通过标量替换（scalar replacement）优化把它再提升一个存储层次——

从一级 cache提升到寄存器!也就是说，当数组的特定元素在重复的计算中当作标量使用时，

我们可以将它放入到寄存器中∶512]
fori -io to i6+c-1
for j- o to o+c-1
s←CUi.J】
for k←0to N-1
s←s+A1.kJB【，j】
CTUi. -s

这样，最内层循环的取和存的次数可以减少一半。

在存储展次的每一级上进行分块。做分块优化时，编译器必须知道 cache 的大小。以决定

最佳分块的块大小 c 的值。如果有多级存储层次，则在每一级都可以进行分块。甚至机器的寄
存器也可以看成是存储层次的一级。

还是用矩阵乘作为例子，假设有32 个浮点寄存器，我们想将其中的 d个寄存器作为一种

cache 来使用。可以将那个分块矩阵乘的c×e 循环重写如下∶

fori ← o to io+c-1
for ko ←0to N -1 by d
for k ← ko to ko+d-1
T【 -kol ←A1.k】
for j-o too+c-1
s-CUi.j]
fork ←- k toko＋d-1
s←s+T【-k·Bk，j】
CU.←5

展开和压紧（unroll and jam）。由于寄存器不能使用下标索引，所以寄存器级的分块必须使

用循环展开。我们将k循环展开d次，将每个T【k】存放在独立的标量临时变量中（为了便于举

例说明，我这里使用 d=3、尽管较现实的是 d=25）;
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for i ← io too+c=1
for ko←0to N-1by 3
6←A【i，ko】;∶ n←ALi.k+1;红←A1.ko＋21
for j ←- j to jo+c-1
Ci.j】←C【i、j+知·BLk，jl+·B1ko+1，j+n·Bk+2，jl 513
当然，寄存器分配器将保证r，保留在寄存器中。从cache中取的 A【i，k】的每一个值将被使
用c次;B的值则仍旧需要每次取，这样，内层循环的存储访问次数几乎下降了一半。

先进的编译器能够在同一个循环上执行针对一级 cache和二级 cache 的分块转换，也能够针

对存储层次的寄存器级执行标量替换以及循环展开和压紧。

21.6 垃圾收集和存储层次

垃圾收集系统一直背负着导致 cache局部性差的"cache 折腾者"的恶名;毕竞，看起来垃
圾收集是按随机访问方式来访向所有存储器单元的。

但是，垃圾收集器实际上是一种存储管理器，我们可以通过适当组织它的存储器管理方式

来达到改善引用局部性的目的。

·分代∶当使用的是分代复制式垃圾收集时，应该使最年轻的一代（分配的空间）能够放
入二级 cache。这样，每一次存储分配的空间都会命中在二级 cache 中，并且对每个最年

轻的一代的垃圾收集也几乎都会在二级 cache 中进行——只有那些被提升到另一代的对

象才可能会发生二级 cache 写缺失。（由于一级 cache 通常较小，将最年轻的一代放在一
级 cache中会需要过于频繁的垃圾收集，因此是不现实的。）

·顺序分配;复制式收集时，从一片大的连续空闲空间按地址顺序依次分配新的对象。对

这些对象进行初始化的顺序存储模式便于大多数现代缓冲写的处理。

·很少的冲突∶访问最频繁的对象往往是较新的对象。采用在最年轻的一代中顺序分配对
象的方式时，这些新对象的键值 key（在直接映射的 cache中）全都不同。因此，使用垃

圾收集的程序和使用显式释放的程序相比，冲突引起的 cache 缺失率明显要低。
·用于分配的预取;进行顺序初始化的存储操作有可能会导致 cache 写缺失（在一级 cache
中，一级 cache 通常比分配空间小得多），其缺失率为每 B/W 次存储操作有一次缺失，

其中 B是 cache块大小，W是字大小。在大多数现代机器上（它们采用写验证 cache策

略），由于写缺失不会导致处理器等待任何数据，这些缺失的代价并不大。但是在其他一514
些机器上（它们采用写时取或写-绕过策略），写缺失的代价昂贵。一种解决方法是在向

块中存储数据之前先预取该块。这种方法不需要分析程序中的任何循环（诸如 21.3节介
绍的技术），而是如果分配器在地址 a创建了新的对象，它就预取字a＋K。K的值和

cache缺失延迟相关，也与分配相对于其他计算的频繁度相关，但是取 K=100 几乎在所

有情况下都能很好地工作。
·将相关的对象组成组∶如果对象x指向对象y，访问x的算法很可能马上会访问y，将这

两个对象放在同一块中是合适的。使用深度优先搜索遍历活跃数据的复制式收集器往往

会自动地把相关数据放在一起，而使用宽度优先搜索的收集器则做不到这一点。按深度

优先顺序复制改善了cache 性能———但是只有在 cache 块的大小超过这些对象的大小时才

能显现出来。
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这些 cache 局部性改进技术全部适用于复制式收集。标记-清扫收集器因为不能移动活跃的

对象，故它对 cache 管理的责任要少些，参见"推荐阅读"。

推荐阅读

Sites【1992】讨论了几种指令 cache 和数据cache 的对齐优化。可以使用推销员旅行问题

（traveling salesman problem，TSP）的高效近似算法进行基本块排序，以最小化分支造成的取指

令延迟【Young et al.1997】。

Mowry等人【1992】描述了一种在 for 循环中插入预取指令的算法，此算法注意到了在所考
虑的数据有可能已经在 cache 中时，不插入预取指令（毕竟，插人预取指令会有一条指令的流

出代价）。
Lisp机器的垃圾收集器使用深度优先搜索将相关的对象组合在同一页中，以便使页缺失最

小化【Moon 1984】。Koopman等人【1992】描述了针对垃圾收集系统的预取。Diwan 等人【1994】、
Reinhold【1994】以及 Goncalves和 Appel【1995】分析了使用复制式垃圾收集的程序的 cache 局部
性。对于标记-清扫收集器，Bochm等人【1991】建议（为了改善页一级的局部性）新的对象不应

当分配到包含老对象的且几乎快满了的页中;并且清扫阶段应该增量式地进行，使得被分配的

页恰好在程序分配它们之前通过清扫而被读人 cache 块中。515
用于嵌套循环程序的存储局部性优化技术与用于循环的并行化技术有许多相同之处。例如.

矩阵乘的并行实现中，如果让每个处理器计算C 矩阵的一行，则每个处理器需要 A的N个元
素和 B的N个元素，即处理器之间会有O（N'）个字的通信。取而代之，如果让每个处理器计算

C的一块（块大小为√N×√N），则每个处理器只需要 A和B的各N×、N个字，处理器之间
的通信也只有 O（N5）个字。许多使用分块和循环嵌套优化为单处理器生成最高效的存储代码

的编译器就是并行编译器-—只是将并行化功能关闭了而已!

为了生成好的并行代码（或者执行本章所描述的多种循环优化，如分块和交换），编译器必

须分析数组访问之间的数据依赖关系。数据依赖关系分析超出了本书的讨论范围，Wolfe【1996】

对此做了很好的介绍。

Callahan等人【1990】说明了如何进行标量替换，Carr 和 Kennedy【1994】说明了如何基于目

标机特征计算正确的循环展开和压紧的次数。

Wolf 和Lam【1990】描述了一种编译优化算法，这个算法使用了分块、分片（tiling，和分块

类似，但是分片可以是倾斜的，而不是成直角的）和循环交换来改善多种嵌套循环的局部性。
Wolfe【1996】编写的教科书几乎涵盖了本章描述的所有技术，它关注的主要是自动并行化，

但是也涉及了改善存储局部性的方法。

习题
*21.1 用C语言写一个1000×1000的双精度浮点矩阵乘程序。在你的机器上运行这个程序，

并测量其运行时间。

a.查明你机器上的浮点寄存器个数、一级 cache 和二级 cache 的大小。

516 b.写一个矩阵乘程序，它只针对二级 cache 层次使用分块转换。测量它的运行时间。

c.修改你的程序，优化一级 cache 和二级cache。测量其运行时间。
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d.再次修改你的程序，除了优化一级 cache 和二级 cache外，通过循环展开和压紧，优
化寄存器的使用。检查C 编译器的输出，验证寄存器分配器确实将你的临时变量都

放入到了浮点寄存器中。测量其运行时间。

*21.2 用C语言写一个1000×1000的双精度浮点矩阵乘程序。使用C编译器输出程序中循环

的汇编代码。如果你的机器有预取指令，或是有能够用作预取的非阻塞的取指令，插入

预取指令隐藏二级 cache 缺失。说明你利用 cache 缺失延迟进行了哪些计算?使用预取

517]后、你的程序性能提高了多少?
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Tiger 语言是—个小规模的语言，它有嵌套函数、采用隐含指针的记录值、数组、整型和字

符串变量，以及几种简单的结构化的控制结构。

A.1 词法名词

标识符∶标识符是以字母开头，由字母、数字和下划线组成的序列（区分大小写字母）。在

本附录中，符号 id 代表一个标识符。

注释;注释可以出现在任意两个单词之间。注释以/★开始，以★/结束，并且可以嵌套。

A.2 声明

声明序列是由一系列的类型、值和函数声明组成的序列;各个声明之间没有用来分隔或终

止一个声明的标点符号。

dcs→ lde]

dec→rydec
→ vandec
→jundee

518 本节所用的语法记号中，e代表空字符串，xl代表可能为空的序列 x。
数据类型

Tiger中类型和类型声明的语法是

rydec → type type-id = ry
b →+ bype-d
‘一字一 （这里的花括号代表花括号自身）

→+ arry of ype-id
yhelds →e
→ id:type-id |., d:type-id

·内建类型∶有两个预先定义的命名类型 int 和 string。可以通过类型声明定义或重新定

义（包括那些预定义的）其他的命名类型。

·记录;记录类型是由花括号中列出的它们的各个域来定义的，每一个域用fieldname∶

type-id 来描述，其中 type-id 是一个由类型声明定义的标识符。
·数组∶任何命名类型构成的数组可以通过 array of type-id来创建。数组的长度不作为这
个类型的一部分被指定;这个类型的每一个数组都可有不同的长度，并且长度是在程序
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运行中创建数组时确定的。
·记录各不相同∶每一个记录或数组类型的声明创建一个新的类型，并且这个新类型与其

他记录或数组类型不兼容（即使所有的域都相同）。

·相互递归的类型;一组类型可以递归或相互递归。相互递归的类型是通过一系列连续的、

其间没有介入值或函数声明的类型声明来指明的。每一个递归环必须经过一个记录或数

组类型。
因此，整数表的类型是∶

type intlist = {hd: int,tl:intlist)

type tree=(key: int,children: treelist}
type treelist =(hd: tree,tl: treelist}

但是，下面的声明序列是非法的∶

type b= c
type c= b

·域名的可重用性∶不同的记录类型可以使用相同的域名（如上例中 intlist 和 treelist
的域 hd）。 519

A.2.1 变量

vardec → var d := exp
→var id: type-id:= exp

在上面的变量声明中，短形式的声明给出了变量名，其后跟随一个表示该变量初值的表达

式。在这种形式中，变量的类型取决于这个表达式的类型。

在长形式的变量声明中，同时还给出了变量的类型。初值表达式必须具有相同的类型。
如果初值表达式是 nil，则必须使用长形式的声明。

每一个变量声明创建一个新的变量，它的生命期同其声明的作用域一样长。

A.2.2 函数

fundec →function id (tyfields)= ep
→function id(tyfelds):type-id= exp

上面的第一行是一个过程声明;第二行是一个函数声明。过程没有返回值;但函数返回结

果值，并且结果值的类型在冒号之后指明。exp是过程体或函数体，tyfields指明了参数的类型

和名字。所有参数都是传值参数。

函数可以递归。相互递归的函数和过程通过一系列连续的函数声明来指明（之间没有插入

类型或变量声明）∶

function treeLeavea(t:tree):int =
if t=nil then 1
else treel1atLeaveg(t.chd1dren)

functlon treelistLeaves(L:treelist);int=
if L=nll then 0
else treeLeaveg(L.hd)+ treelistLeaves(L.tl)
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A.2.3 作用域规则

·局部变量∶在表达式 let ⋯ vardec ⋯ in exp end中声明的变量的作用域从 vardec 之后开
始直到 end结束。

·参数∶在 function id（⋯ id∶id.⋯）=exp中，参数 id，的作用域是整个函数体 exp。[520
·嵌套作用域∶变量或参数的作用域也包括那个作用域中每一个函数定义的函数体。也就
是说，Tiger 同 Pascal和 Algol一样，允许访向外层作用域中的变量。
·类型∶在表达式 let⋯rvdecs ⋯ in exps end中，类型标识符的作用域从定义它的类型声

明的连续序列开始，一直延续到 end。这包括此作用域内所有函数的函数头和函数体。
·函数∶在表达式 let ⋯fundecs ⋯ in exps end中，函数标识符的作用域从定义它的函数声
明的连续序列开始，一直延续到 end。这包括此作用域内所有函数的函数头和函数体。

●·名字空间;有两类不同的名字空间;一种是类型的名字空间，另一种是函数和变量的名

字空间。类型 a可以与变量a或函数a同时处在一个作用域中，但是，同名的变量和函

数不能同时处于一个作用域中（其中一个将隐藏另一个）。
·局部重声明∶变量或函数的声明可以被较小作用域中同名的（变量或函数的）重复声明
所隐藏。例如，以参数5调用下面这个函数将输出"6 7 68 6";

function f(v:int)=
let var V;=6
in print(v);
let var v :=7 in print (v) end;
print(v);
let var v:= 8 in print (v) end;
print(v)
end
函数可隐蔽同名变量，反之亦然。类似地，类型声明可以被其作用域内具有较小作用域

的同名的重复声明所隐藏。但是，在相互递归的函数序列中，不能有同名的函数;并且
在相互递归的类型序列中，不能有同名的类型。

A.3 变量和表达式

A.3.1 左值
左值是可以从其中取出值或对其赋值的一个位置。变量、过程参数、记录域和数组元素都

是左值。
wvalue →id
→) hatue.id
→ hvalue Lep ]521

·变量∶形如 id 的标识符引用一个根据作用域规则可访问的变量或参数。
·记录域∶点号表示法允许选择一个记录值相应的命名域。

·数组下标;方括号表示法允许选择与编号对应的数组元素。数组以从0开始的连续整数

（最大值为数组大小减1）作为索引。
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A.3.2 表达式

●·左值∶当用于表达式时，其值是它对应的位置中的内容。

·无值表达式∶有一些表达式不产生结果，包括过程调用、赋值、i-then、while、break，

有时还有 i-then-else。因此，尽管表达式（a∶=b）+c在词法上是正确的，但它却通不过

类型检查。
·nil∶表达式 nil（保留字）表示一个属于所有记录类型的值 nil。如果记录变量 v的值为

nil，则从v选择一个域会检测出一个运行时错误。nil必须用在可以确定其类型的上下文

中，也就是∶
OKvar a;my-record := nil
OKa : nf1
OKif a <> nil then：，。
OK1f nll <> a then..
OKifa =ni1 then ..
OKfunction f(p: my-record) =..f(nil)
非法var a;* ni1
非法if nA1 = n11 then。.

·序列∶括在括号内用分号隔开的两个或两个以上表达式组成的序列（exp;exp;...exp），
按排列顺序计算它的所有表达式。此序列的结果是最后一个表达式产生的结果（如果有
结果的话）。
·无值;一个开括号其后跟随一个闭括号（这两个括号是两个独立的单词）是一个不产生
值的表达式。类似地，在 in 和 end之间没有内容的 let表达式也不产生值。
●·整型字面量;由十进制数字组成的一个序列是一个代表对应整数值的整型常数。

●字符串字面量;字符串是一个序列，它由括在双引号之间的0或更多个可打印字符、空

白符或转义序列组成。每一个转义序列由转义字符\引入，代表一个字符序列。Tiger允

522许有如下的转义序列（\的所有其他用法都是非法的）。

\m 系统中表示换行的字符。

制表符Tab。\t
N^e 控制字符c，适用于任何适当的字符c。
\dd 具有 ASCII码 ddd（3个十进制数字）的单个字符。
X" 双引号字符（"）。

反斜线字符（A）。A

f\此序列将被忽略。其中ff代表一个或多个以上的格式化字符（非可人f

打印字符的子集，至少应包含空白符、制表符、换行符、换页符）组成

的序列。这使我们可以在一行的末尾和下一行的开始各写一个\，从而
写出长度超过一行的长字符串。

·负值∶整型值表达式之前可以带有一个负号。

·函数调用∶函数调用 id（）或 id（expl，exp|）表示从左至右计算实参表，并用计算出的实

参值来调用函数 id。这些实参与该函数定义的对应形参相结合，函数体按照传统的静态
作用域规则计算出一个结果。如果 id 实际表示的是一个过程（即无返回值的函数），则

其函数体不能产生结果值，并且调用此函数也不会有返回结果。
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·算术操作∶形如 exp op exp 的表达式，其中 op 是+、-、、/，要求整型操作数，并且产
生一个整型结果。
·比较∶形如exp op exp的表达式，其中op是=、<、>、<、>=、<=，比较它的两个操作
数的相等或不等性，并在比较结果为真的情况下产生整数 1，在为假的情况下产生整数

0。所有这些操作符都可以应用于整型操作数。相等或不等操作符也可应用于相同类型的
两个记录或数组操作数，但比较的是其"引用"或"指针"的相等性（它们测试的是两

个记录是否是相同的实例，而不是这两个记录是否具有相同的内容）。

·字符串比较;比较操作符也可应用于字符串。如果两个字符串的内容相同，则这两个字
符串相等;没有办法识别部分字符相同的两个字符串。不等性是按照词典序来比较的。

·布尔操作∶形如exp op exp的表达式，其中op是区或|，表示按捷径方式计算布尔交和

并;当它们可以由左操作数确定出其结果时，将不再计算其右操作数。任何非0的整数

值都看成真值，整数0是假值。

·操作符的优先级∶一元负（取负）具有最高的优先级，操作符*、/具有次高优先级，其[523]
次是+、-，之后是=、<、>、<、>、<，再之后是&，最后是|。

·操作符的结合性∶操作符*、/、+、-都是左结合的。比较操作符不能结合，因此，尽管
a=（b=c）是合法的，a=b=c不是合法的表达式。
·记录创建∶表达式type-id{id=expl，id=expl或（对于一个空记录类型）type-d|创建

一个类型为 type-id的新的记录实例。该记录表达式的域名和类型必须按给定的顺序与命

名类型的域名和类型相匹配。这里的花括号{}就是花括号自身。
·数组创建∶表达式 type-id【exp】of exp∶按顺序计算exp，和exp，分别计算出其元素的个
数n和初始值v。类型 type-id 必须声明为数组类型。该表达式的结果是一个类型为 type-
id，索引范围从0到 n-1的新数组，此数组的每一个元素的初值都为 v。

·数组和记录赋值∶当一个数组或记录变量 a被赋予了一个值b时，a引用的是与b相同
的数组或记录。之后对a的元素的更新将影响b，反之亦然，直到 a被重新赋值。数组
和记录参数传递的是地址，而不是值。

●·生存期;记录和数组具有无限的生存期;每一个记录或数组值是永久存在的，即使控制

已退出了声明它们的作用域也如此。

·赋值∶赋值语句 lvalue∶=exp 先计算1value，接着计算exp，然后设置 Ivalue 的内容为表
达式exp 的结果。在句法上，∶=的优先级低于布尔操作符8和|。赋值表达式不产生值，

所以（a∶= b）+c是非法的。

·if-then-else∶i表达式if exp;then exp。else exp。计算整型表达式exp。如果结果不为0，
则产生计算表达式 exp。的结果;否则产生 exp，的结果。表达式exp;和 exp，必须具有相同
的类型，此类型也是整个 if表达式的类型（或者，两个表达式都必须是无值的）

·i-then;i表达式if exp.then exp;计算整型表达式 exp。如果结果不为0，则计算 exp∶
（它必须不产生值）。整个 if表达式是无值的。

·while∶表达式while exp，do exp;计算整型表达式 exp。如果结果不为0，则计算 exp∶
（它必须是无值的），然后重新计算整个 while表达式。

·for∶表达式 for id∶=exp;to exp∶do exp，对取值范围在exp 和exp;之间的 id 的每一个整
数值重复计算exp。变量 id 是一个由该for 语句隐含声明的新变量，它的作用域仅在

exp。中，并且在exp;内不可以对它赋值。循环体exp;必须是无值的。循环的上界 exp;和
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524下界 exp∶只在进入循环体之前计算一次。如果上界小于下界，则不会执行循环体。
·break∶break 表达式终止直接包含它的那个 while表达式或 for 表达式的计算。即使p嵌
套在q之内，过程 p 之内的 break 也不能终止过程q中的循环。break 位于while 或 for之

外是非法的。
·let∶表达式 let decs in expseg end 计算声明 decs，绑定类型、变量和过程使它们的作用域
为整个expseg。expseq 是0个或更多个用分号分隔的表达式所形成的序列，此序列中最
后一个表达式的结果（若有的话）将作为整个 let表达式的结果。

·圆括号;和大多数程序设计语言一样，括住任何表达式的圆括号都强制它们在句法上组

成一-组。

A.3.3 程序

Tiger程序没有参数∶程序就是一个表达式 exp。

A.4 标准库

Tiger有下面几个预先定义的函数。
function print(s ; etring)

输出s 至标准输出。

function flush()

排空标准输出缓冲区。

function getchar(): string

从标准输入读一个字符;遇到文件尾则返回空字符串。

function ord(g: string):int

给出s中第一个字符的 ASCII值;如果s是空字符串，则返回-1。

function chr(i:int):string

ASCII值为i的单字符字符串;若i超出了 ASCII字符集的范围，程序将停止。

function size (e:string):int

s中宇符的个数。

function gubatring(s:string,first:int,n:int): string

字符串s中从第 first 个字符开始、长度为n的子字符串，宇符从0开始编号。

function concat (sl: string,92;string): string

s1和 s2的串联得到的宇符串。

funetion not(i :int):int

返回（i= 0）。
function exit(i;int)
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525 以状态码i终止程序的执行。

A.5 Tiger 程序示例

本节给出了两个已完成的 Tiger程序;程序6-2 只是一个Tiger程序的一部分（一个函数）。

A.5.1 QUEENS.TIG

/* A program to golve the 8-queens problem */
let
var N:=8
type intArray= array of int
var row ;= intArray [ N ] of 0
var col :intArray[N] of 0
var diag1 :=intArray [N+N-1] of 0
var diag2:=intArray [N+N-1] of 0

function printboard()=
(for i:-0 to N-1
do(ftor j:0 to N-1
do print(if col[i]=j then" o" elee".");
print("\n")):
print("\n"))

function try(c:int)=
if c=N
then printboard()
elge for r := 0 to N-1
do if row[r]=0 & diagl[r+c]=0& diag2{r+7-c]=0
then(row(r]:=1;diagl[r+c]:=1;diag2[r+7-c]:=l;
col [c]:=r;
try(C+1)?
row[r]:=0; diagl[r+c]:=0;diag2[r+7-c]:=0)

in try(0)
end
这个程序输出了所有满足如下要求的棋盘布局∶在国际象棋棋盘上放置8个皇后，使之满
足同一行、同一列和同一对角线上不会有两个皇后。它说明了数组和递归的用法。假设我们已

成功地在第0～c一1列放置了两个皇后，则当第r行放置了皇后时，row【r】将是1;当第d条左

下角至右上角的对角线放置了皇后时，diag1【d】将是1;当第d条左上角至右下角的对角线放置

了皇后时，diag2【d】将是1。接下来，try（c）尝试在第 c～N一1行放置皇后。526

A.5.2 MERGE.TIG
let type any = (any: int)
var buffer := getchar()

function readint(any: any):int =
1et var i:=0
function isdigit(8 : string):int=
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ord(buffer)>=ord("0")& ord(buffer)<=ord("9")
in while buffers""|buffer="\n" do buffer := getchar()
any,any :=isdigit(buffer);
whiie isdigit (buffer)
do (i:= i*10+ord(buffer)-ord("0");
buffer := getchar());

直
end
type 1ist ={first: int,reat: 1ist}

function readlist (): list =
let var any := any{any=0}
var i:=readint(any)
in if any.any
then list{first-i,rest=readlist()}
else (buffer:= getchar();nil)
end

function merge(a: 11at,b:liet):1iat=
if a=nil then b
else if b=ni1 then a
elge if a.firat < b.first
then list{first-a.first,rest=merge(a.rest,b)]
else 1ist(first=b.first,rest=merge(a,b.rest))

function printint(i: int)=
let functlon f(1:int)=if is>0
then(E(i/10);print(chr(i-i/10*10+ord("0"))))

in if i<0 then (print("-*):f(-i))
else i. 1s0 then f (i)

else print(*o")
end

function printlist(l:list)=
if l=ni1 then print("\n")
else(printint(1.first); print(""); printlist(1.reat))

/· BODY OF MAIN PROGRAM */

in printlist(merge(readliat(),readlist()))
end
这个程序从标准输人读人两列整数;每列中的数应按递增顺序排列，数之间用空白或换行

符分隔;每一列数应当用分号来终止。

程序的输出是这两列数的合并;即一列按递增顺序排列的数。

记录 any在 Tiger 中用来模拟传地址调用。尽管readint不能更改它的实参（以指明输人中
是否还余留有要输入的数），但可以更改它的实参的一个域。

赋值 any∶=anydany=0|说明了一个名字可以表示变量、类型和域，具体表示什么取决于它

的上下文。 527]
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引索 
索引中的页码为英文原书的页码，与书中边栏的页码一致。

A bounds check（边界检查），164，425~429

abstract data type（抽象数据类型），5 Assem module（Assem模块），206
abstract syntax（抽象语法），见 syntax，abstract associativity（结合性），见 right-associative，left-

access link（访问链），见 static link associative, nonassociative
activation record（活动记录），6，125～134 attribute grammar（属性文法），13

Ada（Ada语言），350，351.371，380 available expressions（可用表达式），389
addressing mode（寻址模式），199，203

BADT，见 abstract data type
Baker's algorithm（Baker 算法），290Aiken-Nicolau algorithm （Aiken-Nicolau 算法），

478~482,493 basic block（基本块），185，187，394，398，416
alias （别名） beta reduction（beta 归约），见 inline expansion

binding（绑定），103～111，另见 precedenceanalysis（分析），390，402～407，426

in FindRecape module（FindEscape 模块内），in coalescing register allocation（在合并寄存器

140分配中），250
alignment（对齐），见 cache alignment in type environment（类型环境中），112

alloca（alloca函数），213 in value environment（值环境中），115
Bison,5,69,96allocation（分配）
blacklist（黑色表），297of activation records（活动记录的～），125.

127,171 block structure（块数据结构），见 funcetion，nes-

tedof arrays and records（数组和记录的~～），167

bloeking（分块），511～514，516of heap data（堆数据的～），291
register（寄存器），见 register allocation boxing（装箱），372～377

alphabet（字母表），18 branch prediction（分支预测），490～493
buffered input（带缓冲的输入）。35ambiguous grammar（二义性文法），见 grammar

analysis （分析） bypass datapaths《旁路数据路径），476，478
dataflow（数据流），见 dataflow analysis
liveness（活跃性），见 liveness

antidependence（反依赖），见 dependence，write- C programming language（C程序设计语言），95
after-read linking to（链接到》，168
approximation （近似） writing compiler for（编写～编译器），18，

94,125,126,131,139,153,160 ～dataflow analysis（数据流分析），224，227，385
in garbage collection（在垃圾收集中），273 162,166,167,213,265,338,402,

404,407,411of spill effect（溢出效果的），236
of strietness（严格性的），345 writing compiler in（用～写编译器），5，9～

11,145argument（实参），见 parameter
C++,265,308,350,351,371,402array（数组），160，162，167



索 引377

185cache（高速缓存），498～501
conditional move（条件传送），488alignment（对齐），502～504

conflict（冲突）and garbage collection（和垃圾收集），283，
514~515 in predictive parser （预测分析中），47

reduce-reduce（归约-归约），69，70，72，75，97cache alignment（高速缓存对齐），515
resolution of（的解决方法），72~75CALL(CALL),176,177,183

cal（调用） shift-reduce（移进-归约），62，68～70，72，

74,97by name（传名），338
conservative approximation （保守近似），见 ap-by need（按需），339

by reference（传地址），132，133 proximation
calle-save（被 调 用 者 保护的），见 register， constant folding（常数折叠），453

calle-save constant propagation（常数传播），389，452～453
caller-save（调用者保护的），见 register，caller-save conditional（条件），453～456

constraint（约束）Canon module（Canon 模块），177

canonical tree（规范树），见 intermediate repre- functional-unit（功能部件），475，477
constructor（构造函数），9sentation, canonical
continuation（延续），323，348card marking（卡片标记），286

CISC（复杂指令集计算机），195，203～205，493 continuation-passing style（延续传递风格），469

class（类） control dependence（控制依赖），459~460
descriptor（描述字），303～306，309~314 graph 《图），460

control flow（控制流），185，另见 flow graphclassless language（无类语言），310
control-flow graph（控制流图），见 flow graphcloning（克隆），310

closure（闭包） coordinated induction variable（协调的归纳变量），
423~426conversion（变换），332～334，336

e,27、28,34 copy propagation（复写传播），392，453，另见
coalescingfunction（函数），318，320，347

Kleene （克林），19，40

Dof LR state（LR状态的），60，64

dangling else《悬挂 else），68coalescing（合井），239～256，261，336，393
conservative（保守的》，239 dangling reference《悬挂引用），131

data type，abstract（数据类型，抽象），见 abstractof SSA variables（SSA变量的），463
data typecode generation（代码生成），见 instruction selection
dataflow（数据流），另见 liveness，reaching defi-code-generator generator（代码生成器的生成器》。201

Codegen module（（Codegen 模块），212 nitions，available expressions，等

analysis （分析），6coercion（强制），307，373
bit vector（位向量），394coloring（着色），见 graph coloring
equations（方 程），220～225，385，387，comma operator（逗号操作符），见 expression se-

389,401,406,413quence
iteration （迭代），见 iteration algorithmscommon-subexpression elimination（公共子表达式

删除），389，392 work-list algorithms（工作表算法），396

dead（死去的）commute（交换），179~189
state（状态），23complex instruction set（复杂指令集），见 CISC

dead code（死代码），329，342，393，397，398，computer（计算机），见 CISC 和 RISC
401,402,423,428,451,461conditional jump（条件转移），154，165，176，
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edge-split SSA（边分割 SSA），见 static single-def （of variable）（变量的定值），220
def-use chain（定值-使用链），433，472 assignment form
deforestation（森林砍伐），342~344 else，dangling（else，悬挂），68

emission（流出）dependence（依赖）
control（控制），见 control dependence in instruction selection phase《在指令选择阶

段），198.201data（数据），457，476，510
loop-carried（循环携带的），479 of assembly code（汇编代码的～），5，6，

214,260memory and array（存储器和数组），457～
459,479 encapsulation（封装），299
read-after-write（先写后读），见 depend- end-of-file marker（文件结束标志），46

ence,data Env module（Env模块》，115
write-after-read（先读后写），457，475，510 environment（环境），12，103～112，114，115.

123,140.302,318,333write-after-write（先写再写），457，475，510
funetional（函数式的），107depth-first search（深度优先搜索）
imperative（命令式的），105for dataflow analysis（用于数据流分析的），

222,224,395,396 multiple（多个），105
equational reasoning（等式推理），315～319.garbage collction（垃圾收集），273.283.

295 324,337.464

spanning trec《生成树），444～445 error message（报错信息），95.99
derivation（导出），42 error recovery（错误恢复），54

descriptor（描述字） escape（遮逸），101，133，140～141，265，319，

337，347，另见 FindEscapeclass（类），292，303～306，309～314
level（层次），170 Egcape module（Escape模块），140

ESEQ,176~-184record（记录），292，294
DFA，见 finite automaton expression sequence（表达式序列），99，另见 ESEQ
display（嵌套层次显式表），148

Fclass hierarchy（类层次），307，312，313

dominance frontier（必经结点边界），438，470 FindEscape module（FindEscape 模块），140

dominance property〈必经结点特性），见 static finite automaton（有限自动机），18，21～30
deterministic（确定的），22single-assignment form

dominator（必经结点），413～416，418，426～428， minimization （最小化），37
430。470 nondeterministic （非确定的），24
efficient calculation of（～的高效计算）， converting to DFA（转换到 DFA），27～32
444~450,468 FIRST set（FIRST集合），48~53，，64

fixed point（不动点），49，221，390，407dynamic programming（动态规划）
for instruction selection（用于指令选择）， least（最小的），224，233，401，453
197~201 Flex,5.35
for register allocation（用于寄存器分配）， flow graph（流图），218
257~260 reducible（可归约的），411

flow，data（流，数据），见 dataflowdynamic scheduling（动态调度）。见 out-of-order
FlowGraph module（FlowGraph模块），231execution
FOLLOW set（FOLLOW集合），49~51，53.5，63

E forward reference《向前引用），见 recursion，mutual
forwarding（转递），281～284edge splitting （边分割），442
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fragmentation （碎片），277 grammar （文法），5，41～46，另见 syntax
ambiguous（二义性），43，51，52。68～69.frame（赖），见 activation record

94.199Frame module（Erame 模块），136，268

atribute（属性），13frame pointer（帧指针），127～129，148、158，

factoring（提取因子），54159,170,213,215
for intermediate representation（关于中间表on Pentium（在奔腾机上），203

示的）、7.9freeze（冻结），240，249，255

function （函数） for parser generator（关于语法分析器的生成

器的），90～92dead（死的），329
hierarchy of classes（类的层次），67declaration（声明），122
LALR,65,67、69header（头），122
LL(1),52higher-order（高阶），126，315

integration（集成），见 inline expansion of straight-line programs（直线式程序的），7

leaf（叶子结点）），131 to specify instruction set（指定的指令集合），
199~201nested《嵌套的），101，126~127，133～135，

143,144,148,159,265,315,318～ transformations（转换），52，90，94
319,402,52I unambiguous（无二义性》，5!

functional intermediate form（函数式中间形式）， graph（图）
369,464～469 coloring<着色）），235～289，266，304，393

optimistic（乐观的），237functional programming（函数式程序设计）、13，

with coalescing（带合并的），239 ～256，104，315～349.另见 side effeet

261,336impure （不纯的》，316~317
work-list algorithm （工作表算法），248～pure（纯的），319~325
256symbol tables （符号表），107～108
interference（冲突），见 interference graphfunctional unit （功能部件），475，476

Graph module（Graph模块），230multiple（多个），476
graph，flow（图，流），见 flow graph

G
口garbage collection（垃圾收集），12.167，273～
halting problem（停机问题），384，407298,318,337,349
hash table（散列表），106，123and cache《和高速缓存），283，514～515

hazard（危机》，475，另见 constraint，functional-unitBaker's algorithm（Baker 算法）.290

Hindley-Milner type system（Hindley-Milner类型compiler interface（编译器接口），291~
系统），362，368，379294,370,372,378

concurrent（并发的），288 -conservative（保守的），296
IBM 360/91,489copying（复制式），280～285
ImplicitPoly-Tiger,362cost（代价），275，279，284，287.290

flip（翻转》，290 induction variable（归纳变量），419～425

generational（分代），285~287，514 coordinated（协调的），423，424，426

linear （线性的），421incremental（增量式的），287~291

inheritance（继承），299.302mark-sweep（标记-清扫），273～277
multiple （多》，304reference counts（引用计数），278~280

single（单），302，311，312generic（泛型），350，380



380 索 引

minimization of finite automata（有限自动机inline expansion（内联扩展），292，326～332，
348,466 的最小化），37

reaching definitions（到达定值），388of polymorphic functions（多态函数的～），
371 iterative modulo scheduling（迭代模调 度），见

modulo schedulinginstantiation of variable（变量实例），125
instruction （指令） ；fetch（读取），490，504

Java,351instr representation of （～的 instr表示），206
writing compiler for（编写～编译器），18，pipeline（流水线），见 pipeline

resource usage of （～的资源使用），476 94,105,161,265,292,298,307～
309,314,338,403.404,426,427sclection of （~的选择），6，191～217

Jouette,191～195,208～210side effect of（～的副作用），203，213
Schizo（精神分裂症的），199three-address （三地址），203

two-address（两地址），203，209

Kvariable-length（可变长度），203
instruction set（指令集），见 CISC 和 RISC Kleene closure（克林闭包），19，40

instruction-level parallelism（指令级并行），474
Intel（见 Pentium） L

label（标号），141interfaces （接口），5
interference graph（冲突图），227~248，260 lambda calculus（入演算），347，464
construction of （的构造），228，231～233，252 second-order（二阶），368，369，377，379
for SSA form（SSA形式的），463 landing pad《着陆垫），469

from SSA form（来自SSA形式的），463，472 lattice（格），454
lazy evaluation（懒惰计算），337~342，469intermediate representation（中间表示），6，151～

154，另见Tree leaf function（叶子函数），131
left factoring（左因子），53canonical（规范的），176～184

functional（函数式的），369，464~469 left recursion （左递归），52
interpreter（解释器），92，93 left-associative operator（左结合操作符），73.

74,524invariant（不变量），见 loop invariant
IR，见 intermediate representation Lengauer-Tarjan algorithm（Lengauer-Tarjan 算
item（项） 法），444～450，468，另见 dominator

LR (0),59 level，static nesting（层次，静态嵌套），143，144

Lex,5.30,34LR(1),64
lexical analyzer（词法分析器），6，16～38，95iteration algorithms（迭代算法）

alias analysis （别名分析），406 generator（生成器），30
lexical scope（词法作用域），见 function，nesteddominators（必经结点），413

Lisp379e-closure（e闭包），28
live range（活跃范围），218，228efficient（效率），393～397
live-in（人口活跃），220first and follow sets（FIRST和 FOLLOW 集

合），49 live-out（出口活跃），220

invention of（～的发明），407 liveness（活跃性），6，218～234，252，391，

393,396,398,400,401liveness analysis（活跃分析），221～222
in SSA form（SSA形式中的），463LR parser construction（LR 语法分析器构

造），61 of heap data《堆数据的），273
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multimethod（多方法），313Liveness module（Liveness模块），231
LL（k），见 parser LL（k）

Nlocal variable（局部变量），125

locality of reference（引用的局部性），见 cache negation（取负），100，164
lookahead（超前查看），38 NFA，见 finite automaton

loop（循环），410 nonassociative operator（非结合操作符），73，524
header（头结点），410，415～416 nonterminal symbol（非终结符），41
inner（内层的），415 nullable symbol（可为空符号），48～51，53
interchange（交换），510～511
invariant（不变量），330，341，416，418～424. 0
432 object-oriented （面向对象的）
natural（自然的），415～416 classless language（无类语言），310

nested（嵌套的），416 language（语言），161，292，299～314，380
postbody，见 postbody node（体后置，见体 oces parser generator（occs 语法分析器的生成器），69
后置结点） occurs check（存在性检查），364
scheduling（调度），478～490 out-of-order execution（乱序执行），489，505
unrolling（展开），429～430，478，508 output dependence（输出依赖），见 dependence.

write-after-writeLR（k），见 parser，LR（k）
1-value（左值），161～163 overloaded operator（重载的操作符），116

overloading（重载），350，378~380
M

Pmacro preprocessor（微处理器），17
Maximal Munch,195 parallel processing（并行处理）
memory（存储器） instruction-level（指令级），474

allocation（分配），见 allocation and garbage parameter（参数），另见view shift
collection actual（实在的），212，328，335

method（方法），299 address of （～的地址），131
instance（实例），302 allocating location of（分配～的存储单元），

133lookup（查找），303，311~313
multi-（多），313 by-reference（传地址），132，141，402，404

declaration （声明），120，122private（私有的），310

formal（形式的），115，138，176replication（复制），314
static（静态的），303 in frame（栈顿内的），131.136.137

MIPS,476,493 in Tiger（Tiger 中的），520，521，523
lazy（懒惰的），338MIPS computer（MIPS计算机），138，145

ML,94,350,379 nesting level of （～的嵌套层），140
of method（方法的），300writing compiler for（编写～编译器），105，
outgoing（传出的～），129，212.269126,133,149,161,316,338,348,

402,403,407,426,427 register（寄存器），130，138，145
self,300,301Modula-3,94,292,350
static link（静态链），144，319，333modularity（模块性），11，299
substitution（替换），328modulo scheduling（模调度），482～490

Motorola 68000,199 type-checking（类型检查），118

MOVE,182 variable number of（可变个数），131
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preheader（前置结点），329～330，416.422，parse tree（语法分析树），43.92
426,431,432,469,492abstract《抽象），96

preprocessor（预处理器），17parser（语法分析器）.6.95
procedure （过程），见 functiondynamic programming（动态规划），199

error recovery（错误恢复），54 profile-based optimization （基于 profile 的优化），
492,494generator （生成器）;69

LL(1),47~55 pure functional language（纯函数式语言），见
functional programming,pureLL(k),52,56

LR.92
QLR(0),59~63

LR(b),56~59 quadruple（四元式），386，464
LR《k),56~59

Rpredictive（预测），47～55

RAW，见 dependence， daticonstrucetion《（构造），51
recursive-descent（递归下降），46～48，51～ reachable data（可到达数据），273
55,88 reaching definitions（到达定值），311，387，403
SLR,62~64 reaching expressions（到达表达式），391

recursion（递归）Pascal,94,125,126,133,149,160 ～ 162,
167,292,338,402、403 mutual《相互>，94，99

tail （尾），见 tail recursionpattern（句型），见 tile
Pentium, 138,203,204,213 recursive descent（递归下降），见 parser

persistent data structure（长效数据结构），15，108 red-black tree（红黑树），108
phases（阶段） reduce-reduce conflict（归约-归约冲突），见 con-

flictof a compiler（编译器的~），4，351
order of （~的顺序），5 reduced instruction set（精简指令集），见 RISC

-function（φ函数），434 reducible flow graph （可归约流图），411

reference counts（引用计数），278~280pipeline（流水），476
reference parameter（传地址参数），见 call bysoftware（软~），见 scheduling

referencepointer（指针）
register（寄存器）derived（导出的），293

reversal（逆转）276 allocation（分配），6，204，393

Poly-Tiger,352 for trees（针对树的），257～260

Sethi-Ulman algorithm （Sethi-UIlman 算polymorphism（多态性），350
法），258pos,95

position（位置） callee-save（被调用者保护的），129~130，

171,172,215,243~244,267,293,in source code（源代码中），95

335,347postbody node（体后置结点），431，432，437，469
caller-save（调用者保护的），129～130，147，postdominance（后必经结点），460
212,244,336precedence （优先）45
classes of （～的类），199，203，204precedence direetive《优先级指导），72～75
windows（窗口），131，137，138predicated execution 《谓词执行的），488
zero（零），215prediction《预测），见 branch predicetion

register allcation（寄存器分配）predictive parser（预测分析器），见 parser
for SSA form（对 SSA形式的），462prefetching（预取），504～509，514.15
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significant degree（高度数），236，239～249，264regular expression（正则表达式），18～21，34
converting to NFA（转换到 NFA），25～26 Simula（Simula 语言），312

Spare,137~139,145remembered set（记忆集合），286，295

sparse conditional constant（稀有条件常数），见representation analysis （表示分析），373～377，
379 constant propagation
reservation table（预定表），488。506 spill（溢出），204，235~237，239，242，260，267

cost（代价），261reserved word《保留字），17
return （返回） potential（潜在的），236，240，242，263，264

address （地址》，215 work-list（工作表》，249~251
splitting（分割），见 edge splittingright-associative operator（右结合操作符），73，

SSA，见 static single-assignment form74,316
stack（栈）RISC（精简指令集计算机），145，195

roots of garbage-collected heap（垃圾收集堆的 frame（（帧），见 activation record
根），273，280，282，286，297 illustration of（～的例子），128

of activation records（活动 记录 的～），rule priority（规则优先），20，30

127~129runtime system （运行系统），167

pointer（指针），127～129，171，213.215s on Pentium （Pentium 的），203

semantic 《语义），91，92.95scalar replacement（标量替换），512，516
start state（初态），32scanner（扫描程序），见 lexical analyzer
state（状态）scheduling（调度），478～490.505
LR(0),61,62modulo（模），见 modulo scheduling

LR(1),64Scheme（Scheme语言），126，149，316，348

static link（静态链），134，142，143，148，159，Schizo-Jouette,199

160,170,171,215,318,319,332,333scope（作用域），103～108，132，142，464.

520~525 static single-assignment form （静态单献值形式），
433～436lexical（词法），见 function，nested

nested（嵌套的），160 converting from（从～转换），462~463
converting to（转换到~），436～442search tree（搜索树），15
data structures for（～的数据结构），451balanced（平衡的，15

semantic（语义） dominance property（必经结点性质），438，
456,463action（动作），31，88~97，101~102

analysis（分析），6，103 edge-split （边分割），443，456
stack （栈），91，92，95 optimizations using（使用～的优化），451～

457value（值），18，42，90，91
size of（~的大小），471，472semantics （语义），13，92

semidominator（半必经结点），446 unique successor or predecessor property（后继
sentinel（敏感标记），35 或前驱唯一性》，442、456

straight-line program（直线式程序），7～9，94Sethi-Ullman algorithm （Sethi-Uman算法），258

shift of view（视角移位），见 view shift interpreter（解释器），12
strength reduction（强度削弱），419，422~424shift-reduce conflict（移进-归约冲突），见 conflict

side effect（副作用），13，92，315 strictness analysis （严格性分析）。344~347
string literal（字符串文字常数），166in semantic action（语义动作中的），92

substitution（替换），337，见 type substitutionof instruction（指令的），203，213
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pattern（句型），见 tilesuperscalar《超标量），475

Symbol,100 pattern matching（句型匹配），201

symbol（符号） red-black（红黑），108
register allocation for（对～的寄存器分配）。in Tiger compiler（Tiger编译器中的），108

257~260Symbol module（Symbol模块），109，110
search（搜索），见 search tresymbol table（符号表），见 environment

Tree intermediate represention（Tree 中间表示），symbol，grammar（符号，文法），41
151~154,266syntax（语法），39，另见 grammar
Tree module （Tree模块），152abstract（抽象），5，6，92~95

type（类型）of straight-line programs（直线式程序的），
8~9 checking（检查），115～122，354～359

of Tiger（Tiger 的），97~101 constructor（构造函数），352

tree（树），95 equivalence（等价），114，355，357

concrete（具体的），94，95 generalization（通用化），364
hierarchy analysis（层次分析），311vs.semantics（与语义），75
Hindley-Milner,362,368,379

T inference（推论），359~369

instantiation（实例化），365table compression（表压缩），34

metavariabe（元变量），362tableau（表），480
passing（传递），377，379tagging values（带标记的值），373
polymorphic（多态），352tail recursion（尾递归），335～336

propagation（传播），311Temp module（Temp模块），141
recursive（递归的），114，359template（模板），350
substitution（替换），355，373temporary variable（临时变量），141
unification（统一），357，362～364terminal symbol（终结符），41

Types module（Types 模块），113thunk（形实转换函数），338～341，344，348

Tiger
Uabstract syntax（抽象语法），97~101

unification（统一），见 type unificationinstruction selection（指令选择），205～214

union-find（联合搜索），468language（语言），518～525

unique successor or predecssor property（后继或tile（瓦片），191~206，212，257～259

cost（代价），197 前驱唯一性），462

unreachable code（不可到达代码），428，453optimum vs.optimal（最佳与最优），194
unroll and jam（展开和压紧），513，516tools，compiler generation （工具，编译器的生

成），5，201 unrolling（展开），见 loop unrolling
use（of variable）【（变量的）使用】，220trace（轨迹），186～188

use-def chain（使用-定值链）。472trace scheduling（轨迹调度），489，493
factored（因式化的），469Tanslate module（Tanslate 模块），142，154

tree（树） useless variable（无用变量），424
canonical（规范），见 intermediate represen-

Vtation,canonical
data structures（数据结构），7 value numbering（值编号），398，407，434，468

varargs（变参），131intermediate representation（中间表示），6

variable（变量）parse（语法分析），见 parse tree
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Wescaping（逃逸的），见 escape
fre（自由的，空闲的），332 WAR，见 dependence，write-after-read

in frame（栈帧内的），132 WAW，见 dependence，write-after-write

live（活跃），见 liveness work-list algorithms（工作表算法），249，396，
local（局部的），125 441,452,455
useless（无用的），424

官view shift（视角移位），137，139，266
VLIW（超长指令字），493 Yace,5,69~90,92.96
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